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A REVIEW OF AN OPTIMAL DESIGN PROBLEM FOR A PLATE
OF VARIABLE THICKNESS∗

JULIO MUÑOZ† AND PABLO PEDREGAL‡

Abstract. We revisit a classic design problem for a plate of variable thickness under the model
of Kirchhoff. Our main contribution has two goals. One is to provide a rather general existence result
under a main assumption on the structure of the tensor of material constants. The other focuses on
providing a minimal number of additional design variables for a relaxation of the problem when that
assumption on the tensor of elastic constants does not hold. In both situations, the cost functional
can be pretty general.
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1. Introduction. The problem of the optimal design of a plate of variable thick-
ness under Kirchhoff’s model can be stated as finding the optimal, symmetric profile

h : Ω ⊂ R2 → R,

where Ω is supposed to be the midplane with respect to which the plate is symmetric,
so that it minimizes the value of the compliance functional

I(h) =

∫
Ω

f(x)u(x) dx,

where f is the vertical load over the plate, and u is the vertical displacement in
equilibrium which is obtained from the profile h by solving the equation of equilibrium

∑
i,j,k,l

∂2

∂xi∂xj

(
h3 (x)Mijkl

∂2u (x)

∂xk∂xl

)
= f (x)

in Ω, supplemented with clamped boundary conditions around ∂Ω by demanding
u = ∇u = 0 over ∂Ω. Here the fourth-order tensor M encloses the various material
constants for the type of elastic material the plate is made of. In addition, there
should be some other constraints on the admissible profiles so that the problem is
meaningful. On the one hand, we assume that there is a minimum and a maximum
height for h so that

0 < h− ≤ h(x) ≤ h+
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and h−, h+ are given parameters. On the other hand, we must limit the amount of
material that can be used so that∫

Ω

h(x) dx ≤ V |Ω|

and h− < V < h+.
This problem has received some attention over the years in two different directions.

First, it was noticed long ago that, at least in some situations, this problem is not well-
posed in the sense that there might not exist optimal profiles (see [6], [7]). Today, this
is a well-understood fact. It is typically associated with some lack of convexity, often
taken in a suitable broad sense. This direction was further pursued and explored from
the horizon of finding a minimal relaxation in the sense of using a minimal number
of generalized design variables (see [5], [9]). Several later works emphasized this
perspective and proved various types of results always trying to minimize in various
ways the number of design variables needed to describe minimizing profiles. In many
of these contributions, Young measures associated with minimizing profiles were used
in one way or another (see [1], [3], [4], [11], [15]). Second, in some other situations,
existence of optimal profiles has been shown despite the fact of the just-mentioned
difficulties (see [14], [16], [17]), coming to a situation where it is not completely clear
when, depending on the ingredients, one can trust existence results or else anticipate
highly oscillating optimal profiles. Another point in many of these works is that the
only cost functional considered is the compliance written before, along with some
other variants of order zero (no derivatives of u).

The aim of our contribution here is twofold. First, we examine the structural
ingredients of the problem that enable an existence result, and how existence of op-
timal profiles is compromised when such requirements are not fulfilled. As we will
see, this is basically related to the structure of the tensor M of material constants
so that the existence of optimal profiles for this problem depends (for many relevant
cost functionals) on the elasticity properties of the material we use to manufacture
the plate. Second, we would like to be able to examine more general cost functionals
and not just the compliance. We will give results for much more general objective
functionals in both existence as well as nonexistence cases.

Let F (x, u, λ, ξ, h) : Ω×R×R2×M2×2×R → R be a given integrand, continuous
in the variables (u, λ, ξ, h) and measurable in x (here M2×2 is the space of the 2 × 2
real matrices). Define

I(h) =

∫
Ω

F (x, u(x),∇u(x),∇2u(x), h(x)) dx,

where u solves ∑
i,j,k,l

∂2

∂xi∂xj

(
h3(x)Mijkl

∂2u(x)

∂xk∂xl

)
= f(x) in Ω,

u(x) =
∂u(x)

∂n
= 0 on ∂Ω,

Specifically, we consider the following optimal design problem:

Minimize I(h)

subject to h− ≤ h(x) ≤ h+ in Ω,

∫
Ω

h(x) dx ≤ V |Ω| .



OPTIMAL DESIGN PROBLEM FOR A PLATE 3

The main structural assumption to distinguish between existence and nonexis-
tence of optimal solutions for this optimal design problem refers to the material tensor
M . We will say that M is decomposable if

M = M1 ⊗M2,

where Mi are positive definite, second-order tensors (matrices). Notice how in this
case the equilibrium equation basically reduces to the biharmonic operator. In this
situation, we have a general existence result.

Theorem 1. Suppose that M = M1 ⊗ M2, i.e., M is decomposable, and the
integrand F in the cost functional I is such that the functions

ξ ∈
{
M2×2 :

c

M2 · ξ
> 0

}
�→ F

(
x, u, λ, ξ,

c

(M2 · ξ)1/3

)
and

(ξ, z) ∈
{
M2×2 : M2 · ξ = 0

}
× R �→ min

h∈[h−,z]∩Q
F (x, u, λ, ξ, h)

are convex for any constant c and fixed (x, u, λ). Then there are optimal profiles for
the associated optimal design problem for the plate.

A corollary worth stating covers many situations of interest.
Corollary 2. Suppose that the integrand F does not depend on ξ and h, and M

is decomposable. Then for any such F (even nonconvex), the corresponding optimal
design problem admits optimal solutions.

Explicit cases like the compliance F = f(x)u (x) are covered with this corollary.
But also examples like F = g(x)u (x), F = |∇u (x)|2, etc., can be treated through
this result as well.

When the tensor M is not decomposable, the situation is drastically different. In
many cases, this fact is responsible for the lack of optimal solutions and the analysis is
much more complex. See the references cited above. In the particular situation where
we assume that the profile h is a function of x1 alone, so that h(x) = h(x1), and
the tensor M is that of an orthotropic material, a relaxed formulation of the problem
can be pursued. It has been a principal goal over the years to find a minimal full
relaxation of this problem, that is, one which requires the least number of additional
design variables. For the compliance functional, the best result we know of has been
obtained in [4] (also in [15] within a more general framework). Here, by revisiting
some of our own old ideas [11], we are able to show that this same result holds true
even for much more general functionals. Recall that M for orthotropic materials is
defined in terms of two main material parameters: Young’s modulus E, and Poisson’s
ratio r, so that the nonvanishing components of M are

M1111 = M2222 =
2

3

E

1 − r2
, M1122 = M2211 =

2

3

Er

1 − r2
,

M1212 = M1221 = M2112 = M2121 =
1

3

E

1 + r
.

Theorem 3. Let admissible profiles depend only on x1, M corresponding to an
orthotropic material, and let the integrand for the cost functional

F (x, u, λ) : Ω × R × R2 → R
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be measurable in x ∈ Ω and continuous (not necessarily convex) in the pairs (u, λ).
Consider the optimal design problem

Minimize in (θ, h) : J(θ, h) =

∫
Ω

F (x, u(x),∇u(x)) dx

subject to

θ ∈ [0, 1], h ∈ [h−, h+],∫
Ω

[θ(x)h+ + (1 − θ(x))h(x)] dx ≤ V |Ω| ,

and where u solves∑
i,j,k,l

∂2

∂xi∂xj

(
M ijkl

∂2u

∂xk∂xl

)
= f in Ω,

u =
∂u

∂n
= 0 on ∂Ω,

and the nonvanishing components of M depend on the design variables through for-
mulae

M1111 =
2

3
c(x)

E

1 − r2
, M2222 =

2

3
m(x)E +

2

3
c(x)

Er2

1 − r2
,

M1122 = M2211 =
2

3
c(x)

Er

1 − r2
,

M1212 = M1221 = M2112 = M2121 =
1

3
m(x)

E

1 + r
,

m(x) = θ(x)h3
+ + (1 − θ(x))h3(x),

c(x)−1 = θ(x)h−3
+ + (1 − θ(x))h(x)−3.

This problem is a full relaxation of the initial optimal design problem in the sense

inf
h

I(h) = min
(θ,h)

J(θ, h).

The relevance of this result is in the fact that only one additional design variable,
θ (a certain weight), is required to produce a full relaxation of the problem, and this is
so for a rather huge class of cost functionals and not only for the compliance. We will
later provide further details as to how one is to interpret these pairs (θ, h) in terms
of sequences of profiles for the original problem.

This work includes another three sections. The second one contains the full proof
of Theorem 1 as well as some observations on some explicit examples. Section 3 covers
a brief, elementary discussion on the structure of the material tensor M . Finally,
the last section is devoted to the proof of Theorem 3. We will also dwell on the
interpretation of the proposed relaxed formulation in terms of the ingredients of the
original optimal design problem.

2. Existence results. It is our aim to study a type of design problem for plates
whose state equation has the format

div
(
div

(
h3(x) (M1 ⊗M2)∇2u (x)

))
= f (x) in Ω.(1)
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It is assumed that f ∈ L2 (Ω) is the applied vertical load, Ω is a smooth bounded
domain in R2 that represents the midplane of the plate, h ∈ L∞ (Ω) is the design
variable, and the tensors Mi are assumed to be positive and symmetric. To this
equation we add the boundary conditions

u (x) =
∂u (x)

∂n
= 0 on ∂Ω(2)

(clamped plate). We assume further natural constraints on the feasible designs by lim-
iting the height of the thicknesses and the amount of material: the set H of admissible
designs is defined as

H =

{
h ∈ L∞ (Ω) : h(x) ∈ [h−, h+]

.
= Q a.e. x ∈ Ω, V (h)

.
=

∫
Ω

h(x)dx ≤ V

}
(3)

(V , 0 < h− < h+ are given positive constants). Associated with this state equation,
we consider the general optimization problem

min
h∈H

{
L(h)

.
=

∫
Ω

F
(
x, u,∇u (x) ,∇2u (x) , h (x)

)
dx

}
,(4)

where u solves (1)–(2) and F is a given integrand such that

F : (x, u, λ, ξ, h) ∈ Ω × R × R2 × M2×2 ×Q → R = R ∪ {+∞} .

F is measurable in x and continuous in (u, λ, ξ, h).
Our goal is the optimization problem that consists of looking for an admissible h

and the corresponding displacement u, the only weak solution of problem (1)–(2) in
the Sobolev space H2

0 (Ω) (the subspace of H2(Ω) under the constraints (2)), which
minimizes the objective functional L defined in (4). We denote this problem by (P).

For the study of the above minimization problem, we shall consider a new equiva-
lent variational problem. The underlying idea is to use the differential expression (1)
in order to define a new objective functional subject to a set of constraints which are
easier to deal with. The construction of this equivalent problem is performed in an
elementary way [13]:

1. We introduce an auxiliary function u0: the solution of the elliptic problem

−div(M1∇u0) = f, u0 ∈ H1
0 (Ω) .(5)

2. Equations (1) and (5) give

div div(h3 (M1 ⊗M2)∇2u) + div(M1∇u0) = 0,

which is equivalent to writing

div
(
M1∇(h3 [div (M2∇u)]) + M1∇u0

)
= 0(6)

or even

div
(
M1∇(h3

[
M2 · ∇2u

]
) + M1∇u0

)
= 0,(7)

i.e.,

div (M1∇v) = 0,(8)

where

v = h3 div (M2∇u) + u0 = h3M2 · ∇2u + u0.(9)
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3. The new optimization problem, denoted by (EP), is described as follows. The
new integrand for the cost functional is

ϕ (x, u, λ, ξ, v, z) = min
h̃∈Q

{
F
(
x, u, λ, ξ, h̃

)
: v = h̃3 (M2 · ξ) + u0 (x) , z ≥ h̃

}
,

understood as taking the value +∞ whenever the set of admissible h’s is
empty, and the objective functional to be minimized in the variables (u, v, z)
is

J(u, v, z) =

∫
Ω

ϕ
(
x, u (x) ,∇u (x) ,∇2u (x) , v (x) , z (x)

)
dx,

under the constraints

u ∈ H2
0 (Ω) , v ∈ H1 (Ω) , div(M1∇v) = 0, z ∈ L∞ (Ω) ,

∫
Ω

z(x)dx = V.

Proposition 4. The two optimization problems (P) and (EP) are equivalent in
the following sense: for any admissible pair (h, u)1 for (P) there is a triplet (u, v, z)
admissible for (EP) such that

L(h) ≥ J(u, v, z).

Conversely, for any admissible triplet (u, v, z) for (EP), there is an admissible pair
(h, u) for (P) and

L(h) = J(u, v, z).

In particular, if (u, v, z) is optimal for (EP), then

h(x) =

(
v (x) − u0 (x)

M2 · ∇2u (x)

) 1
3

whenever M2 · ∇2u (x) �= 0, and

h(x) = arg min
h̃∈Q

{
F
(
x, u(x),∇u (x) ,∇2u (x) , h̃

)
: z (x) ≥ h̃

}
otherwise, is an optimal profile for (P).

Proof. The proof is almost straightforward. We include some details for the
convenience of the reader.

Let (h, u) be admissible for (P), so that problem (1)–(2) holds. We consider u0

(solution of (5)), and

v (x) = h3 (x)
(
M2 · ∇2u (x)

)
+ u0 (x) .

By following the construction explained above v solves (8) and the classical regularity
results on elliptic systems ensure that v is in H2 (Ω). We select z verifying

z (x) ≥ h (x) , z(x) ∈ Q, and

∫
Ω

z(x)dx = V.(10)

1Here (h, u) is said to be admissible in the sense that for any h ∈ H we find the only solution u
of problem (1)–(2).
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Then for any x ∈ Ω,

ϕ
(
x, u (x) ,∇u (x) ,∇2u (x) , v (x) , z (x)

)
= min

h̃∈Q

{
F
(
x, u,∇u (x) ,∇2u (x) , h̃

)
: v (x) = h̃3

(
M2 · ∇2u (x)

)
+ u0 (x) , z (x) ≥ h̃

}
≤ F

(
x, u,∇u (x) ,∇2u (x) , h(x)

)
.

It is clear that our triplet, (u, v, z), is admissible for (EP) and J(u, v, z) ≤ L(h).
Let (u, v, z) now be admissible for (EP). The multifunction H given by

arg min
h̃∈Q

{
F
(
x, u(x),∇u (x) ,∇2u (x) , h̃

)
: v (x) = h̃3

(
M2 · ∇2u (x)

)
+ u0 (x) z (x) ≥ h̃

}
is measurable and takes closed set values. Then H admits a measurable selection (see
[10, Thm. 2.23]) and we can select a measurable function h such that h(x) ∈ Q, and
for any x ∈ Ω

ϕ
(
x, u (x) ,∇u (x) ,∇2u (x) , v (x) , z (x)

)
= min

h̃∈Q

{
F
(
x, u (x) ,∇u (x) ,∇2u (x) , h̃

)
: v (x) = h̃3

(
M2 · ∇2u (x)

)
+ u0 (x) , z (x) ≥ h̃

}
= F

(
x, u (x) ,∇u (x) ,∇2u (x) , h (x)

)
.

Moreover, by definition we have v (x) = h3 (x)
(
M2 ·∇2u (x)

)
+u0 (x), z (x) ≥ h (x) ∈

Q. This is enough to fulfill the state equation

div div(h3 (M1 ⊗M2)∇2u) = f (x) ,

the bound on the volume ∫
Ω

h(x)dx ≤
∫

Ω

z(x)dx = V ,

and the equality I(u, v, z) = L(h, u).
We can now establish the existence of optimal solutions for (EP).
Theorem 5. Assume that the two functions

ξ ∈
{
M2×2 :

c

M2 · ξ
> 0

}
�→ F

(
x, u, λ, ξ,

c

(M2 · ξ)1/3

)
and

(ξ, z) ∈
{
M2×2 : M2 · ξ = 0

}
× R �→ min

h∈[h−,z]∩Q
F (x, u, λ, ξ, h)

are convex for any constant c and fixed (x, u, λ). Problem (EP),

inf
(u,v,z)

J(u, v, z)
.
=

∫
Ω

ϕ
(
x, u (x) ,∇u (x) ,∇2u (x) , v (x) , z (x)

)
dx,

where

ϕ (x, u, λ, ξ, v, z) = min
h∈Q

{
F (x, u, λ, ξ, h) : v = h3 (M2 · ξ) + u0 (x) , z ≥ h

}



8 JULIO MUÑOZ AND PABLO PEDREGAL

under the restrictions

u ∈ H2
0 (Ω) , v ∈ H1 (Ω) , div(M1∇v) = 0, z ∈ L∞ (Ω) ,

∫
Ω

z(x)dx = V ,

has optimal solutions.
Proof. Let (uj , vj , zj) be a minimizing sequence for (EP). As we have seen in the

proof of Proposition 4 we can build the corresponding sequence hj such that

div div(h3
j (M1 ⊗M2)∇2uj) = f (x) , uj ∈ H2

0 (Ω).

Then we can ensure that uj is uniformly bounded in H2(Ω). This sequence converges
to u weakly in H2

0 (Ω) and, consequently, uj and ∇uj converge strongly in L2(Ω)
to u and ∇u, respectively. On the other hand, by elliptic theory, div(M1∇vj) = 0
implies vj converges almost everywhere to a function v ∈ H1 (Ω) verifying the same
elliptic equation (see [16] for a very neat proof in the case of the Laplacian), so
that vj converges strongly to v. Finally, notice that because ϕ (x, u, λ, ξ, v, z) =
ϕ (x, u, λ, ξ, v, h+) if zj ≥ h+, we may assume without lost of generality that hj ≤
zj ≤ h+. Then zj converges to some z in L∞ (Ω) weak-�, and this limit must satisfy∫
Ω
z(x)dx = V .
On the basis of these remarks, it remains to prove that ϕ is jointly convex in (ξ, z)

for fixed (x, u, λ, v). To do that, it is enlightening to rewrite ϕ as⎧⎪⎪⎨⎪⎪⎩
F

(
x, u, λ, ξ,

(
v−u0(x)
M2·ξ

)1/3
)
, M2 · ξ �= 0, z ≥

(
v−u0(x)
M2·ξ

)1/3

∈ Q,

minh∈[h−,z]∩Q F (x, u, λ, ξ, h), M2 · ξ = 0, v = u0(x),

+∞ else

and discuss the convexity by considering two main cases:
1. v �= u0(x): in this case ϕ is given by⎧⎨⎩F

(
x, u, λ, ξ,

(
v−u0(x)
M2·ξ

)1/3
)
, M2 · ξ �= 0, z ≥

(
v−u0(x)
M2·ξ

)1/3

∈ Q,

+∞ else.

This is a convex function of (ξ, z), as the set where it is finite is convex, and,
by hypothesis, the function on such a set is also convex. Checking this is
elementary but a bit tedious.

2. v = u0(x): in this situation we have

ϕ(x, u, λ, ξ, v, z) =

{
minh∈[h−,z]∩Q F (x, u, λ, ξ, h), M2 · ξ = 0,

+∞ else.

This is again convex by our main structural assumption on F .
The proof of Theorem 1 is a direct consequence of Theorem 5 and Proposition 4.
The generality of the cost functional permits us to associate with the state

equation a huge class of optimization problems. We give some examples of such
densities: the compliance case F = f (x)u (x) or some other typical densities like
F = g(x)u (x), F = |∇u (x)|2, or the identification-type problem F = |u(x)−ud(x)|2+
|∇u(x) −∇ud(x)|2, where ud ∈ H1 (Ω) is the observed deflection of the plate. Also,
F = F1 (x, u,∇u), where F1 is continuous on the last two variables (but not necessarily
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convex) or F = F2

(
x, u,∇u,∇2u

)
, where F2 is continuous on the last three variables

and only convex in the ∇2u variable, are densities for which the existence is ensured.
Even with F = F1 (x, u,∇u) + F3(h) or F = F2

(
x, u,∇u,∇2u

)
+ F3(h), where F3 is

any convex and nondecreasing function (F1 and F2 as above), the existence of optimal
classical minimizers is guaranteed.

3. The structure of the tensor M . We have seen so far that the possibility
of decomposing the tensor M as the tensor product of two matrices is the crucial
ingredient for having existence of optimal profiles. This will be so for special types of
materials. In many sources from mechanics this is assumed as part of the model. See
[2], [8]. Indeed, the equilibrium equation for the plate is often taken as

DΔ2u = f,

where the coefficient D is the so-called flexural rigidity or the bending stiffness given
by

D =
Eh3

12(1 − r2)
,

where h is the (constant) thickness of the plate, and E and r are, as before, Young’s
modulus and Poisson’s ratio. When h is nonconstant, then the equation of equilibrium
must be written in the form

DΔ(h3Δ) = f.

This time

D =
E

12(1 − r2)
.

Within this sort of model, the tensor M is clearly decomposable with M1 and M2

multiples of the identity. In these cases, we can apply Theorem 1 to ensure the
existence of optimal profiles.

The case of orthotropic materials is, however, very different. In fact, an ortho-
tropic tensor is not decomposable.

Proposition 6. An orthotropic tensor is never decomposable.
The proof is elementary and well known to specialists. Indeed, by writing a

fourth-order tensor as a 4× 4 matrix in an organized way, we realize that the matrix
corresponding to a orthotropic material is of the form

4

9

E4

(1 − r2)(1 + r)2

⎛⎜⎜⎝
1 0 0 r
0 1 1 0
0 1 1 0
r 0 0 1

⎞⎟⎟⎠ .

If such an M were decomposable, this matrix would have to be a rank-one matrix,
which is easily seen not to be the case.

4. Design with a nondecomposable tensor. We investigate in this section
the same design problem for the plate under the assumption that the tensor of elastic
constants is not decomposable so that Theorem 1 is not applicable. Indeed, it is
well known, as indicated in the introduction, that in this situation nonexistence of an
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optimal profile may result, as the creation of highly oscillatory stiffeners may favor
the overall rigidity of the plate.

As before, the goal is to choose the half-thickness h and its corresponding deflec-
tion u, which minimizes an integral functional L = L(h, u) given by

L(h, u) =

∫
Ω

F (x, u(x),∇u(x)) dx,(11)

where F is assumed to be measurable in x = (x1, x2) and continuous on the variables
u and ∇u.

The class of materials is restricted by imposing an orthotropic condition, namely,
the nonzero components of Mijkl are

M1111 = M2222 =
2

3

E

1 − r2
,

M1122 = M2211 =
2

3

Er

1 − r2
,

M1212 = M1221 = M2112 = M2121 =
E

3(1 + r)
,

where r and E stand for the Poisson ratio and the Young modulus, respectively. By
our comments in the preceding section, this tensor is not decomposable.

We analyze this problem under the simplification that the thickness depends just
on one variable h(x) = h (x1) for any x1 in the interval

(a, b)
.
= {x1 : there exists x2 ∈ R such that (x1, x2) ∈ Ω} .

The design criterion is to minimize L among all the plates whose half-thickness
h satisfies all the constraint indicated above. In other words, the aim is to solve

min
h∈H

L,(12)

where

H =

{
h ∈ L∞(a, b) : h− ≤ h(x1) ≤ h+ a.e. x1 ∈ (a, b),

∫
Ω

h (x1) dx1dx2 ≤ V

}
.

(13)

Here h−, h+, and V are as before.
As indicated before, it is widely recognized that the principle described in (12)–

(13) may have no solution. At least, Theorem 1 cannot be applied. This fact suggests
performing a relaxation of the design problem to understand the nature of minimizing
sequences of profiles. This entails defining a new admissibility set H containing H,
and an extension L of L such that

inf
H

L = min
H

L.(14)

It is interesting to notice that by introducing the relaxation minH L, we are con-
sidering a problem whose solutions provide information about minimizing sequences
of (12). However, it is important to look for the (full) relaxation, which introduces a
minimal number of additional design variables. Ideally, just one more variable would
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be optimal. For the compliance functional, this was shown to be the case in [4] by
making use of optimality conditions. We will prove that this is the case for many
more cost functionals by revisiting some our our previous ideas on this problem [11].

The starting point for a relaxation is the lemma by Murat [12] and Tartar [18]
related to H-convergence. It explains why the cubic-average and the harmonic cubic-
average play an important role in the relaxation for this problem. This lemma is
only valid under our assumption of profiles depending only on x1. The reader can
consult [5] for a detailed proof of this result.

Lemma 7. Let
{
M (r)

}
be a sequence of orthotropic tensors bounded uniformly

by (d,D), i.e.,

d |t|2 ≤
∑
i,j,k,l

M
(r)
ijkltijtkl,

∣∣∣∣∣∑
ij

M
(r)
ijkltij

∣∣∣∣∣ ≤ D |t| for every k, l.

Suppose that M (r) = M (r) (x1) and(
M

(r)
1111

)−1 ∗
⇀

(
M

(∞)
1111

)−1

,(
M

(r)
1122

)(
M

(r)
1111

)−1 ∗
⇀

(
M

(∞)
1122

)(
M

(∞)
1111

)−1

,(
M

(r)
2222

)
−
(
M

(r)
1122

)2 (
M

(r)
1111

)−1 ∗
⇀

(
M

(∞)
2222

)
−
(
M

(∞)
1122

)2 (
M

(∞)
1111

)−1

,

M
(r)
1212

∗
⇀ M

(∞)
1212.

If u(r) are the solutions of the equilibrium equation for the clamped plate with tensor
M (r), and u(∞) is the solution corresponding to M (∞), then u(r) ⇀ u(∞) in H2

0 (Ω).
Because of the structure of the components of an orthotropic tensor, it is elemen-

tary to check that for a given sequence of designs {hj}, if we define (in a unique way)
the pair (h, θ) by putting

h3
j

∗
⇀ θh3

+ + (1 − θ)h3,

h−3
j

∗
⇀ θh−3

+ + (1 − θ)h−3
(15)

for θ ∈ [0, 1], h ∈ [h−, h+], and

M1111 =
2

3
c

E

(1 − r2)
,

M2222 =
2

3
mE +

2

3
c

Er2

1 − r2
,

M1122 = M2211 =
2

3
c

Er

1 − r2
,

M1212 = M1221 = M2112 = M2121 =
1

3
m

E

(1 + r)
,

(16)

where m and c denote the cubic average and the harmonic cubic-average of the pair
(θ, h), respectively,

m = θh3
+ + (1 − θ)h3,

c =
(
θh−3

+ + (1 − θ)h−3
)−1

,
(17)

then
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L(hj , uj) → L(θ, h),

where

L(θ, h) =

∫
Ω

F (x, u,∇u) dx

and u is the solution of the plate equation corresponding to the tensor M . Notice
that weak convergence in H2

0 (Ω) implies strong convergence in H1(Ω).
This discussion suggests defining a relaxation as an optimization problem for pairs

(θ, h) in

H = {(θ, h) : 0 ≤ θ ≤ 1, h− ≤ h ≤ h+}

with cost

L(θ, h) =

∫
Ω

F (x, u,∇u) dx,

where as above u is the solution of the equilibrium plate problem for tensor M ob-
tained from (θ, h) through the cubic-average and the harmonic cubic-average as in
(16) and (17).

This would essentially be the proof of Theorem 3 except for the fact that the
parameter V has not entered into our discussion. In fact, minimizing sequences of
admissible designs must comply with∫

Ω

hj(x) dx ≤ V,

and we have not told how this parameter V enters into the relaxation. How is V to
restrict further the pairs in H?

We observe that admissible pairs in H come from the weak convergence of se-
quences

(
h3
j , h

−3
j

)
. In order to relate hj to

(
h3
j , h

−3
j

)
, we will look for a function G so

that

h = G(h3, h−3), h ∈ [h−, h+],

and extend it by putting

G
(
θh3

+ + (1 − θ)h3, θh−3
+ + (1 − θ)h−3

)
= θh+ + (1 − θ)h.

If G so defined turns out to be convex, then by the weak convergences in (15),

lim
j→∞

∫
Ω

hj(x) dx = lim
j→∞

∫
Ω

G
(
h3
j (x), h−3

j (x)
)
dx

≥
∫

Ω

G
(
θ(x)h3

+ + (1 − θ(x))h(x)3, θ(x)h−3
+ + (1 − θ(x))h(x)−3

)
dx

=

∫
Ω

[θ(x)h+ + (1 − θ(x))h(x)] dx,

(18)

so that we have ∫
Ω

[θ(x)h+ + (1 − θ(x))h(x)] dx ≤ V.



OPTIMAL DESIGN PROBLEM FOR A PLATE 13

We then add this volume constraint to feasible pairs in H:

H =

{
(θ, h) : 0 ≤ θ ≤ 1, h− ≤ h ≤ h+,

∫
Ω

[θ(x)h+ + (1 − θ(x))h(x)] dx ≤ V

}
.

After the previous remarks, the full proof of Theorem 3 has been reduced to
proving the convexity of the mapping G described above. This convexity property for
G was proved in [11] (proof of Theorem 4.1). It is a nice, geometric argument, which
we do not include here for the sake of brevity. It has nothing to do with the rest of
the analysis in this work. One can also find in that paper how to recover admissible
sequences of designs which are minimizing for the original problem from optimal pairs
in H. This can be done in an elegant way by using Young measures associated with
such sequences of designs.

REFERENCES
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[12] F. Murat, H-convergence, Séminaire d’analyse fonctionelle et numérique de l’Université
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