
Conservative finite difference
schemes and adaptive mesh

refinement techniques for hyperbolic
systems of conservation laws

Pep Mulet, Universitat de València

Antonio Baeza, IMDEA-Mathematics

Benasque, 2007 – p. 1

Outline
Finite-difference Shu-Osher schemes

Adaptive mesh refinement

A look at the complete algorithm

Some issues

Benasque, 2007 – p. 2

Problem statement
Hyperbolic system of conservation laws (1D case):

{

ut + f(u)x = 0 in R × R
+

u(x, 0) = u0(x) in R

Benasque, 2007 – p. 3

Problem statement
Hyperbolic system of conservation laws (1D case):

{

ut + f(u)x = 0 in R × R
+

u(x, 0) = u0(x) in R

Semi-discrete conservative schemes: Sustitute the term
f(u)x by a discrete approximation

f(u)x ≈
f̂j+ 1

2

− f̂j− 1

2

∆x
at cj = [j∆x, (j + 1)∆x]

Benasque, 2007 – p. 3

Problem statement
Hyperbolic system of conservation laws (1D case):

{

ut + f(u)x = 0 in R × R
+

u(x, 0) = u0(x) in R

Semi-discrete conservative schemes: Sustitute the term
f(u)x by a discrete approximation

f(u)x ≈
f̂j+ 1

2

− f̂j− 1

2

∆x
at cj = [j∆x, (j + 1)∆x]

Finally solve the ODE system

ut +
f̂j+ 1

2

− f̂j− 1

2

∆x
= 0

Benasque, 2007 – p. 3

Finite-difference Shu-Osher schemes
Finite volume schemes evolve cell-averages of the solution according to the integral
form of the conservation law

Benasque, 2007 – p. 4

Finite-difference Shu-Osher schemes
Finite volume schemes evolve cell-averages of the solution according to the integral
form of the conservation law

[Shu & Osher] Finite-difference scheme based on evolution of point-values.

Benasque, 2007 – p. 4

Finite-difference Shu-Osher schemes
Finite volume schemes evolve cell-averages of the solution according to the integral
form of the conservation law

[Shu & Osher] Finite-difference scheme based on evolution of point-values.

Key idea: express the space derivative f(u)x as a finite difference:

f(u(x, t)) =
1

∆x

Z

x+∆x

2

x−
∆x

2

φ(s)ds

f(u(x, t))x =
φ(x + ∆x

2
) − φ(x −

∆x

2
)

∆x

for unknown φ, whose average on cell [x
i−

1

2

, x
i+ 1

2

] is f(u(xi, t)) (xi = i∆x).

Benasque, 2007 – p. 4

Finite-difference Shu-Osher schemes
Finite volume schemes evolve cell-averages of the solution according to the integral
form of the conservation law

[Shu & Osher] Finite-difference scheme based on evolution of point-values.

Key idea: express the space derivative f(u)x as a finite difference:

f(u(x, t)) =
1

∆x

Z

x+∆x

2

x−
∆x

2

φ(s)ds

f(u(x, t))x =
φ(x + ∆x

2
) − φ(x −

∆x

2
)

∆x

for unknown φ, whose average on cell [x
i−

1

2

, x
i+ 1

2

] is f(u(xi, t)) (xi = i∆x).

Goal: to approximate point-values φ(x
i+ 1

2

) of φ from its cell-averaves, i.e. the fluxes

fi = f(u(xi, t))

Benasque, 2007 – p. 4

Finite-difference Shu-Osher schemes
Finite volume schemes evolve cell-averages of the solution according to the integral
form of the conservation law

[Shu & Osher] Finite-difference scheme based on evolution of point-values.

Key idea: express the space derivative f(u)x as a finite difference:

f(u(x, t)) =
1

∆x

Z

x+∆x

2

x−
∆x

2

φ(s)ds

f(u(x, t))x =
φ(x + ∆x

2
) − φ(x −

∆x

2
)

∆x

for unknown φ, whose average on cell [x
i−

1

2

, x
i+ 1

2

] is f(u(xi, t)) (xi = i∆x).

Goal: to approximate point-values φ(x
i+ 1

2

) of φ from its cell-averaves, i.e. the fluxes

fi = f(u(xi, t))

High order methods (PHM, ENO, WENO ...) can be used for that purpose.

Benasque, 2007 – p. 4

Finite-difference Shu-Osher schemes
Finite volume schemes evolve cell-averages of the solution according to the integral
form of the conservation law

[Shu & Osher] Finite-difference scheme based on evolution of point-values.

Key idea: express the space derivative f(u)x as a finite difference:

f(u(x, t)) =
1

∆x

Z

x+∆x

2

x−
∆x

2

φ(s)ds

f(u(x, t))x =
φ(x + ∆x

2
) − φ(x −

∆x

2
)

∆x

for unknown φ, whose average on cell [x
i−

1

2

, x
i+ 1

2

] is f(u(xi, t)) (xi = i∆x).

Goal: to approximate point-values φ(x
i+ 1

2

) of φ from its cell-averaves, i.e. the fluxes

fi = f(u(xi, t))

High order methods (PHM, ENO, WENO ...) can be used for that purpose.

TVD Runge-Kutta methods are used for time evolution

Benasque, 2007 – p. 4

Adaptive mesh refinement
AMR aims to locally refine the mesh by using a grid
hierarchy composed by mesh patches having different
levels of resolution

Benasque, 2007 – p. 5

Adaptive mesh refinement
AMR aims to locally refine the mesh by using a grid
hierarchy composed by mesh patches having different
levels of resolution

1G

G0

2G

Benasque, 2007 – p. 5

Adaptive mesh refinement
AMR aims to locally refine the mesh by using a grid
hierarchy composed by mesh patches having different
levels of resolution

1G

G0

2G

Key idea: To reduce the total number of cell updates (flux
computations).

Benasque, 2007 – p. 5

A look at the complete algorithm
We use a grid hierarchy G0, . . . , GL:

Gl ≡ union of Cartesian patches of uniform mesh size

Gl is finer than Gl−1 and Gl ⊆ Gl−1 (nestedness)

Singularities never cross a fine mesh boundary
(moving grids)

⇒ Adaptive mesh refinement(AMR) [Berger, Oliger] .

Benasque, 2007 – p. 6

A look at the complete algorithm
time

level

t

0 1 2

t+dt/2

t+dt

Benasque, 2007 – p. 7

A look at the complete algorithm
time

level

t

0 1 2

t+dt/2

t+dt

Benasque, 2007 – p. 7

A look at the complete algorithm
time

level

t

0 1 2

t+dt/2

t+dt

Benasque, 2007 – p. 7

A look at the complete algorithm
time

level

t

0 1 2

t+dt/2

t+dt

Benasque, 2007 – p. 7

A look at the complete algorithm
time

level

t

0 1 2

t+dt/2

t+dt

Benasque, 2007 – p. 7

A look at the complete algorithm
time

level

t

0 1 2

t+dt/2

t+dt

Adapt level 2
fluxes

project

Adapt level 2 before any singularity escapes.

Benasque, 2007 – p. 7

A look at the complete algorithm
time

level

t

0 1 2

t+dt/2

t+dt

Adapt level 2 before any singularity escapes.

Benasque, 2007 – p. 7

A look at the complete algorithm
time

level

t

0 1 2

t+dt/2

t+dt

Adapt level 2 before any singularity escapes.

Benasque, 2007 – p. 7

A look at the complete algorithm
time

level

t

0 1 2

t+dt/2

t+dt

Adapt level 2 before any singularity escapes.

Benasque, 2007 – p. 7

A look at the complete algorithm
time

level

t

0 1 2

t+dt/2

t+dt Adapt levels 2 and 1

fluxes
project

Adapt level 2 before any singularity escapes.

Adapt level 2 and 1 before any singularity escapes.

Benasque, 2007 – p. 7

A look at the complete algorithm
time

level

t

0 1 2

t+dt/2

t+dt Adapt levels 2 and 1

fluxes
project

fluxes
project

Adapt level 2 before any singularity escapes.

Adapt level 2 and 1 before any singularity escapes.

Benasque, 2007 – p. 7

Some issues
Refinement criteria

Benasque, 2007 – p. 8

Some issues
Refinement criteria

Sensors based on gradients, second derivatives

Benasque, 2007 – p. 8

Some issues
Refinement criteria

Sensors based on gradients, second derivatives

Multiresolution analisis, error estimation

Benasque, 2007 – p. 8

Some issues
Refinement criteria

Sensors based on gradients, second derivatives

Multiresolution analisis, error estimation

Projection of solution

Benasque, 2007 – p. 8

Some issues
Refinement criteria

Sensors based on gradients, second derivatives

Multiresolution analisis, error estimation

Projection of solution

Once evolved tn → tn+1, solution in Gl is more precise than in coarser grid
Gl−1

Benasque, 2007 – p. 8

Some issues
Refinement criteria

Sensors based on gradients, second derivatives

Multiresolution analisis, error estimation

Projection of solution

Once evolved tn → tn+1, solution in Gl is more precise than in coarser grid
Gl−1 ⇒ modify solution (at t = tn+1) in Gl−1 from solution at Gl

conservatively :
first modify numerical fluxes at interfaces of cells in Gl−1 covered by Gl

then modify the solution at tn+1 and level l − 1.

Benasque, 2007 – p. 8

Some issues
Refinement criteria

Sensors based on gradients, second derivatives

Multiresolution analisis, error estimation

Projection of solution

Once evolved tn → tn+1, solution in Gl is more precise than in coarser grid
Gl−1 ⇒ modify solution (at t = tn+1) in Gl−1 from solution at Gl

conservatively :
first modify numerical fluxes at interfaces of cells in Gl−1 covered by Gl

then modify the solution at tn+1 and level l − 1.

This projection from fine fluxes to coarse fluxes entails communication from
finest to coarsest grids and is fundamental for the efficiency of the algorithm.

Benasque, 2007 – p. 8

Some issues
Refinement criteria

Sensors based on gradients, second derivatives

Multiresolution analisis, error estimation

Projection of solution

Once evolved tn → tn+1, solution in Gl is more precise than in coarser grid
Gl−1 ⇒ modify solution (at t = tn+1) in Gl−1 from solution at Gl

conservatively :
first modify numerical fluxes at interfaces of cells in Gl−1 covered by Gl

then modify the solution at tn+1 and level l − 1.

This projection from fine fluxes to coarse fluxes entails communication from
finest to coarsest grids and is fundamental for the efficiency of the algorithm.

Algorithm implementation, Parallelisation

Benasque, 2007 – p. 8

Shock-Helium bubble
Mach 1.22 shock interaction with Helium bubble [Haas & Sturtevant] , [Karni &
Quirk] , [Marquina & Mulet] .

Basic scheme: Shu-Osher+Donat-Marquina+WENO 5 reconstruction ⇒ 5th order
space accuracy + 3rd order time accuracy.

Benasque, 2007 – p. 9

Parallel implementation
Parallelization by domain decomposition: split G0 and evenly assign each piece
(along with overlying pieces of each Gl) to processors.

Benasque, 2007 – p. 10

Parallel implementation
Parallelization by domain decomposition: split G0 and evenly assign each piece
(along with overlying pieces of each Gl) to processors.

Difficulty with load balancing (each processor performs same work):

If assignment is spatially symmetric processors 2 and 3 get assigned the
heaviest part.

1 2 3 4

Benasque, 2007 – p. 10

Parallel implementation
Parallelization by domain decomposition: split G0 and evenly assign each piece
(along with overlying pieces of each Gl) to processors.

Difficulty with load balancing (each processor performs same work):

If assignment is spatially symmetric processors 2 and 3 get assigned the
heaviest part.

Assignment must be asymmetric · · ·

1 42 3

Benasque, 2007 – p. 10

Parallel implementation
Parallelization by domain decomposition: split G0 and evenly assign each piece
(along with overlying pieces of each Gl) to processors.

Difficulty with load balancing (each processor performs same work):

If assignment is spatially symmetric processors 2 and 3 get assigned the
heaviest part.

Assignment must be asymmetric · · ·

but can not be static, since now processor 1 does almost all the work.

1 42 3

Benasque, 2007 – p. 10

Parallel implementation

discontinuity

[Parashar & coauthors] , [Devine &
coauthors]

[Baeza & Mulet] work in progress . . .

Need multidimensional partitioning.

Benasque, 2007 – p. 11

Parallel implementation

2

5

5

10 10

1010

52

10

10
5

22
10

5

5
10

52

2

5

10

10

5

5

22

computational costs

[Parashar & coauthors] , [Devine &
coauthors]

[Baeza & Mulet] work in progress . . .

Need multidimensional partitioning.

Recursively bisect until some level and
estimate computational costs.

Benasque, 2007 – p. 11

Parallel implementation

2

5

5

10 10

1010

52

10

10
5

22
10

5

5
10

52

2

5

10

10

5

5

22

2 5 5 10 10 10 10 5 2 10 10 5 2 2 10 5 5 10 5 2 2 5 10 5 5 10 2 2

computational costs

[Parashar & coauthors] , [Devine &
coauthors]

[Baeza & Mulet] work in progress . . .

Need multidimensional partitioning.

Recursively bisect until some level and
estimate computational costs.

Use Peano-Hilbert curve to
uni-dimensionally order by proximity.

Benasque, 2007 – p. 11

Parallel implementation

2

5

5

10 10

1010

52

10

10
5

22
10

5

5
10

52

2

5

10

10

5

5

22

2 5 5 10 10 10 10 5 2 10 10 5 2 2 10 5 5 10 5 2 2 5 10 5 5 10 2 2
42 42 41 41

average = 41.5

computational costs

[Parashar & coauthors] , [Devine &
coauthors]

[Baeza & Mulet] work in progress . . .

Need multidimensional partitioning.

Recursively bisect until some level and
estimate computational costs.

Use Peano-Hilbert curve to
uni-dimensionally order by proximity.

Assign work evenly (trying to minimize
communication cost) .

Benasque, 2007 – p. 11

	Outline
	Problem statement
	Problem statement
	Problem statement

	Finite-difference Shu-Osher schemes
	Finite-difference Shu-Osher schemes
	Finite-difference Shu-Osher schemes
	Finite-difference Shu-Osher schemes
	Finite-difference Shu-Osher schemes
	Finite-difference Shu-Osher schemes

	Adaptive mesh refinement
	Adaptive mesh refinement
	Adaptive mesh refinement

	A look at the complete algorithm
	A look at the complete algorithm
	A look at the complete algorithm
	A look at the complete algorithm
	A look at the complete algorithm
	A look at the complete algorithm
	A look at the complete algorithm
	A look at the complete algorithm
	A look at the complete algorithm
	A look at the complete algorithm
	A look at the complete algorithm
	A look at the complete algorithm

	Some issues
	Some issues
	Some issues
	Some issues
	Some issues
	Some issues
	Some issues
	Some issues

	Shock-Helium bubble
	Parallel implementation
	Parallel implementation
	Parallel implementation
	Parallel implementation

	Parallel implementation
	Parallel implementation
	Parallel implementation
	Parallel implementation

