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The Problem

Let T = 2. We control on the time interval (0, T ).

Let D ∈ (0,1). D is strictly less than the wave speed that equals 1.

Let Lip = {φ : [0, T ] → (0,∞), φ is Lipschitz continuous.}

Define the set of admissible φ:

Φ = {φ ∈ Lip : φ has a Lipschitz constant ≤ D, φ(0) = 1 = φ(T )}.

Define the set of initial states

B = {(y0, y1) : y′0 ∈ L2(0,1), y1 ∈ L2(0,1), y0(0) = 0 = y0(1)}.

Let (y0, y1) ∈ B be given.



We define the Problem to move the boundary in such a way that

at the time T , the energy is as small as possible.

Problem P :

min
φ∈Φ

W (T ) =

∫ 1

0
vx(x, T )2 + vt(x, T )2 dx

such that v(x,0) = y0(x), vt(x,0) = y1(x), x ∈ (0,1),

v(0, t) = 0, v(φ(t), t) = 0, t ∈ (0, T )

vtt = vxx on Ω = {(x, t) : t ∈ (0, T ), x ∈ (0, φ(t))}.



With the obvious definition of the set A of the admissible shapes

Ω and the objective function J(Ω), this can be seen as a shape

optimization problem

min
Ω∈A

J(Ω).

Note that due to the upper bound D < 1 for the Lipschitz constant,

the length of the string does not change faster than the wave speed.



Thm[Existence] There exists φ ∈ Φ that solves P .

Thm[Uniqueness] Let

A(x) =

{

y′0(−x) − y1(−x), x ∈ [−1,0)
y′0(x) + y1(x), x ∈ [0,1].

Define the set

Mz = {x ∈ [−1,1] : A(x) = 0}.

If Mz has measure zero, the solution of P is uniquely determined.



Thm[Representation of the solution of P ]

a) If A = 0 on [−1,1], we have W (T ) = 0 for all φ ∈ Φ.



b) If A 6≡ 0, there exists a number λ > 0, such that

∫ 1

−1
Π

[1−D
1+D

, 1+D
1−D

]
(λ|A(y)|) dy = 2.

With this number λ, we can define a solution of P as follows:

Define the function h : [−1,1] → [1,3] as

h(x) = 1 +

∫ x

−1
Π

[1−D
1+D

, 1+D
1−D

]
(λ|A(y)|) dy.

Let

H1(x) =
h(x) − x

2
, H2(x) =

h(x) + x

2
.

Then a solution of P is

φ(t) = H1(H
−1
2 (t)), t ∈ (0,2).



The corresponding value of the objective function is

W (t) =

∫ 1

−1

|A(y)|2

h′(y)
dy.



Example 1

y0(x) = |x − 1
2| −

1
2, y1(x) = 0. This yields |A(x)| = 1 ∈ [1−D

1+D
, 1+D

1−D
]

for almost all x ∈ (−1,1), hence we have a unique solution and

λ = 1. Thus h(x) = 1+(x− (−1)) = 2+x. Hence H1(x) = 1 which

yields φ(t) = 1.

In this example, it is optimal not to move the boundary. Every

change of the length of the string, for example caused by vibrations

causes an increase in energy.



Example 2

Let k be a natural number.

Let ω = kπ.

Let εω ∈ (0, 2D
1+D

).

Let y0(x) = ε sin(ωx), y1(x) = 1.

Then (y0, y1) ∈ B.

y′0(x) = εω cos(ωx).

For x ∈ [−1,0), y′0(−x) − y1(−x) = εω cos(ωx) − 1.



Hence for x ∈ [−1,0), |A(x)| = 1 − εω cos(ωx).

For x ∈ [0,1], y′0(x) + y1(x) = εω cos(ωx) + 1.

Hence for x ∈ [0,1], |A(x)| = 1 + εω cos(ωx).

Hence for all x ∈ [−1,1], |A(x)| ∈ [1−D
1+D

, 1+D
1−D

].

Moreover, we have
∫ 1
−1 |A(x)| dx = 2, hence λ = 1.

Therefore, for x ∈ [−1,0], h(x) = 2+x−ε sin(ωx), and for x ∈ (0,1],

h(x) = 2 + x + ε sin(ωx).

Thus for x ∈ [−1,0], H1(x) = 1 − 1
2ε sin(ωx)

and for x ∈ (0,1], H1(x) = 1 + 1
2ε sin(ωx).



As always, we have H2(x) = H1(x) + x.

We can plot the graph of φ = H1 ◦ H−1
2 since

{(t, φ(t)) : t ∈ (0, T )} = {(H2(x), H1(x)), x ∈ [−1,1]}.



The result and the proofs will appear in SICON.


