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Γ-convergence: a tool for the asymptotic
description of variational problems.

Underlying method: the study of complex minimum problems
involving a (small) parameter ε is approximated by a minimum
problem where the dependence on this parameter has been
averaged out.

The notion of Γ-convergence of energies is designed to
guarantee the convergence of minimum problems; i.e.,

Fε
Γ−→ F (0) =⇒ minFε =: mε → m(0) := minF (0),

and (almost)minimizers of minFε converge to minimizers of
F (0).
(Note: compactness of minimizers is given for granted in the
talk)



Technical definition:

(i) xε → x =⇒ F (0)(x) ≤ Fε(xε) + o(1) (ansatz-free lower
bound)

(ii) Fε(xε)→ F (0)(x) for some xε → x (sharpness of lower
bound)

Important property: Γ-convergence is stable with respect to
addition of continuous perturbations: if Fε

Γ−→ F (0) then
(Fε +G) Γ−→ (F (0) +G). This means that once the Γ-limit F (0)

is computed, that computation can be used to describe a whole
class of problems (a theory).

(Actually, joint stability and convergence of minima are
equivalent to Γ-convergence)



Examples:
– dimensionally-reduced theories of thin structures

– effective theories of composites



– continuum elasticity as limit of lattice theories

– phase-transition models with sharp interfaces from gradient
theories

– more... (B. Γ-convergence for Beginners, Oxford, 2002
Handbook of Γ-convergence, Elsevier, 2006)



ITERATION OF Γ-CONVERGENCE
If the description given by F (0) is too coarse, further information
can be obtained by iteration of the Γ-limit procedure; e.g., if
some α > 0 exists such that

F (α)
ε :=

Fε −m(0)

εα
Γ−→ Fα,

then, using again the convergence of minimum problems, we
deduce that

m(α)
ε := minF (α)

ε → m(α) := minF (α).

Since m(α)
ε =

mε −m(0)

εα
we have the more accurate

development

mε = m(0) + εαm(α) + o(εα).

(note the simplified dependence on ε)



This process of development by Γ-convergence
(Anzellotti-Baldo) is resumed in the equality

Fε
Γ= F (0) + εαF (α) + o(εα)

(this is just a formal equality since the domains of the
functionals may be different).
Note that in this process some scale analysis must be
performed to understand what is the relevant scaling εα (in
general f(ε)).



Example 1 (Gradient theory of phase transitions)

Let
Fε(u) =

∫
Ω

(W (u) + ε2|∇u|2) dx, u ∈ H1(Ω)

with W : R→ [0,+∞) a double-well potential (with wells in ±1;
e.g., W (s) = min{(s+ 1)2, (s− 1)2}).



Then α = 1 and

F (0)(u) =
∫

Ω
W ∗∗(u) dx, u ∈ L1(Ω) (W ∗∗convex envelope)

F (1)(u) = cWHn−1(S(u)), u ∈ {±1} piecewise constant,

cW = 2
∫ 1
−1

√
W ds the surface tension

S(u) = interface between phases {u = ±1}
Hn−1 (n− 1)-dimensional measure.



Example 2 (Theories of thin structures)

In this case

Fε(u) =
∫
ω×(0,ε)

f(∇u) dx, u ∈W 1,p(ω × (0, ε); R3),

with f a nonlinear elastic energy with a minimum in the identity
and ω an open subset of R2.
Γ-limits F (α) at different scales εα can be computed, giving,
e.g.,
– membrane theory (α = 1),
– bending theory (α = 3),
– von Karman theory (α = 4), etc.
(see Le Dret and Raoult, Friesecke, James and Müller).



Theories ‘justified by Γ-convergence’

In the examples above the computation of the Γ-limit suggests:
1) the use of a sharp-interface theory for phase transitions;
2) the use of one of the limit low-dimensional theories in the
second case.

This general paradigm may be in contrast with the use of
other (successful) theories by practitioners, or may provide a
poor approximation of the original functional in certain
regimes (further examples below).

Our goal is to overcome this drawback in the use of
Γ-convergence.



Inaccuracy of convergence for parametrized
functionals: how much can we trust our
approximation?

Minimum problems are often parametrized by lower-order
terms, whose form does not greatly affect the Γ-limit
(continuous or ‘compatible’ perturbations; e.g., boundary
conditions or volume constraints).
However, the overall dependence of the limit process on these
parameters may be inaccurately described by the Γ-limit.



Example 3 (Gradient theory of phase transitions
with a volume constraint)

The volume constraint
∫
u dt = λ is compatible with the Γ-limit

procedure within the gradient theory of phase transitions.
This gives that for all λ ∈ [−1, 1] the development of the
minimum values

mε(λ) = min
{∫ 1

0
(W (u) + ε2|u′|2) dt :

∫ 1

0
u dt = λ

}
is given by m(0)(λ) + εm(1)(λ) + o(ε),
where m(0)(λ) = W ∗∗(λ) = 0 and

m(1)(λ) = cW min
{

#(S(u)) : u ∈ {±1},
∫ 1

0
u dt = λ

}



m(1)(λ) =

{
cW if |λ| < 1
0 if |λ| = 1.

εcW
-1 1

W

λ

picture of m(0) + εm(1)



NOTE:

the previous example shows a situation where the
approximation by the development by Γ-convergence provides
a discontinuity in the dependence of the parameter (that is
clearly not there for ε > 0).

This discontinuity corresponds to a singular behaviour of the
Γ-development with respect to the parameter λ.



SINGULAR POINTS

Let F λε be a family of parametrized functionals , with λ ∈ Λ.
We say that λ0 is a singular point at scale εα if there exist mε,
λ′ε → λ0 and λ′′ε → λ0 such that (up to subsequences)

Γ- lim
ε→0

F
λ′

ε
ε −mε

εα
6= Γ- lim

ε→0

F
λ′′

ε
ε −mε

εα
, (1)

and one of the two limits is not trivial.
If λ0 is not a singular point, we say that it is a regular point.



Theorem 1 (uniform convergence of minimum problems at
scale εα)
If Λ is compact and is composed of regular points at scale εα,
and if mα

ε (λ) exist such that the limit

Γ- lim
ε→0

F λε −mα
ε (λ)

εα
=: F (α)

λ

exists and is not trivial, then we have

sup
Λ

∣∣∣minF λε −mα
ε (λ)− εα minF (α)

λ

∣∣∣ = o(εα).



Remarks
(1) if a Γ-development exists F λε

Γ= F
(0)
λ + · · ·+ εβF

(β)
λ + o(εβ)

up to some εβ, with β < α and εα is the next meaningful order,
we may take mα

ε (λ) = m(0)(λ) + · · ·+ εβm(β)(λ) defined by the
Γ-development;
(2) at scale 1 (α = 0) we deduce that if there exists
F

(0)
λ = Γ-limε F

λ
ε and is not trivial, then

sup
Λ

∣∣∣minF λε −minF (0)
λ

∣∣∣ = o(1);

(3) if F (0)
λ exists and λ0 is regular at scale 1 then λ 7→ minF (0)

λ

is continuous at λ0.



Example 4

In Example 3 (phase transitions) the points ±1 are singular at
scale ε (from (3) above).
The previous theorem does not hold and we have (taking e.g. Λ
a compact set containing a neighbourhood of 1)

sup
Λ

∣∣∣minF λε −m(0)(λ)− εminF (1)
λ

∣∣∣ ≥ Cε,
even though the limit F (1)

λ exists.



Analysis at singular points

At singular points λ0 the computation of the Γ-limit or
Γ-development with fixed λ0 is not sufficient to accurately
describe the behaviour of minimum problems. Then we have to
look at the different limits that we may obtain as λε → λ0.

Table of Γ-limits at λ0

The table of Γ-limits at scale 1 for F λε at λ0 are all sequences
(εj , λj), and functionals F (0)

(εj ,λj) with εj → 0, λj → λ0, and

F
(0)
(εj ,λj) = Γ- lim

j
F
λj
εj .

The table of Γ-limits at scale εα is likewise defined (in the same
spirit of the development by Γ-convergence).



Example 5 (Gradient theory of phase transitions –
continued)

Case λ0 = 1. Note that the functionals F (1)
(εj ,λj) are finite only at

the constant function u = 1, so that it suffices to compute the
limit

lim
j

min
{∫ 1

0

(
W (v)
εj

+ εj |v′|2
)
dt :

∫ 1

0
u dt = λj

}
= lim

j
min

{
cW ,

1
2
W ′′(1)

(1− λj)2

εj

}
.

Existence of the Γ-limit F (1)
(εj ,λj) is equivalent to the existence of

the last limit depending on the ratio (1− λj)2/εj .



– if 1
2W

′′(1) limj
(1−λj)2

εj
< cW uniform states are preferred

– if 1
2W

′′(1) limj
(1−λj)2

εj
> cW sharp transitions are preferred.

1 λ

ε

W ′′(1)(1− λ)2 = 2εcW nucleation threshold



Blow up at singular points
In the previous examples the behaviour of parametrized
energies at singular point may be analyzed in terms of curves
in the ε–λ space, along which a regular Γ-development exists.
This is not the general case, but it is frequent in applications.

IDEA: change variables (ε, λ) 7→ (ε, p) so that the behavior is
regular in the p variable

1 λ

ε ε

p

ε= c(1−λ)
2 p=c



Rectifiability. Let λ0 be a singular point for F λε at scale 1. We
say that F λε is rectifiable at λ0 at order 1 if energies Hp

ε exist
and a function p = p(λ, ε) such that
(i) Hp

ε Γ-converge to Hp, and all p are regular points;
(ii) F λε = H

p(λ,ε)
ε for (λ, ε) in a neighbourhood of (0, λ0).

The definition can be easily extended to order εα.



Example 6 (‘rectification’ for phase transitions)

We may ‘rectify’ the functionals F λε at the point λ0 = 1 at order
ε, which means that the functionals 1

ε (F λε −minF (0)
λ ) are

rectifiable at order 1.
We set p = (1− λ)2/ε, and then we may simply define

Hp
ε (u) =

∫ 1

0

(
W (u)
ε

+ ε|u′|2
)
dt,

with
∫ 1

0 u dt = 1−√εp, so that

Hp(u) =

{
min

{
cW ,

1
2W

′′(1)p
}

if u = 1

+∞ otherwise



Uniformly-equivalent functionals.

We say that two families of parametrized functionals F λε and Gλε
are uniformly equivalent at scale εα at λ0 if for every sequence
(εj , λj) converging to (0, λ0) there exist mj such that the limits

Γ- lim
j

F
λj
εj −mj

εα
, Γ- lim

j

G
λj
εj −mj

εα

exists, are not trivial and are equal.

Theorem 3 Let Λ be compact, and let F λε and Gλε be uniformly
equivalent at scale εα at all λ ∈ Λ. Then we have

sup
Λ

∣∣∣minF λε −minGλε
∣∣∣ = o(εα). (2)



The following theorem states that for rectifiable F λε a simple
uniformly-equivalent family is given by Hp computed for
p = p(λ, ε).
Theorem 2 Let F λε be rectifiable at λ0; then F λε is uniformly
equivalent to Gλε = Hp(λ,ε) at λ0



Example 7 (Trivial) uniform-equivalent energy at order ε for
phase transitions (|λ| ≤ 1)

Gλε (u) = min
{
εcW ,

1
2
W ′′(1)(1− |λ|)2

}
#S(u), u ∈ {±1}.

Note: these uniform-equivalent energies may be
over-simplified. More meaningful energies are given by
extending these ones to piecewise-constant functions,

Gλε (u) =
1
2
W ′′(1)

∫
(1− |u|)2 dt+ εcW#(S(u)),

or to SBV functions

Gλε (u) =
∫
W (u) dt+

∑
S(u)

gε(u+, u−)

(suitable conditions on gε), etc.



A general method: construction of equivalent
theories

From the analysis of the previous sections we can sketch a
procedure to construct equivalent families of parametrized
functionals from a family F λε (functionals are scaled so that the
analysis can be performed at scale 1):
1. Identify singular points of F λε ;
2. Compute the table of Γ-limits at singular points;
3. Rectify the energies at singular points;
4. Match asymptotics; i.e., construct energies that are
equivalent to the Γ-limit (or Γ-development) far from singular
points, and to the ‘rectified’ energies close to singular points.

Of course, the last point has not a unique answer, and
additional criteria (simplicity, computability, closeness to
well-known theories, etc) can drive it.



More examples:

- homogenization with boundary effects (Λ = boundary data)
- homogenization with concentrated forces (Λ = size of the
support of the forces)
- finite-scale microstructure (Λ = elastic constants)
- discrete-to continuous problems (Λ = macroscopic
deformation)
- etc.

(see B-Truskinovsky. Asymptotic expansions by Γ-convergence
@ http://cvgmt.sns.it)



MAIN OPEN ISSUES:

• test this procedure with more complex energies, where
parameters cannot be reduced to a one-dimensional set

• include in the process additional ‘non-energetic’ criteria
(convergence of critical points, improved convergence of
minimizers, etc.)


