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Classical Kirchoff model for thin plates

e ) C R? midplane of the plate
e I smooth load

e Unknown: optimal thickness A

[her=() : agh(m)gb,/

thx:m}

e Criterion: miminization of compliance

E(h) = inf{/QFudx}

e 1 deflection

E(h)= — inf{/Q(M(h)V2u-V2u—Fu) dr : u€ H*(Q) + b.c.}

e Cubic dependence: M (h) ~ Mgy h?
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Appearance of concentrated micro-structures

e '80s: nonesistence of solutions [BANICHUK, BENDSOE, CAILLERIE,
CHENG-OLHOFF, GIBIANSKY-CHERKAEV, LURIE, KOHN-VOGELIUS]

e Same homogenization phenomena for conductors/ elastic materials
[ALLAIRE-KOHN, FRANCFORT-MURAT, KOHN-STRANG, MURAT-TARTAR]

¢'90s: relaxations [BONNETIER-CONCA, BONNETIER-VOGELIUS,
MUNOZ-PEDREGAL]

e Still: — thickness h depending on only one variable

— If upperbound b increases and m < 1, h becomes maximal on thin perforated
1D-layers (stiffeners).

— no efficient (better concentrate material on top and buttom)

~> adopt a different point of view
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Mass optimization problem (MOP)

e 0 C R? design region

e Unknown: optimal distribution of mass u

ICZZ{,LLEM+ : spt(p) C Q, /d,u:m}

e Criterion: minimize the plate compliance under a given load ' € D’

Clu, j, F)= —inf{/j(v2u) dp— (Fu)p © u€ D}

(MOP)

T — inf{C(u,j,F) e IC}

Is attained
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(MOP) « linear constrained problem (LCP)

Theorem. There holds 7 = 82/2 .~ where

(LCP) S:sup{<f,u> : 7(V?u) < 1/2 on Q}
Proof.
7 =i { - g [ [ 5o )]}

.

= i {sup [~ [T du+ 1]}
.
G

— sup sup [/ (VZu)d ] (f u>}
u€D pnek
S?
sup 4 ) = 5Vl = | =

REMARK: The unknown p disappeared !
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Goals

e MODELLING
Does (MOP) (or (LCP)) admit any mechanical justification ?

Can it be derived from 3D elasticity, and which is the link (if any) with the Kirchoff
model ?

e OPTIMIZATION
How to compute Z (or S) 7

Is it possible to give optimality conditions useful to find out explicit solutions ?
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3D- shape optimization problem

e m > (0 given amount of mass
e Q =Q x [~h,h] C R? design region
e Unknown : {A open C @ : |Al=m}

e Criterion: minimize over admissible A the elastic compliance

CYU(A) == — inf {/Aj(e(u))da:— (F, u>}

ueD

(under a given system of forces F € H~1(Q;R?))

e Elastic potentials:

3%x3
sym

Strain potential: 7 : R — R positive, quadratic form

- ek . 3X3 . .
Stress potential: j* : ngjm — R the Moreau-Fenchel conjugate of j.

o It will be useful writing: j(z) = %(,0(2))2 , J(2) = %(PO(Z*))Q

where p?(2*) :=sup{z - 2z* : p(z) <1}.
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Relaxation and fictitious materials

The shape optmization pb is ill-posed (minimizing sequences may oscillate). To avoid the

heavy relaxation procedure (through composite micro-structures), engineers often adopt the

Convexification procedure: A ~~ 0 € L*(Q,|0, 1))

The class of admissible sets is enlarged to measures p = 6 dx such that
6 €[0,1], [Odx =m

Definition: Let u be a positive measure supported on (). We associate the elastic
compliance (F' is now a vector distribution )

uweD

¢ (.5 F) = = int { [ i)~ (F.u)}

. e . e,
Scaling property:  C®(eu, j, tF) = gC ", 4, F) (0= —u) .
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3D-2D Analysis

m ~ €
Asymptotic analysis: < h ~ 0, Q~ Qs
0—0

e —0

Different strategies: T =

1™

Al € — 0, then § — 0 : vanishing filling ratio 7

Bl e = 0with e =79d: fixed filling ratio 7

(and after possibly 7 — 0)

C| Additional topological constraint: A = {|x3| < e f(x1,22)}

foZl
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3D-2D Analysis

GOAL :

Characterize the related rescaled limits as (¢,9) — (0,0) of

I.; = inf{Cel(H,j,\/EF(S) : 0 e{0,1}, 926}
Qs

Tos = inf{Cel(H,j,\/EF5) 0 L>(Q,[0,1])}, /Q(Se:s}
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Plan

. Limit as € — 0 (first step in strategy A)

. Duality and linear constraint problem.

. Compliance model from stategy A

. Compliance model from strategy B (fixed filling rato 7))
. Example (mixed flexion and membrane regime)

. Some explicit solutions of (LCP)
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1- Limit as ¢ — 0

It falls in the theory of light structures (truss-like Michell’s structures).

THEOREM 1 For fixed § > 0, one has
i) lim._o 7o, = inf{C(u, 4, F°) : [p=1, spt(p) C Qs}
i) lime o 7. 5 = inf{C (1, jo, F°) : [ =1, spt(u) C Qs}

where jg is given by (still 2-homogeneous, non quadratic)

jo(e) := supfe-&—j(§) : det& =0} .

Comments: - We are reduced to a max-min problem in (u, i) for which existence
of solutions holds.

NB: 1 might be a concentrated measure (surely if F'is a discrete force)

- Assertion ii) is a reformulation of a result by [ ]. Note that
79(2) < j(z) except for degenerate tensors.

Ex.: j = |2|* = jo(2) = |A3(2)]? + | A2(2)]?
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2- Duality and linear constraint problem

e Commutation argument for sup inf = inf sup applies. Thus

TosTos) = int sup {(Fu) = [ joe(u)) du}
J n=14ueD
5 . S ( 53
= sup {(F,u) = [ljo(e(w))lloc@n ) = 5| 5 | -
u€eD
(LCP); Ss(Ss) = sug{<F5,u> : pple(u)(p’(e(u)) <1in Qs}
ue
e Recovering measure p trough dual problem
(MOP); inf{/pg()\) . sptA C (Qs) , —divd = F° in ]R?’} :

e Optimality of a triple (u, p,0) (where A\ =ou, pd(c) =1)
e Link with Monge-Kantorovich mass transport theory (only in scalar case) [G.
Buttazzo, GB, JEMS(2001)])
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Michell’'s bridge example

Figure 1: An admissible truss for the “bridge”.

Figure 2: Construction of the optimal measure
[W. Gangbo, P. Seppecher, GB, preprint]
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3- Compliance model from stategy A

e Rescaling of the load: We need to pass to the limit in § in (LC'P)s (or (MOP)s).
This limit blows up if F3 # 0, due to Korn constant of order §—! As usual in flexion

regime, we start with F' € H~1(Q;R?) and set (Important: the vertical component
is multiplied by 6)

1 1
= <5F1 (21,22, %)7 5F2(331,332, %)»Fz’)(ﬂ?h@? %))

e Averaging the load in x3:

h

Fo(zi,20) = [Ful(z1,22) ::/ Fo(x1,22,5)ds
—h
F3(z1,22) = [F3]— [:1:3(251 + 252] (moments résultants ) .
1 2
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3D-2D-reduction of stress and strain potentials

In the limit as § — 0, all 3D-stress tensors take the form

§11 §12 O
§12 &2 O
0 0 0

Accordingly effective 2D strain potentials are obtained by infimal convolution:

( )
€1,1 €12 a
jle) = mfqj| ero ean b : a,b,c € R 3 (real materials )
\ a b c )
Jjo(e) = inf{ o (...) . a,b,c € R} (fictitious materials )
LEMMA: 7(e) =jo(e)| = Fictitious approach and relaxation

approach are equivalent in the limit as § — 0 !!
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Main results

Theorem 2 The limit Sy of Ss (resp S5) is given by

(1) sup {< Fo,va >+ < F3,v3 > j(ea,p(v) £ VZu3) <

DO | —

inﬁ} ,

@ wind [P0+ [FO0) a0 e MELRED) |

subject to the differential constraints

or alternatively (dual problem)

(3) —divIAT+ A7) = (F1,Fy) ,  divi(AT —\7) = F.
Furthermore, an admissible triple (v, AT, A7) is optimal iff:

(4) PPAT) =< AT eq5(v) + Vs, pO(A7) =< A7, eq5(v) — Vs >

( ~ inequalities in (1) are saturated resp A* a.e. ( eikonal eq) )
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Futher comments and proof

e Notice that in our limit model, due to the L>° constraint, the membrane energy
and the flexion energy cannot be decoupled (in contrast with usual linear elasticity).

o If [ = Fy =0, then AT = —\~ := X in the dual problem (2) and we are
reduced to min {fﬁ()\) : divi(\) = Fg} , which is exactly the dual problem of
the (LCP) pb in introduction.

Proof Using the rescaled displacement on Q:

_ r L3y o1 r L3
U5($a,$3) — (ua(il? 3 5 )75 U3(£C 3 5 )) 3

we know that the matrix e5 := e(Us) is bounded in L>° and deduce that the limit of
Us satisfies e3 o(U) = e33(U) = 0. Thus (Kirchoff-Love)
(%3 (%3

U= (vl(x’) —nga—xl , v () _x?’@—mg , U3($/)> , —1<x3<1.
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4. Compliance model from strategy B

Recall that now € and ¢ go contemporarily to zero but with fixed 7 = £ € (0, 1]. Let

15(7') =T1:5.5

Denote by H}.; (Q;R?) the space of Kirchoff-Love displacements:
HL, (Q:R3) = {u e HY(Q:R?) such that e;s(u) = 0 for i = 1, 2,3} .
We introduce the limit compliance on the reference 3D subset Q):

C(0) := Sup{<F, wgrs — Joileap(u) Odr : u e H}{L}
(4) — inf{fQ 0-17*(0)dx : o€ L*(Q;R2%3)

sym

_divlo] = (F1,Fo) , —divi[zso] = 73} .

and for every positive value of Lagrange parameter k:

(5) o(k) := inf {C(e) +k /

Odr : 0 L™(Q;[0, 1])}
Q@
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4. Compliance model from strategy B

Theorem 3 There holds
(2) lim Z°(7) = Z(7) := sup {q)(k) — kT}
=0 keR™

(i) Up to subsequences (6,

o(k) (see (4) and (5)).
(iii) Vanishing filling ratio ( link with strategy A):

0?)) converges weakly star to an optimal pair (6,7) for

2
lim 7Z(1) = 50

T—0

where

nﬁ}.

| —
pd @

Sy 1= sup {< Fo,vq >+ < Fs3,u3>: jleap(v) £ V%g) <

and alternatively to (5)

o(k) = sup{<Fu g~ Jolilcap(w) = k] do : we H (QiRY)}
— sup{(F v)p> — Jo Wr(e(vi,v2), VZv3) da’
vi,v2 € HY(Q) , vz € HQ(Q)} :
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4. Compliance model from strategy B

Corollary 4 Let (,u,7) be an optimal triple for ¢(k) (see (4) and (5)). Then:
0=0and 5 =0 on {j(eas(m)) <k} ; O=1anda(a',")is affine on {j(eqs(u)) >k} .

In particular , if the set {j(eqs(u)) = k} has null measure ( THIS HAPPENS in

particular if V223 # 0), then @ is unique and it is the characteristic function of the
set w := {j(eqas(nw)) > k}:

For all ' € D, each fiber {z3 : (2/,x3) € W} is the complement of a subinterval of I.
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5. Example (mixed flexion and membrane regime)

Consider the following axially symmetric system of forces supported on the design
region Q = Q x [—h,h] :

1
Fy = 04(53_5,4)7 F2:50_§<5A+5B)-

where O := (0,0), A:= (—£,0) ,B:= (£,0) and C := (0, ho) . (we need that
1 > hgp and € contains O and A )

Figure 3: loads yielding a membrane/flexion regime in the clear/dark part of AB
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5.2 Example (continued)

We apply Theorem 1 to compute Sy given by

sup {a[’vl(B) —v1(A)] +v2(0) - %[02(14) +v2(B)]
v € C®(R:R?) such that |(v1) 4 h(vs)”| <1 on Q} .
If AT, A~ solutions of dual problem (2)(3), then by (4):
[ (AT AT = a(da - 0p)
AT =AY = 60 — 5 (3a + 0)

[(v1)" £ h(v2)"] <1

AE] = (A%, (01)" = (v2)")R -

\
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5.3 Example (continued)

The first two equations determine AT as follows:

[

_ 1 _
(5) AN =allLAB, A+—A—:§(\x1\—§)£1|_AB,

and the last two conditions are satisfied provided
(6) (01)" # (v2)" = sign (AF) .

From (5), we see in particular that A~ remains always nonnegative, whereas for A™
two cases may occur:

case 1): if 1 >1/(4a), then AT remains nonnegative;

case 2). if 1 <l/(4a), then
AN >0 if o] > (1/2) - 2ha

A <0 if o] < (1/2) — 20 .
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5.4 Example (continued)

Accordingly, solution v and the value of Sy can be easily computed:

Case 1 > 1/(4a): we have (v1)' =1, (v2)” =0 (membrane regime), and

80:/)\+—|—/)\_:Oél;

Case 1 <1[/(4«): we have
(v1) =1 and (v2)" =0 (membrane) if |x1| > (1/2) — 2«
(v1)" =0and (v2)" =1 (flexion) if |z1] < (1/2) — 2« ,

and

80:/\A+\+/A— =2[a® +17/(16)] .
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6- Solving (LCP): ex. 1/4

sup{u(0,0)—l—u(l,l)—u(l,O)—u(O,l) ; |V2u|§1}

£2|_(0,1)2 , o u(xy, ) =

=
I
Sl
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6- Solving (LCP): ex. 2/4

sup {a(u(l,O) —u(0,0)) + g1 - Vu(1,0) — go - Vu(0,0) : |V3u| < 1}

(with a+g1-e1—go-e1 =0, g1-e2=go-e2)

1
= \/(go -ep —as)? + 5(90 ce2)2 H'LS

L/
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6- Solving (LCP): ex. 3/4

sup{ g Vu(Py) -v; @ M (V)] < 1}
1=1
1
=H'LT, = —H'LA |, u(zy,ze) = =(z2+ 22
251 2 \/§ (21, 22) (7 2)
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6.Solving (MOP): ex. 4/4

3
sup{ZVu(Pi)-vi (V202 £ ha(V20)[2 < 1}
1=1

Optimal g is unique 2D (and no hole)
[GOLAY- SEPPECHER], Eur. J. Mech. A Solids (2001)

Figure 3 — the two-dimensional optimal mass distribution.
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