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Problem statement
Hyperbolic system of conservation laws (1D case):

{

ut + f(u)x = 0 in R × R
+

u(x, 0) = u0(x) in R

Benasque, 2007 – p. 3



Problem statement
Hyperbolic system of conservation laws (1D case):

{

ut + f(u)x = 0 in R × R
+

u(x, 0) = u0(x) in R

Semi-discrete conservative schemes: Sustitute the term
f(u)x by a discrete approximation

f(u)x ≈
f̂j+ 1

2

− f̂j− 1

2

∆x
at cj = [j∆x, (j + 1)∆x]

Benasque, 2007 – p. 3



Problem statement
Hyperbolic system of conservation laws (1D case):

{

ut + f(u)x = 0 in R × R
+

u(x, 0) = u0(x) in R

Semi-discrete conservative schemes: Sustitute the term
f(u)x by a discrete approximation

f(u)x ≈
f̂j+ 1

2

− f̂j− 1

2

∆x
at cj = [j∆x, (j + 1)∆x]

Finally solve the ODE system
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Finite-difference Shu-Osher schemes
Finite volume schemes evolve cell-averages of the solution according to the integral
form of the conservation law
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[Shu & Osher] Finite-difference scheme based on evolution of point-values.

Key idea: express the space derivative f(u)x as a finite difference:
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] is f(u(xi, t)) (xi = i∆x).
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) of φ from its cell-averaves, i.e. the fluxes

fi = f(u(xi, t))

High order methods (PHM, ENO, WENO ... ) can be used for that purpose.

TVD Runge-Kutta methods are used for time evolution
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Adaptive mesh refinement
AMR aims to locally refine the mesh by using a grid
hierarchy composed by mesh patches having different
levels of resolution
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Adaptive mesh refinement
AMR aims to locally refine the mesh by using a grid
hierarchy composed by mesh patches having different
levels of resolution

1G

G0

2G

Key idea: To reduce the total number of cell updates (flux
computations).
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A look at the complete algorithm
We use a grid hierarchy G0, . . . , GL:

Gl ≡ union of Cartesian patches of uniform mesh size

Gl is finer than Gl−1 and Gl ⊆ Gl−1 (nestedness)

Singularities never cross a fine mesh boundary
(moving grids)

⇒ Adaptive mesh refinement(AMR) [Berger, Oliger] .
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A look at the complete algorithm
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then modify the solution at tn+1 and level l − 1.

Benasque, 2007 – p. 8



Some issues
Refinement criteria

Sensors based on gradients, second derivatives

Multiresolution analisis, error estimation

Projection of solution

Once evolved tn → tn+1, solution in Gl is more precise than in coarser grid
Gl−1 ⇒ modify solution (at t = tn+1) in Gl−1 from solution at Gl

conservatively :
first modify numerical fluxes at interfaces of cells in Gl−1 covered by Gl

then modify the solution at tn+1 and level l − 1.

This projection from fine fluxes to coarse fluxes entails communication from
finest to coarsest grids and is fundamental for the efficiency of the algorithm.

Benasque, 2007 – p. 8



Some issues
Refinement criteria

Sensors based on gradients, second derivatives

Multiresolution analisis, error estimation

Projection of solution

Once evolved tn → tn+1, solution in Gl is more precise than in coarser grid
Gl−1 ⇒ modify solution (at t = tn+1) in Gl−1 from solution at Gl

conservatively :
first modify numerical fluxes at interfaces of cells in Gl−1 covered by Gl

then modify the solution at tn+1 and level l − 1.

This projection from fine fluxes to coarse fluxes entails communication from
finest to coarsest grids and is fundamental for the efficiency of the algorithm.

Algorithm implementation, Parallelisation
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Shock-Helium bubble
Mach 1.22 shock interaction with Helium bubble [Haas & Sturtevant] , [Karni &
Quirk] , [Marquina & Mulet] .

Basic scheme: Shu-Osher+Donat-Marquina+WENO 5 reconstruction ⇒ 5th order
space accuracy + 3rd order time accuracy.
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Parallel implementation
Parallelization by domain decomposition: split G0 and evenly assign each piece
(along with overlying pieces of each Gl) to processors.
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Difficulty with load balancing (each processor performs same work):

If assignment is spatially symmetric processors 2 and 3 get assigned the
heaviest part.
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Parallel implementation
Parallelization by domain decomposition: split G0 and evenly assign each piece
(along with overlying pieces of each Gl) to processors.

Difficulty with load balancing (each processor performs same work):

If assignment is spatially symmetric processors 2 and 3 get assigned the
heaviest part.

Assignment must be asymmetric · · ·

but can not be static, since now processor 1 does almost all the work.

1 42 3
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Parallel implementation

discontinuity

[Parashar & coauthors] , [Devine &
coauthors]

[Baeza & Mulet] work in progress . . .

Need multidimensional partitioning.
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average = 41.5

computational costs

[Parashar & coauthors] , [Devine &
coauthors]

[Baeza & Mulet] work in progress . . .

Need multidimensional partitioning.

Recursively bisect until some level and
estimate computational costs.

Use Peano-Hilbert curve to
uni-dimensionally order by proximity.

Assign work evenly (trying to minimize
communication cost) .
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