Conservative finite difference schemes and adaptive mesh refinement techniques for hyperbolic systems of conservation laws

> Pep Mulet, Universitat de València Antonio Baeza, IMDEA-Mathematics

Outline

- Finite-difference Shu-Osher schemes
- Adaptive mesh refinement
- A look at the complete algorithm
- Some issues

Problem statement

Hyperbolic system of conservation laws (1D case):

$$\begin{cases} u_t + f(u)_x = 0 & \text{in } \mathbb{R} \times \mathbb{R}^+ \\ u(x, 0) = u_0(x) & \text{in } \mathbb{R} \end{cases}$$

Problem statement

Hyperbolic system of conservation laws (1D case):

$$\begin{cases} u_t + f(u)_x = 0 & \text{in } \mathbb{R} \times \mathbb{R}^+ \\ u(x, 0) = u_0(x) & \text{in } \mathbb{R} \end{cases}$$

Semi-discrete conservative schemes: Sustitute the term $f(u)_x$ by a discrete approximation

$$f(u)_x \approx \frac{\hat{f}_{j+\frac{1}{2}} - \hat{f}_{j-\frac{1}{2}}}{\Delta x} \quad \text{at } c_j = [j\Delta x, (j+1)\Delta x]$$

Problem statement

Hyperbolic system of conservation laws (1D case):

$$\begin{cases} u_t + f(u)_x = 0 & \text{in } \mathbb{R} \times \mathbb{R}^+ \\ u(x, 0) = u_0(x) & \text{in } \mathbb{R} \end{cases}$$

Semi-discrete conservative schemes: Sustitute the term $f(u)_x$ by a discrete approximation

$$f(u)_x \approx \frac{\hat{f}_{j+\frac{1}{2}} - \hat{f}_{j-\frac{1}{2}}}{\Delta x} \quad \text{at } c_j = [j\Delta x, (j+1)\Delta x]$$

Finally solve the ODE system

$$u_t + \frac{\hat{f}_{j+\frac{1}{2}} - \hat{f}_{j-\frac{1}{2}}}{\Delta x} = 0$$

Finite volume schemes evolve cell-averages of the solution according to the integral form of the conservation law

- Finite volume schemes evolve cell-averages of the solution according to the integral form of the conservation law
- **IShu & Osher]** Finite-difference scheme based on evolution of point-values.

- Finite volume schemes evolve cell-averages of the solution according to the integral form of the conservation law
- **[Shu & Osher]** Finite-difference scheme based on evolution of point-values.
- Solution Key idea: express the space derivative $f(u)_x$ as a finite difference:

$$f(u(x,t)) = \frac{1}{\Delta x} \int_{x-\frac{\Delta x}{2}}^{x+\frac{\Delta x}{2}} \phi(s) ds$$
$$f(u(x,t))_x = \frac{\phi(x+\frac{\Delta x}{2}) - \phi(x-\frac{\Delta x}{2})}{\Delta x}$$

for unknown ϕ , whose average on cell $[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}]$ is $f(u(x_i, t))$ ($x_i = i\Delta x$).

- Finite volume schemes evolve cell-averages of the solution according to the integral form of the conservation law
- **[Shu & Osher]** Finite-difference scheme based on evolution of point-values.
- Solution Key idea: express the space derivative $f(u)_x$ as a finite difference:

$$f(u(x,t)) = \frac{1}{\Delta x} \int_{x-\frac{\Delta x}{2}}^{x+\frac{\Delta x}{2}} \phi(s) ds$$
$$f(u(x,t))_x = \frac{\phi(x+\frac{\Delta x}{2}) - \phi(x-\frac{\Delta x}{2})}{\Delta x}$$

for unknown ϕ , whose average on cell $[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}]$ is $f(u(x_i, t))$ ($x_i = i\Delta x$).

Goal: to approximate point-values $\phi(x_{i+\frac{1}{2}})$ of ϕ from its cell-averaves, i.e. the fluxes $f_i = f(u(x_i, t))$

- Finite volume schemes evolve cell-averages of the solution according to the integral form of the conservation law
- **[Shu & Osher]** Finite-difference scheme based on evolution of point-values.
- Solution Key idea: express the space derivative $f(u)_x$ as a finite difference:

$$f(u(x,t)) = \frac{1}{\Delta x} \int_{x-\frac{\Delta x}{2}}^{x+\frac{\Delta x}{2}} \phi(s) ds$$
$$f(u(x,t))_x = \frac{\phi(x+\frac{\Delta x}{2}) - \phi(x-\frac{\Delta x}{2})}{\Delta x}$$

for unknown ϕ , whose average on cell $[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}]$ is $f(u(x_i, t))$ $(x_i = i\Delta x)$.

- Goal: to approximate point-values $\phi(x_{i+\frac{1}{2}})$ of ϕ from its cell-averaves, i.e. the fluxes $f_i = f(u(x_i, t))$
- High order methods (PHM, ENO, WENO ...) can be used for that purpose.

- Finite volume schemes evolve cell-averages of the solution according to the integral form of the conservation law
- [Shu & Osher] Finite-difference scheme based on evolution of point-values.
- Solution Key idea: express the space derivative $f(u)_x$ as a finite difference:

$$f(u(x,t)) = \frac{1}{\Delta x} \int_{x-\frac{\Delta x}{2}}^{x+\frac{\Delta x}{2}} \phi(s) ds$$
$$f(u(x,t))_x = \frac{\phi(x+\frac{\Delta x}{2}) - \phi(x-\frac{\Delta x}{2})}{\Delta x}$$

for unknown ϕ , whose average on cell $[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}]$ is $f(u(x_i, t))$ $(x_i = i\Delta x)$.

- Goal: to approximate point-values $\phi(x_{i+\frac{1}{2}})$ of ϕ from its cell-averaves, i.e. the fluxes $f_i = f(u(x_i, t))$
- High order methods (PHM, ENO, WENO ...) can be used for that purpose.
- TVD Runge-Kutta methods are used for time evolution

Adaptive mesh refinement

AMR aims to locally refine the mesh by using a grid hierarchy composed by mesh patches having different levels of resolution

Adaptive mesh refinement

AMR aims to locally refine the mesh by using a grid hierarchy composed by mesh patches having different levels of resolution

Adaptive mesh refinement

AMR aims to locally refine the mesh by using a grid hierarchy composed by mesh patches having different levels of resolution

Key idea: To reduce the total number of cell updates (flux computations).

We use a grid hierarchy G_0, \ldots, G_L :

- $G_l \equiv$ union of Cartesian patches of uniform mesh size
- G_l is finer than G_{l-1} and $G_l \subseteq G_{l-1}$ (nestedness)
- Singularities never cross a fine mesh boundary (moving grids)
- \Rightarrow Adaptive mesh refinement(AMR) [Berger, Oliger].

- Adapt level 2 before any singularity escapes.
- Adapt level 2 and 1 before any singularity escapes.

- Adapt level 2 before any singularity escapes.
- Adapt level 2 and 1 before any singularity escapes.

Refinement criteria

- Refinement criteria
 - Sensors based on gradients, second derivatives

- Refinement criteria
 - Sensors based on gradients, second derivatives
 - Multiresolution analisis, error estimation

- Refinement criteria
 - Sensors based on gradients, second derivatives
 - Multiresolution analisis, error estimation
- Projection of solution

- Refinement criteria
 - Sensors based on gradients, second derivatives
 - Multiresolution analisis, error estimation
- Projection of solution
 - Once evolved $t_n \rightarrow t_{n+1}$, solution in G_l is more precise than in coarser grid G_{l-1}

- Refinement criteria
 - Sensors based on gradients, second derivatives
 - Multiresolution analisis, error estimation
- Projection of solution
 - Once evolved $t_n \rightarrow t_{n+1}$, solution in G_l is more precise than in coarser grid $G_{l-1} \Rightarrow$ modify solution (at $t = t_{n+1}$) in G_{l-1} from solution at G_l conservatively:
 - first modify numerical fluxes at interfaces of cells in G_{l-1} covered by G_l
 - If then modify the solution at t_{n+1} and level l-1.

- Refinement criteria
 - Sensors based on gradients, second derivatives
 - Multiresolution analisis, error estimation
- Projection of solution
 - Once evolved $t_n \rightarrow t_{n+1}$, solution in G_l is more precise than in coarser grid $G_{l-1} \Rightarrow$ modify solution (at $t = t_{n+1}$) in G_{l-1} from solution at G_l conservatively:
 - first modify numerical fluxes at interfaces of cells in G_{l-1} covered by G_l
 - If then modify the solution at t_{n+1} and level l-1.
 - This projection from fine fluxes to coarse fluxes entails communication from finest to coarsest grids and is fundamental for the efficiency of the algorithm.

- Refinement criteria
 - Sensors based on gradients, second derivatives
 - Multiresolution analisis, error estimation
- Projection of solution
 - Once evolved $t_n \rightarrow t_{n+1}$, solution in G_l is more precise than in coarser grid $G_{l-1} \Rightarrow$ modify solution (at $t = t_{n+1}$) in G_{l-1} from solution at G_l conservatively:
 - first modify numerical fluxes at interfaces of cells in G_{l-1} covered by G_l
 - If then modify the solution at t_{n+1} and level l-1.
 - This projection from fine fluxes to coarse fluxes entails communication from finest to coarsest grids and is fundamental for the efficiency of the algorithm.
- Algorithm implementation, Parallelisation

Shock-Helium bubble

- Mach 1.22 shock interaction with Helium bubble [Haas & Sturtevant], [Karni & Quirk], [Marquina & Mulet].
- Basic scheme: Shu-Osher+Donat-Marquina+WENO 5 reconstruction $\Rightarrow 5^{\text{th}}$ order space accuracy + 3^{rd} order time accuracy.

Parallelization by domain decomposition: split G_0 and evenly assign each piece (along with overlying pieces of each G_l) to processors.

- Parallelization by domain decomposition: split G_0 and evenly assign each piece (along with overlying pieces of each G_l) to processors.
- Difficulty with load balancing (each processor performs same work):
 - If assignment is spatially symmetric processors 2 and 3 get assigned the heaviest part.

1 2 🕥 3 4

- Parallelization by domain decomposition: split G_0 and evenly assign each piece (along with overlying pieces of each G_l) to processors.
- Difficulty with load balancing (each processor performs same work):
 - If assignment is spatially symmetric processors 2 and 3 get assigned the heaviest part.
 - Assignment must be asymmetric · · · ·

- Parallelization by domain decomposition: split G_0 and evenly assign each piece (along with overlying pieces of each G_l) to processors.
- Difficulty with load balancing (each processor performs same work):
 - If assignment is spatially symmetric processors 2 and 3 get assigned the heaviest part.
 - Assignment must be asymmetric · · · ·

1

but can not be static, since now processor 1 does almost all the work.

[Parashar & coauthors], [Devine & coauthors]

- [Baeza & Mulet] work in progress . . .
- Need multidimensional partitioning.

discontinuity

computational costs

- [Parashar & coauthors], [Devine & coauthors]
- [Baeza & Mulet] work in progress . . .
- Need multidimensional partitioning.
- Recursively bisect until some level and estimate computational costs.

computational costs

2 5 5 10 10 10 10 5 2 10 10 5 2 2 10 5 5 10 5 2 2 5 10 5 5 10 2 2

- [Parashar & coauthors], [Devine & coauthors]
- [Baeza & Mulet] work in progress . . .
- Need multidimensional partitioning.
- Recursively bisect until some level and estimate computational costs.
- Use Peano-Hilbert curve to uni-dimensionally order by proximity.

- [Parashar & coauthors], [Devine & coauthors]
- [Baeza & Mulet] work in progress . . .
- Need multidimensional partitioning.
- Recursively bisect until some level and estimate computational costs.
- Use Peano-Hilbert curve to uni-dimensionally order by proximity.
- Assign work evenly (trying to minimize communication cost).