Conservative finite difference

schemes and adaptive mesh
refinement techniques for hyperbolic

systems of conservation laws

Pep Mulet, Universitat de Valencia
Antonio Baeza, IMDEA-Mathematics

Benasque, 2007 — p.

Outline

Finite-difference Shu-Osher schemes
#® Adaptive mesh refinement
#® A look at the complete algorithm

® Some issues

Benasque, 2007 — p.

Problem statement

Hyperbolic system of conservation laws (1D case):

ur + f(u) =0 INR x RT
u(x,0) =ug(x) INR

Benasque, 2007 — p.

Problem statement

Hyperbolic system of conservation laws (1D case):

ur + f(u) =0 INR x RT
u(x,0) =ug(x) INR

Semi-discrete conservative schemes: Sustitute the term
f(u), by a discrete approximation

it

N |

_F
2 ate; = [jAz, (j 4 1)Ax]

(W) Ax

Benasque, 2007 — p.

Problem statement

Hyperbolic system of conservation laws (1D case):

ur + f(u) =0 INR x RT
u(x,0) =ug(x) INR

Semi-discrete conservative schemes: Sustitute the term
f(u), by a discrete approximation

11— -l
f(u)y ~ N at c; = [jAz, (j + 1)Ax]

Finally solve the ODE system

]E

1
Ut + T

Benasque, 2007 — p.

Finite-difference Shu-Osher schemes

® Finite volume schemes evolve cell-averages of the solution according to the integral
form of the conservation law

Benasque, 2007 — p.

Finite-difference Shu-Osher schemes

® Finite volume schemes evolve cell-averages of the solution according to the integral
form of the conservation law

® [Shu & Osher] Finite-difference scheme based on evolution of point-values.

Benasque, 2007 — p.

Finite-difference Shu-Osher schemes

® Finite volume schemes evolve cell-averages of the solution according to the integral
form of the conservation law

® [Shu & Osher] Finite-difference scheme based on evolution of point-values.
9o

Key idea: express the space derivative f(u), as a finite difference:

a:—i—%
flue) = 5[7 os)ds
d(z+ &) — ¢z — BE)
Flu(z,0)e = R

for unknown ¢, whose average on cell [z, _1,z; 1]is f(u(zi,?)) (z; = iAz).
2 2

Benasque, 2007 — p.

Finite-difference Shu-Osher schemes

® Finite volume schemes evolve cell-averages of the solution according to the integral
form of the conservation law

® [Shu & Osher] Finite-difference scheme based on evolution of point-values.
9o

Key idea: express the space derivative f(u), as a finite difference:

a:—i—%
flue) = 5[7 os)ds
d(z+ &) — ¢z — BE)
Flu(z,0)e = R

for unknown ¢, whose average on cell [z, _1,z; 1]is f(u(zi,?)) (z; = iAz).
2 2

® Goal: to approximate point-values qb(a:z._i_l) of ¢ from its cell-averaves, i.e. the fluxes
2

Ji = f(u(xlvt))

Benasque, 2007 — p.

Finite-difference Shu-Osher schemes

® Finite volume schemes evolve cell-averages of the solution according to the integral
form of the conservation law

® [Shu & Osher] Finite-difference scheme based on evolution of point-values.
9o

Key idea: express the space derivative f(u), as a finite difference:

a:—i—%
flue) = 5[7 os)ds
d(z+ &) — ¢z — BE)
Flu(z,0)e = R

for unknown ¢, whose average on cell [z, _1,z; 1]is f(u(zi,?)) (z; = iAz).
2 2

® Goal: to approximate point-values qb(a:z._i_l) of ¢ from its cell-averaves, i.e. the fluxes
2
Ji = f(u(x%t))
® High order methods (PHM, ENO, WENO ...) can be used for that purpose.

Benasque, 2007 — p.

Finite-difference Shu-Osher schemes

® Finite volume schemes evolve cell-averages of the solution according to the integral
form of the conservation law

® [Shu & Osher] Finite-difference scheme based on evolution of point-values.
9o

Key idea: express the space derivative f(u), as a finite difference:

a:—i—%
flue) = 5[7 os)ds
d(z+ &) — ¢z — BE)
Flu(z,0)e = R

for unknown ¢, whose average on cell [z, _1,z; 1]is f(u(zi,?)) (z; = iAz).
2 2

® Goal: to approximate point-values qb(a:z._i_l) of ¢ from its cell-averaves, i.e. the fluxes
2

Ji = f(u(x%t))

High order methods (PHM, ENO, WENO ...) can be used for that purpose.

L I

TVD Runge-Kutta methods are used for time evolution

Benasque, 2007 — p.

Adaptive mesh refinement

AMR aims to locally refine the mesh by using a grid
hierarchy composed by mesh patches having different
levels of resolution

Benasque, 2007 — p.

Adaptive mesh refinement

AMR aims to locally refine the mesh by using a grid
hierarchy composed by mesh patches having different

levels of resolution

H

V- 4

Benasque, 2007 — p.

Adaptive mesh refinement

AMR aims to locally refine the mesh by using a grid
hierarchy composed by mesh patches having different

levels of resolution
f &z ©

Gy

Key idea: To reduce the total number of cell updates (flux
computations).

Benasque, 2007 — p.

A look at the complete algorithm

We use a grid hierarchy Gy, ..., Gy:
#® (G = union of Cartesian patches of uniform mesh size
#® (G isfinerthan G;_; and G; C G;_1 (nestedness)

Singularities never cross a fine mesh boundary
(moving grids)

= Adaptive mesh refinement(AMR) [Berger, Oliger]

Benasque, 2007 — p.

A look at the complete algorithm

time
t+dt

t+dt/2

0 1 2 level

Benasque, 2007 — p.

A look at the complete algorithm

time

t+dt ?

t+dt/2

0 1 2 level

Benasque, 2007 — p.

A look at the complete algorithm

time

t+dt .

t+dt/2 I
‘ O O

0 1 2 level

Benasque, 2007 — p.

A look at the complete algorithm

time

t+dt .

t+dt/2 .

0 1 2 level

Benasque, 2007 — p.

A look at the complete algorithm

time
t+dt .
t+dt/2 . 2
t O O O

0 1 2 level

Benasque, 2007 — p.

A look at the complete algorithm

time
t+dt .
project
t+dt/2 . M? Adapt level 2
t O O O

0 1 2 level

® Adapt level 2 before any singularity escapes.

Benasque, 2007 — p.

A look at the complete algorithm

time

t+dt . ?

t+dt/2 . Q

O

t O O O
0 1 2 level

® Adapt level 2 before any singularity escapes.

Benasque, 2007 — p.

A look at the complete algorithm

time

t+dt . .
t+dt/2 . i
O
t O O O
0 1 2 level

® Adapt level 2 before any singularity escapes.

Benasque, 2007 — p.

A look at the complete algorithm

time

t+dt . . i

t+dt/2 . .

O

t O O O
0 1 2 level

® Adapt level 2 before any singularity escapes.

Benasque, 2007 — p.

A look at the complete algorithm

time
t+dt

t+dt/2

® Adapt level 2 before any singularity escapes.

©-—~20

project
fluxes

Adapt levels 2 and 1

0

1

2

level

Adapt level 2 and 1 before any singularity escapes.

Benasque, 2007 — p.

A look at the complete algorithm

time
t+dt

t+dt/2

® Adapt level 2 before any singularity escapes.

-—0-—2O0

project project
fluxes fluxes

Adapt levels 2 and 1

0

1

2

level

Adapt level 2 and 1 before any singularity escapes.

Benasque, 2007 — p.

Some Issues

® Refinement criteria

Benasque, 2007 — p.

Some Issues

® Refinement criteria
® Sensors based on gradients, second derivatives

Benasque, 2007 — p.

Some Issues

® Refinement criteria
® Sensors based on gradients, second derivatives
® Multiresolution analisis, error estimation

Benasque, 2007 — p.

Some Issues

® Refinement criteria
® Sensors based on gradients, second derivatives
® Multiresolution analisis, error estimation

® Projection of solution

Benasque, 2007 — p.

Some Issues

® Refinement criteria
® Sensors based on gradients, second derivatives
® Multiresolution analisis, error estimation

® Projection of solution

® Once evolved t,, — t,4+1, solution in G; is more precise than in coarser grid
Gi-1

Benasque, 2007 — p.

Some Issues

® Refinement criteria
® Sensors based on gradients, second derivatives
® Multiresolution analisis, error estimation

® Projection of solution

® Once evolved t,, — t,4+1, solution in G; is more precise than in coarser grid
GG;—1 = modify solution (at ¢t = t,,4+1) in GG;_1 from solution at G;
conservatively :
& first modify numerical fluxes at interfaces of cells in GG;_1 covered by G|
£ then modify the solution at ¢,,4-1 and level [— 1.

Benasque, 2007 — p.

Some Issues

® Refinement criteria
® Sensors based on gradients, second derivatives
® Multiresolution analisis, error estimation

® Projection of solution

® Once evolved t,, — t,4+1, solution in G; is more precise than in coarser grid
GG;—1 = modify solution (at ¢t = t,,4+1) in GG;_1 from solution at G;
conservatively :
& first modify numerical fluxes at interfaces of cells in GG;_1 covered by G|
£ then modify the solution at ¢,,4-1 and level [— 1.

® This projection from fine fluxes to coarse fluxes entails communication from
finest to coarsest grids and is fundamental for the efficiency of the algorithm.

Benasque, 2007 — p.

Some Issues

® Refinement criteria
® Sensors based on gradients, second derivatives
® Multiresolution analisis, error estimation

® Projection of solution

® Once evolved t,, — t,4+1, solution in G; is more precise than in coarser grid
GG;—1 = modify solution (at ¢t = t,,4+1) in GG;_1 from solution at G;
conservatively :
& first modify numerical fluxes at interfaces of cells in GG;_1 covered by G|
£ then modify the solution at ¢,,4-1 and level [— 1.

® This projection from fine fluxes to coarse fluxes entails communication from
finest to coarsest grids and is fundamental for the efficiency of the algorithm.

® Algorithm implementation, Parallelisation

Benasque, 2007 — p.

Shock-Helium bubble

® Mach 1.22 shock interaction with Helium bubble [Haas & Sturtevant] , [Karni &
Quirk] , [Marquina & Mulet] .

® Basic scheme: Shu-Osher+Donat-Marquina+WENO 5 reconstruction = 5 order
space accuracy + 3" order time accuracy.

O

Benasque, 2007 — p.

Parallel implementation

® Parallelization by domain decomposition: split Gy and evenly assign each piece
(along with overlying pieces of each G;) to processors.

Benasque, 2007 —p.

Parallel implementation

® Parallelization by domain decomposition: split Gy and evenly assign each piece
(along with overlying pieces of each G;) to processors.
® Difficulty with load balancing (each processor performs same work):

® |f assignment is spatially symmetric processors 2 and 3 get assigned the
heaviest part.

Benasque, 2007 —p.

Parallel implementation

® Parallelization by domain decomposition: split Gy and evenly assign each piece
(along with overlying pieces of each G;) to processors.
® Difficulty with load balancing (each processor performs same work):

® |f assignment is spatially symmetric processors 2 and 3 get assigned the
heaviest part.

#® Assignment must be asymmetric - - -

: D :

Benasque, 2007 —p.

Parallel implementation

® Parallelization by domain decomposition: split Gy and evenly assign each piece
(along with overlying pieces of each G;) to processors.
® Difficulty with load balancing (each processor performs same work):

® |f assignment is spatially symmetric processors 2 and 3 get assigned the
heaviest part.

#® Assignment must be asymmetric - - -
® but can not be static, since now processor 1 does almost all the work.

1 ‘ @ ‘2‘3‘ 4

Benasque, 2007 —p.

Parallel implementation

® [Parashar & coauthors] , [Devine &
coauthors]

[Baeza & Mulet] work in progress ...

L I

Need multidimensional partitioning.

discontinuity

Benasque, 2007 —p.

Parallel implementation

2 5 | 10

10

computational costs

L 3 I

[Parashar & coauthors] , [Devine &
coauthors]

[Baeza & Mulet] work in progress ...
Need multidimensional partitioning.

Recursively bisect until some level and
estimate computational costs.

Benasque, 2007 —p.

Parallel implementation

E 2
" 5
5
10 5
2 2
5 10 5
10N 10
5 5
10, 10 | gl
5 5 10
2 | 5|10 10

computational costs

2551010101052 1010522105510522510551

L 3 I

[Parashar & coauthors] , [Devine &
coauthors]

[Baeza & Mulet] work in progress ...
Need multidimensional partitioning.

Recursively bisect until some level and
estimate computational costs.

Use Peano-Hilbert curve to
uni-dimensionally order by proximity.

Benasque, 2007 —p.

Parallel implementation

2 2)
1 5
5
10 5
2 2
1 10
5) 5
1 10 10 5
2 5
2 5 10 10

computational costs

25510101b10521014522105514522510551
42 42 41 41

average =41.5

L 3 I

[Parashar & coauthors] , [Devine &
coauthors]

[Baeza & Mulet] work in progress ...
Need multidimensional partitioning.

Recursively bisect until some level and
estimate computational costs.

Use Peano-Hilbert curve to
uni-dimensionally order by proximity.

Assign work evenly (trying to minimize
communication cost) .

Benasque, 2007 —p.

	Outline
	Problem statement
	Problem statement
	Problem statement

	Finite-difference Shu-Osher schemes
	Finite-difference Shu-Osher schemes
	Finite-difference Shu-Osher schemes
	Finite-difference Shu-Osher schemes
	Finite-difference Shu-Osher schemes
	Finite-difference Shu-Osher schemes

	Adaptive mesh refinement
	Adaptive mesh refinement
	Adaptive mesh refinement

	A look at the complete algorithm
	A look at the complete algorithm
	A look at the complete algorithm
	A look at the complete algorithm
	A look at the complete algorithm
	A look at the complete algorithm
	A look at the complete algorithm
	A look at the complete algorithm
	A look at the complete algorithm
	A look at the complete algorithm
	A look at the complete algorithm
	A look at the complete algorithm

	Some issues
	Some issues
	Some issues
	Some issues
	Some issues
	Some issues
	Some issues
	Some issues

	Shock-Helium bubble
	Parallel implementation
	Parallel implementation
	Parallel implementation
	Parallel implementation

	Parallel implementation
	Parallel implementation
	Parallel implementation
	Parallel implementation

