THE CONSTRUCTION OF ASYMPTOTIC THEORIES BY Γ-CONVERGENCE

Andrea Braides (Rome II)

Benasque, August 28, 2007

Joint work with Lev Truskinovsky (Paris)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Γ -convergence: a tool for the asymptotic description of variational problems.

Underlying method: the study of complex minimum problems involving a (small) parameter ε is approximated by a minimum problem where the dependence on this parameter has been averaged out.

The notion of Γ -convergence of energies is designed to guarantee the **convergence of minimum problems**; i.e.,

$$F_{\varepsilon} \xrightarrow{\Gamma} F^{(0)} \implies \min F_{\varepsilon} =: m_{\varepsilon} \to m^{(0)} := \min F^{(0)},$$

and (almost)minimizers of $\min F_{\varepsilon}$ converge to minimizers of $F^{(0)}$.

(Note: compactness of minimizers is given for granted in the talk)

Technical definition:

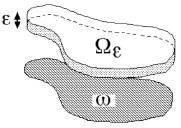
- (i) $x_{\varepsilon} \to x \Longrightarrow F^{(0)}(x) \le F_{\varepsilon}(x_{\varepsilon}) + o(1)$ (ansatz-free lower bound)
- (ii) $F_{\varepsilon}(x_{\varepsilon}) \to F^{(0)}(x)$ for some $x_{\varepsilon} \to x$ (sharpness of lower bound)

Important property: Γ -convergence is **stable** with respect to addition of continuous perturbations: if $F_{\varepsilon} \xrightarrow{\Gamma} F^{(0)}$ then $(F_{\varepsilon} + G) \xrightarrow{\Gamma} (F^{(0)} + G)$. This means that once the Γ -limit $F^{(0)}$ is computed, that computation can be used to describe a whole class of problems (a *theory*).

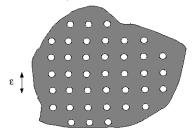
(Actually, joint stability and convergence of minima are equivalent to Γ -convergence)

Examples:

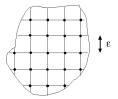
- dimensionally-reduced theories of thin structures



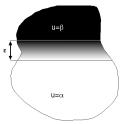
- effective theories of composites



- continuum elasticity as limit of lattice theories



phase-transition models with sharp interfaces from gradient theories



(ロ) (同) (三) (三) (三) (三) (○) (○)

– more... (B. Γ -convergence for Beginners, Oxford, 2002 Handbook of Γ -convergence, Elsevier, 2006)

ITERATION OF Γ -CONVERGENCE

If the description given by $F^{(0)}$ is too coarse, further information can be obtained by **iteration** of the Γ -limit procedure; e.g., if some $\alpha > 0$ exists such that

$$F_{\varepsilon}^{(\alpha)} := \frac{F_{\varepsilon} - m^{(0)}}{\varepsilon^{\alpha}} \xrightarrow{\Gamma} F^{\alpha},$$

then, using again the convergence of minimum problems, we deduce that

$$m_{\varepsilon}^{(\alpha)} := \min F_{\varepsilon}^{(\alpha)} \to m^{(\alpha)} := \min F^{(\alpha)}.$$

Since $m_{\varepsilon}^{(\alpha)}=\frac{m_{\varepsilon}-m^{(0)}}{\varepsilon^{\alpha}}$ we have the more accurate development

$$m_{\varepsilon} = m^{(0)} + \varepsilon^{\alpha} m^{(\alpha)} + o(\varepsilon^{\alpha}).$$

(note the *simplified dependence* on ε)

This process of *development by* Γ *-convergence* (Anzellotti-Baldo) is resumed in the equality

$$F_{\varepsilon} \stackrel{\Gamma}{=} F^{(0)} + \varepsilon^{\alpha} F^{(\alpha)} + o(\varepsilon^{\alpha})$$

(this is just a *formal equality* since the domains of the functionals may be different).

Note that in this process some **scale analysis** must be performed to understand what is the relevant scaling ε^{α} (in general $f(\varepsilon)$).

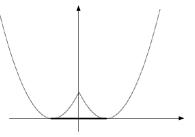
(ロ) (同) (三) (三) (三) (三) (○) (○)

Example 1 (Gradient theory of phase transitions)

Let

$$F_{\varepsilon}(u) = \int_{\Omega} (W(u) + \varepsilon^2 |\nabla u|^2) \, dx, \qquad u \in H^1(\Omega)$$

with $W : \mathbb{R} \to [0, +\infty)$ a *double-well potential* (with wells in ± 1 ; e.g., $W(s) = \min\{(s+1)^2, (s-1)^2\}$).



・ コット (雪) (小田) (コット 日)

Then $\alpha = 1$ and

$$F^{(0)}(u) = \int_{\Omega} W^{**}(u) \, dx, \ u \in L^{1}(\Omega) \quad (W^{**} \text{convex envelope})$$

$$F^{(1)}(u) = c_{W} \mathcal{H}^{n-1}(S(u)), \ u \in \{\pm 1\} \text{ piecewise constant},$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $c_W = 2 \int_{-1}^{1} \sqrt{W} \, ds$ the *surface tension* S(u) = interface between phases $\{u = \pm 1\}$ $\mathcal{H}^{n-1} (n-1)$ -dimensional measure.

Example 2 (Theories of thin structures)

In this case

$$F_{\varepsilon}(u) = \int_{\omega \times (0,\varepsilon)} f(\nabla u) \, dx, \ u \in W^{1,p}(\omega \times (0,\varepsilon); \mathbb{R}^3),$$

with f a nonlinear elastic energy with a minimum in the identity and ω an open subset of \mathbb{R}^2 .

(日) (日) (日) (日) (日) (日) (日)

 $\Gamma\text{-limits }F^{(\alpha)}$ at different scales ε^{α} can be computed, giving, e.g.,

- membrane theory ($\alpha = 1$),
- bending theory ($\alpha = 3$),
- von Karman theory ($\alpha = 4$), etc.

(see Le Dret and Raoult, Friesecke, James and Müller).

Theories 'justified by Γ -convergence'

In the examples above the computation of the Γ -limit suggests: 1) the use of a *sharp-interface theory* for phase transitions; 2) the use of one of the limit *low-dimensional theories* in the second case.

This general paradigm may be in contrast with the use of other (successful) theories by practitioners, or may provide a poor approximation of the original functional in certain regimes (further examples below).

Our goal is to overcome this drawback in the use of Γ -convergence.

Inaccuracy of convergence for *parametrized functionals*: how much can we trust our approximation?

Minimum problems are often **parametrized** by **lower-order terms**, whose form does not greatly affect the Γ -limit (continuous or 'compatible' perturbations; e.g., boundary conditions or volume constraints).

However, the **overall dependence** of the limit process on these parameters may be **inaccurately described** by the Γ -limit.

Example 3 (*Gradient theory of phase transitions with a volume constraint*)

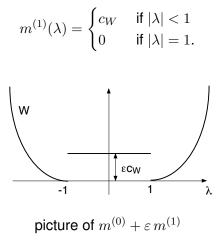
The volume constraint $\int u \, dt = \lambda$ is *compatible* with the Γ -limit procedure within the gradient theory of phase transitions. This gives that for all $\lambda \in [-1, 1]$ the development of the minimum values

$$m_{\varepsilon}(\lambda) = \min\left\{\int_0^1 (W(u) + \varepsilon^2 |u'|^2) \, dt : \int_0^1 u \, dt = \lambda\right\}$$

is given by $m^{(0)}(\lambda) + \varepsilon m^{(1)}(\lambda) + o(\varepsilon)$, where $m^{(0)}(\lambda) = W^{**}(\lambda) = 0$ and

$$m^{(1)}(\lambda) = c_W \min\left\{ \#(S(u)) : u \in \{\pm 1\}, \int_0^1 u \, dt = \lambda \right\}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

the previous example shows a situation where the approximation by the development by Γ -convergence provides a **discontinuity** in the dependence of the parameter (that is clearly not there for $\varepsilon > 0$).

This discontinuity corresponds to a **singular behaviour** of the Γ -development with respect to the parameter λ .

Let $F_{\varepsilon}^{\lambda}$ be a family of **parametrized functionals**, with $\lambda \in \Lambda$. We say that λ_0 is a **singular point at scale** ε^{α} if there exist m_{ε} , $\lambda'_{\varepsilon} \to \lambda_0$ and $\lambda''_{\varepsilon} \to \lambda_0$ such that (up to subsequences)

$$\Gamma - \lim_{\varepsilon \to 0} \frac{F_{\varepsilon}^{\lambda_{\varepsilon}^{\prime}} - m_{\varepsilon}}{\varepsilon^{\alpha}} \neq \Gamma - \lim_{\varepsilon \to 0} \frac{F_{\varepsilon}^{\lambda_{\varepsilon}^{\prime}} - m_{\varepsilon}}{\varepsilon^{\alpha}},$$
(1)

and one of the two limits is not trivial.

If λ_0 is not a singular point, we say that it is a **regular point**.

Theorem 1 (uniform convergence of minimum problems at scale ε^{α})

If Λ is compact and is composed of regular points at scale ε^{α} , and if $m_{\varepsilon}^{\alpha}(\lambda)$ exist such that the limit

$$\Gamma - \lim_{\varepsilon \to 0} \frac{F_{\varepsilon}^{\lambda} - m_{\varepsilon}^{\alpha}(\lambda)}{\varepsilon^{\alpha}} =: F_{\lambda}^{(\alpha)}$$

exists and is not trivial, then we have

$$\sup_{\Lambda} \left| \min F_{\varepsilon}^{\lambda} - m_{\varepsilon}^{\alpha}(\lambda) - \varepsilon^{\alpha} \min F_{\lambda}^{(\alpha)} \right| = o(\varepsilon^{\alpha}).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remarks

(1) if a Γ -development exists $F_{\varepsilon}^{\lambda} \stackrel{\Gamma}{=} F_{\lambda}^{(0)} + \cdots + \varepsilon^{\beta} F_{\lambda}^{(\beta)} + o(\varepsilon^{\beta})$ up to some ε^{β} , with $\beta < \alpha$ and ε^{α} is the next meaningful order, we may take $m_{\varepsilon}^{\alpha}(\lambda) = m^{(0)}(\lambda) + \cdots + \varepsilon^{\beta} m^{(\beta)}(\lambda)$ defined by the Γ -development;

(2) at scale 1 ($\alpha = 0$) we deduce that if there exists $F_{\lambda}^{(0)} = \Gamma \text{-lim}_{\varepsilon} F_{\varepsilon}^{\lambda}$ and is not trivial, then

$$\sup_{\Lambda} \left| \min F_{\varepsilon}^{\lambda} - \min F_{\lambda}^{(0)} \right| = o(1);$$

(3) if $F_{\lambda}^{(0)}$ exists and λ_0 is regular at scale 1 then $\lambda \mapsto \min F_{\lambda}^{(0)}$ is continuous at λ_0 .

Example 4

In Example 3 (phase transitions) the points ± 1 are singular at scale ε (from (3) above).

The previous theorem does not hold and we have (taking e.g. Λ a compact set containing a neighbourhood of 1)

$$\sup_{\Lambda} \left| \min F_{\varepsilon}^{\lambda} - m^{(0)}(\lambda) - \varepsilon \min F_{\lambda}^{(1)} \right| \ge C\varepsilon,$$

(日) (日) (日) (日) (日) (日) (日)

even though the limit $F_{\lambda}^{(1)}$ exists.

Analysis at singular points

At singular points λ_0 the computation of the Γ -limit or Γ -development with fixed λ_0 is not sufficient to accurately describe the behaviour of minimum problems. Then we have to look at the different limits that we may obtain as $\lambda_{\varepsilon} \rightarrow \lambda_0$.

Table of Γ -limits at λ_0

The *table of* Γ *-limits at scale* 1 for $F_{\varepsilon}^{\lambda}$ at λ_0 are all sequences $(\varepsilon_j, \lambda_j)$, and functionals $F_{(\varepsilon_j, \lambda_j)}^{(0)}$ with $\varepsilon_j \to 0, \lambda_j \to \lambda_0$, and

$$F_{(\varepsilon_j,\lambda_j)}^{(0)} = \Gamma - \lim_j F_{\varepsilon_j}^{\lambda_j}.$$

The *table of* Γ *-limits at scale* ε^{α} is likewise defined (in the same spirit of the development by Γ -convergence).

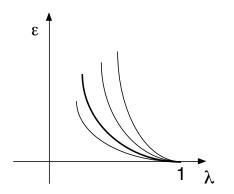
Example 5 (*Gradient theory of phase transitions – continued*)

Case $\lambda_0 = 1$. Note that the functionals $F_{(\varepsilon_j,\lambda_j)}^{(1)}$ are finite only at the constant function u = 1, so that it suffices to compute the limit

$$\lim_{j} \min\left\{\int_{0}^{1} \left(\frac{W(v)}{\varepsilon_{j}} + \varepsilon_{j}|v'|^{2}\right) dt : \int_{0}^{1} u \, dt = \lambda_{j}\right\}$$
$$= \lim_{j} \min\left\{c_{W}, \frac{1}{2}W''(1)\frac{(1-\lambda_{j})^{2}}{\varepsilon_{j}}\right\}.$$

Existence of the Γ -limit $F_{(\varepsilon_j,\lambda_j)}^{(1)}$ is equivalent to the existence of the last limit depending on the ratio $(1 - \lambda_j)^2 / \varepsilon_j$.

 $\begin{array}{l} - \text{ if } \frac{1}{2}W''(1)\lim_{j} \frac{(1-\lambda_{j})^{2}}{\varepsilon_{j}} < c_{W} \text{ uniform states are preferred} \\ - \text{ if } \frac{1}{2}W''(1)\lim_{j} \frac{(1-\lambda_{j})^{2}}{\varepsilon_{j}} > c_{W} \text{ sharp transitions are preferred.} \end{array}$

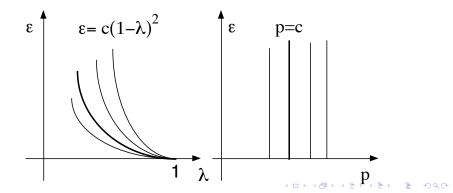


 $W''(1)(1-\lambda)^2 = 2\varepsilon c_W$ nucleation threshold

Blow up at singular points

In the previous examples the behaviour of parametrized energies at singular point may be analyzed in terms of curves in the ε - λ space, along which a regular Γ -development exists. This is not the general case, but it is frequent in applications.

IDEA: change variables $(\varepsilon, \lambda) \mapsto (\varepsilon, p)$ so that the behavior is regular in the p variable



Rectifiability. Let λ_0 be a singular point for $F_{\varepsilon}^{\lambda}$ at scale 1. We say that $F_{\varepsilon}^{\lambda}$ is **rectifiable at** λ_0 at order 1 if energies H_{ε}^p exist and a function $p = p(\lambda, \varepsilon)$ such that (i) $H_{\varepsilon}^p \Gamma$ -converge to H^p , and all p are regular points; (ii) $F_{\varepsilon}^{\lambda} = H_{\varepsilon}^{p(\lambda,\varepsilon)}$ for (λ, ε) in a neighbourhood of $(0, \lambda_0)$. The definition can be easily extended to order ε^{α} .

Example 6 ('rectification' for phase transitions)

We may 'rectify' the functionals $F_{\varepsilon}^{\lambda}$ at the point $\lambda_0 = 1$ at order ε , which means that the functionals $\frac{1}{\varepsilon}(F_{\varepsilon}^{\lambda} - \min F_{\lambda}^{(0)})$ are rectifiable at order 1.

We set $p = (1 - \lambda)^2 / \varepsilon$, and then we may simply define

$$H^p_{\varepsilon}(u) = \int_0^1 \left(\frac{W(u)}{\varepsilon} + \varepsilon |u'|^2\right) \, dt,$$

with $\int_0^1 u \, dt = 1 - \sqrt{\varepsilon p}$, so that

$$H^{p}(u) = \begin{cases} \min\left\{c_{W}, \frac{1}{2}W''(1)p\right\} & \text{ if } u = 1\\ +\infty & \text{ otherwise} \end{cases}$$

Uniformly-equivalent functionals.

We say that two families of parametrized functionals $F_{\varepsilon}^{\lambda}$ and $G_{\varepsilon}^{\lambda}$ are *uniformly equivalent at scale* ε^{α} *at* λ_0 if for every sequence $(\varepsilon_j, \lambda_j)$ converging to $(0, \lambda_0)$ there exist m_j such that the limits

$$\Gamma - \lim_{j} \frac{F_{\varepsilon_{j}}^{\lambda_{j}} - m_{j}}{\varepsilon^{\alpha}}, \qquad \Gamma - \lim_{j} \frac{G_{\varepsilon_{j}}^{\lambda_{j}} - m_{j}}{\varepsilon^{\alpha}}$$

exists, are not trivial and are equal.

Theorem 3 Let Λ be compact, and let $F_{\varepsilon}^{\lambda}$ and $G_{\varepsilon}^{\lambda}$ be uniformly equivalent at scale ε^{α} at all $\lambda \in \Lambda$. Then we have

$$\sup_{\Lambda} \left| \min F_{\varepsilon}^{\lambda} - \min G_{\varepsilon}^{\lambda} \right| = o(\varepsilon^{\alpha}).$$
(2)

The following theorem states that for rectifiable $F_{\varepsilon}^{\lambda}$ a simple uniformly-equivalent family is given by H^p computed for $p = p(\lambda, \varepsilon)$.

Theorem 2 Let $F_{\varepsilon}^{\lambda}$ be rectifiable at λ_0 ; then $F_{\varepsilon}^{\lambda}$ is uniformly equivalent to $G_{\varepsilon}^{\lambda} = H^{p(\lambda,\varepsilon)}$ at λ_0

Example 7 (Trivial) uniform-equivalent energy at order ε for phase transitions ($|\lambda| \le 1$)

$$G_{\varepsilon}^{\lambda}(u) = \min\left\{\varepsilon c_{W}, \frac{1}{2}W''(1)(1-|\lambda|)^{2}\right\} \# S(u), \ u \in \{\pm 1\}.$$

Note: these uniform-equivalent energies may be over-simplified. More meaningful energies are given by extending these ones to piecewise-constant functions,

$$G_{\varepsilon}^{\lambda}(u) = \frac{1}{2}W''(1)\int (1-|u|)^2 \, dt + \varepsilon c_W \#(S(u)),$$

or to SBV functions

$$G_{\varepsilon}^{\lambda}(u) = \int W(u) \, dt + \sum_{S(u)} g_{\varepsilon}(u^+, u^-)$$

(ロ) (同) (三) (三) (三) (○) (○)

(suitable conditions on g_{ε}), etc.

A general method: construction of equivalent theories

From the analysis of the previous sections we can sketch a procedure to construct equivalent families of parametrized functionals from a family $F_{\varepsilon}^{\lambda}$ (functionals are scaled so that the analysis can be performed at scale 1):

- 1. Identify singular points of $F_{\varepsilon}^{\lambda}$;
- 2. Compute the table of Γ -limits at singular points;
- 3. Rectify the energies at singular points;

4. **Match asymptotics**; i.e., construct energies that are equivalent to the Γ -limit (or Γ -development) far from singular points, and to the 'rectified' energies close to singular points.

Of course, the last point has not a unique answer, and additional criteria (simplicity, computability, closeness to well-known theories, etc) can drive it.

More examples:

- homogenization with boundary effects ($\Lambda=$ boundary data)
- homogenization with concentrated forces ($\Lambda =$ size of the support of the forces)
- finite-scale microstructure ($\Lambda =$ elastic constants)
- discrete-to continuous problems ($\Lambda = \mbox{macroscopic}$ deformation)

- etc.

(see B-Truskinovsky. Asymptotic expansions by Γ-convergence @ http://cvgmt.sns.it)

(ロ) (同) (三) (三) (三) (○) (○)

MAIN OPEN ISSUES:

- test this procedure with more complex energies, where parameters cannot be reduced to a one-dimensional set
- include in the process additional 'non-energetic' criteria (convergence of critical points, improved convergence of minimizers, etc.)

(ロ) (同) (三) (三) (三) (○) (○)