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Problem statement

Hyperbolic system of conservation laws (1D case):

ur + f(u) =0 INR x RT
u(x,0) =ug(x) INR
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Semi-discrete conservative schemes: Sustitute the term
f(u), by a discrete approximation
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f(u)y ~ N at c; = [jAz, (j + 1)Ax]

Finally solve the ODE system
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Finite-difference Shu-Osher schemes

® Finite volume schemes evolve cell-averages of the solution according to the integral
form of the conservation law
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Key idea: express the space derivative f(u), as a finite difference:
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® Goal: to approximate point-values qb(a:z._i_l) of ¢ from its cell-averaves, i.e. the fluxes
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Ji = f(u(x%t))

High order methods (PHM, ENO, WENO ... ) can be used for that purpose.

L I

TVD Runge-Kutta methods are used for time evolution
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Adaptive mesh refinement

AMR aims to locally refine the mesh by using a grid
hierarchy composed by mesh patches having different
levels of resolution
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Adaptive mesh refinement

AMR aims to locally refine the mesh by using a grid
hierarchy composed by mesh patches having different

levels of resolution
f &z ©

Gy

Key idea: To reduce the total number of cell updates (flux
computations).
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A look at the complete algorithm

We use a grid hierarchy Gy, ..., Gy:
#® (G = union of Cartesian patches of uniform mesh size
#® (G isfinerthan G;_; and G; C G;_1 (nestedness)

# Singularities never cross a fine mesh boundary
(moving grids)

= Adaptive mesh refinement(AMR) [Berger, Oliger]
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A look at the complete algorithm
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® Once evolved t,, — t,4+1, solution in G; is more precise than in coarser grid
GG;—1 = modify solution (at ¢t = t,,4+1) in GG;_1 from solution at G;
conservatively :
& first modify numerical fluxes at interfaces of cells in GG;_1 covered by G|
£ then modify the solution at ¢,,4-1 and level [ — 1.

® This projection from fine fluxes to coarse fluxes entails communication from
finest to coarsest grids and is fundamental for the efficiency of the algorithm.

® Algorithm implementation, Parallelisation
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Shock-Helium bubble

® Mach 1.22 shock interaction with Helium bubble [Haas & Sturtevant] , [Karni &
Quirk] , [Marquina & Mulet] .

® Basic scheme: Shu-Osher+Donat-Marquina+WENO 5 reconstruction = 5 order
space accuracy + 3" order time accuracy.

O
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Parallel implementation

® Parallelization by domain decomposition: split Gy and evenly assign each piece
(along with overlying pieces of each G;) to processors.
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Parallel implementation

® Parallelization by domain decomposition: split Gy and evenly assign each piece
(along with overlying pieces of each G;) to processors.
® Difficulty with load balancing (each processor performs same work):

® |f assignment is spatially symmetric processors 2 and 3 get assigned the
heaviest part.

#® Assignment must be asymmetric - - -
® but can not be static, since now processor 1 does almost all the work.

1 ‘ @ ‘2‘3‘ 4
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Parallel implementation

® [Parashar & coauthors] , [Devine &
coauthors]

[Baeza & Mulet] work in progress ...

L I

Need multidimensional partitioning.

discontinuity
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Parallel implementation

2 5 | 10

10

computational costs

L 3 I

[Parashar & coauthors] , [Devine &
coauthors]
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estimate computational costs.
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Parallel implementation
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L 3 I

[Parashar & coauthors] , [Devine &
coauthors]

[Baeza & Mulet] work in progress ...
Need multidimensional partitioning.

Recursively bisect until some level and
estimate computational costs.

Use Peano-Hilbert curve to
uni-dimensionally order by proximity.

Assign work evenly (trying to minimize
communication cost) .
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