Optimal Control by varying the Length of the String

M. Gugat

Friedrich-Alexander-Universität Erlangen-Nürnberg
gugat@mathematik.tu-darmstadt.de.

The Problem

Let $T=2$. We control on the time interval $(0, T)$.

Let $D \in(0,1) . D$ is strictly less than the wave speed that equals 1 .

Let Lip $=\{\phi:[0, T] \rightarrow(0, \infty), \phi$ is Lipschitz continuous. $\}$

Define the set of admissible ϕ :
$\Phi=\{\phi \in$ Lip : ϕ has a Lipschitz constant $\leq D, \phi(0)=1=\phi(T)\}$.

Define the set of initial states
$B=\left\{\left(y_{0}, y_{1}\right): y_{0}^{\prime} \in L^{2}(0,1), y_{1} \in L^{2}(0,1), y_{0}(0)=0=y_{0}(1)\right\}$.
Let $\left(y_{0}, y_{1}\right) \in B$ be given.

We define the Problem to move the boundary in such a way that at the time T, the energy is as small as possible.

Problem P :

$$
\min _{\phi \in \Phi} W(T)=\int_{0}^{1} v_{x}(x, T)^{2}+v_{t}(x, T)^{2} d x
$$

such that $v(x, 0)=y_{0}(x), v_{t}(x, 0)=y_{1}(x), x \in(0,1)$,
$v(0, t)=0, v(\phi(t), t)=0, t \in(0, T)$
$v_{t t}=v_{x x}$ on $\Omega=\{(x, t): t \in(0, T), x \in(0, \phi(t))\}$.

With the obvious definition of the set \mathcal{A} of the admissible shapes Ω and the objective function $J(\Omega)$, this can be seen as a shape optimization problem

```
min
```

Note that due to the upper bound $D<1$ for the Lipschitz constant, the length of the string does not change faster than the wave speed.

Thm[Existence] There exists $\phi \in \Phi$ that solves P.

Thm[Uniqueness] Let

$$
A(x)= \begin{cases}y_{0}^{\prime}(-x)-y_{1}(-x), & x \in[-1,0) \\ y_{0}^{\prime}(x)+y_{1}(x), & x \in[0,1] .\end{cases}
$$

Define the set

$$
M_{z}=\{x \in[-1,1]: A(x)=0\} .
$$

If M_{z} has measure zero, the solution of P is uniquely determined.

Thm[Representation of the solution of P]
a) If $A=0$ on $[-1,1]$, we have $W(T)=0$ for all $\phi \in \Phi$.
b) If $A \not \equiv 0$, there exists a number $\lambda>0$, such that

$$
\int_{-1}^{1} \Pi_{\left[\frac{1-D}{1+D}, \frac{1+D}{1-D}\right]}(\lambda|A(y)|) d y=2
$$

With this number λ, we can define a solution of P as follows:

Define the function $h:[-1,1] \rightarrow[1,3]$ as

$$
h(x)=1+\int_{-1}^{x} \Pi_{\left[\frac{1-D}{1+D}, \frac{1+D}{1-D}\right]}(\lambda|A(y)|) d y
$$

Let

$$
H_{1}(x)=\frac{h(x)-x}{2}, H_{2}(x)=\frac{h(x)+x}{2}
$$

Then a solution of P is

$$
\phi(t)=H_{1}\left(H_{2}^{-1}(t)\right), t \in(0,2)
$$

The corresponding value of the objective function is

$$
W(t)=\int_{-1}^{1} \frac{|A(y)|^{2}}{h^{\prime}(y)} d y
$$

Example 1

$y_{0}(x)=\left|x-\frac{1}{2}\right|-\frac{1}{2}, y_{1}(x)=0$. This yields $|A(x)|=1 \in\left[\frac{1-D}{1+D}, \frac{1+D}{1-D}\right]$ for almost all $x \in(-1,1)$, hence we have a unique solution and $\lambda=1$. Thus $h(x)=1+(x-(-1))=2+x$. Hence $H_{1}(x)=1$ which yields $\phi(t)=1$.

In this example, it is optimal not to move the boundary. Every change of the length of the string, for example caused by vibrations causes an increase in energy.

Example 2

Let k be a natural number.

Let $\omega=k \pi$.
Let $\epsilon \omega \in\left(0, \frac{2 D}{1+D}\right)$.
Let $y_{0}(x)=\epsilon \sin (\omega x), y_{1}(x)=1$.

Then $\left(y_{0}, y_{1}\right) \in B$.
$y_{0}^{\prime}(x)=\epsilon \omega \cos (\omega x)$.
For $x \in[-1,0), y_{0}^{\prime}(-x)-y_{1}(-x)=\epsilon \omega \cos (\omega x)-1$.

Hence for $x \in[-1,0),|A(x)|=1-\epsilon \omega \cos (\omega x)$.
For $x \in[0,1], y_{0}^{\prime}(x)+y_{1}(x)=\epsilon \omega \cos (\omega x)+1$.
Hence for $x \in[0,1],|A(x)|=1+\epsilon \omega \cos (\omega x)$.
Hence for all $x \in[-1,1],|A(x)| \in\left[\frac{1-D}{1+D}, \frac{1+D}{1-D}\right]$.
Moreover, we have $\int_{-1}^{1}|A(x)| d x=2$, hence $\lambda=1$.
Therefore, for $x \in[-1,0], h(x)=2+x-\epsilon \sin (\omega x)$, and for $x \in(0,1]$, $h(x)=2+x+\epsilon \sin (\omega x)$.

Thus for $x \in[-1,0], H_{1}(x)=1-\frac{1}{2} \epsilon \sin (\omega x)$
and for $x \in(0,1], H_{1}(x)=1+\frac{1}{2} \epsilon \sin (\omega x)$.

As always, we have $H_{2}(x)=H_{1}(x)+x$.

We can plot the graph of $\phi=H_{1} \circ H_{2}^{-1}$ since

$$
\{(t, \phi(t)): t \in(0, T)\}=\left\{\left(H_{2}(x), H_{1}(x)\right), x \in[-1,1]\right\}
$$

The result and the proofs will appear in SICON.

