Uniform Controllability the Semi-discrete 1-D Wave Equation

Sorin Micu *

Benasque, August 31, 2007
*Facultatea de Matematica-Informatica, Universitatea din Craiova, 1100, Romania, (sd_micu@yahoo.com). Partially Supported by Grant MTM2005-00714 of MCYT (Spain) and Grant CEEX-05-D11-36/2005 (Romania).

Exact controllability problem:

Given $T \geq 2$ and $\left(u^{0}, u^{1}\right) \in L^{2}(0,1) \times H^{-1}(0,1)$ there exists a control function $v \in L^{2}(0, T)$ such that the solution of the wave equation

$$
\begin{cases}u^{\prime \prime}-u_{x x}=0 & \text { for } x \in(0,1), t>0 \tag{1}\\ u(t, 0)=0 & \text { for } t>0 \\ u(t, 1)=v(t) & \text { for } t>0 \\ u(0, x)=u^{0}(x) & \text { for } x \in(0,1) \\ u^{\prime}(0, x)=u^{1}(x) & \text { for } x \in(0,1)\end{cases}
$$

satisfies

$$
\begin{equation*}
u(T, \cdot)=u^{\prime}(T, \cdot)=0 \tag{2}
\end{equation*}
$$

- $\left(u, u^{\prime}\right)$ is the state
- v is the control
- The state is driven from $\left(u^{0}, u^{1}\right)$ to $(0,0)$ in time T by acting on the boundary with the control v.
- Fattorini H. O. and Russell D. L.: Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rat. Mech. Anal., 4 (1971), 272-292.
- Russell D. L.: A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Studies in Appl. Math., 52 (1973), 189-211.

MOMENTS THEORY + NOHARMONIC FOURIER ANALYSIS

- Lions J.-L.: Contrôlabilité exacte perturbations et stabilisation de systèmes distribués, Tome 1, Masson, Paris, 1988.

HILBERT UNIQUENESS METHOD (HUM)

- Glowinski R., Li C. H. and Lions J.-L.: A numerical approach to the exact boundary controllability of the wave equation (I). Dirichlet controls: Description of the numerical methods, Jap. J. Appl. Math. 7 (1990), 1-76.

NUMERICAL METHODS FOR APPROXIMATION OF THE HUM CONTROLS

Finite differences method
$N \in \mathbb{N}^{*}, h=\frac{1}{N+1}, x_{j}=j h, 0 \leq j \leq N+1$.

$$
\left\{\begin{array}{l}
u_{j}^{\prime \prime}(t)=\frac{u_{j+1}(t)+u_{j-1}(t)-2 u_{j}(t)}{h^{2}}, t>0 \tag{3}\\
u_{0}(t)=0, t>0 \\
u_{N+1}(t)=v_{h}(t), t>0 \\
u_{j}(0)=u_{j}^{0}, u_{j}^{\prime}(0)=u_{j}^{1}, 1 \leq j \leq N
\end{array}\right.
$$

Discrete controllability problem: given $T>0$ and $\left(U_{h}^{0}, U_{h}^{1}\right)=$ $\left(u_{j}^{0}, u_{j}^{1}\right)_{1 \leq j \leq N} \in \mathbb{R}^{2 N}$, there exists a control function $v_{h} \in L^{2}(0, T)$ such that the solution u of (3) satisfies

$$
\begin{equation*}
u_{j}(T)=u_{j}^{\prime}(T)=0, \forall j=1,2, \ldots, N \tag{4}
\end{equation*}
$$

System (3) consists of N linear differential equations with N unknowns $u_{1}, u_{2}, \ldots, u_{N}$.
$u_{j}(t) \approx u\left(t, x_{j}\right)$ if $\left(U_{h}^{0}, U_{h}^{1}\right) \approx\left(u^{0}, u^{1}\right)$.

- Existence of the discrete control v_{h}.
- Boundedness of the sequence $\left(v_{h}\right)_{h>0}$ in $L^{2}(0, T)$.
- Convergence of the sequence $\left(v_{h}\right)_{h>0}$ to a control v of the wave equation (1).
- The case of the HUM controls.

Numerical Experiments: $l=\frac{\Delta t}{h}=1, h=0.01$

Numerical Experiments: $l=\frac{\Delta t}{h}=0.95, h=0.01$

Spectral Analysis

The eigenvalues corresponding to this system are:

$$
\begin{gathered}
\nu_{n}(h)=\lambda_{n}(h) i, \quad 1 \leq|n| \leq N \\
\lambda_{n}(h)=\frac{2}{h} \sin \left(\frac{n \pi h}{2}\right), 1 \leq|n| \leq N
\end{gathered}
$$

The eigenfunctions are:

$$
\varphi_{n}(h)=\sqrt{2}(\sin (j \pi n h))_{1 \leq j \leq N} .
$$

- $\lambda_{n}(h) \approx n \pi$ for n small.
- $\lambda_{n+1}(h)-\lambda_{n}(h)=\frac{4}{h} \sin \left(\frac{\pi h}{4}\right) \cos \left(\frac{(2 n+1) \pi h}{4}\right) \approx$
$\approx \pi \cos \left(\frac{(2 n+1) \pi h}{4}\right) \sim \pi h$ for $n \sim N$.

Fig 1. Eigenvalues of the continuous and finite differences discrete equations.

Problem of moments

Property. System (3) is controllable if and only if for any initial data $\left(U_{h}^{0}, U_{h}^{1}\right)=\sum_{n=1}^{N}\left(a_{n}^{0}, a_{n}^{1}\right) \varphi_{n}(h)$ there exists $v_{h} \in L^{2}(0, T)$ such that

$$
\begin{equation*}
\int_{0}^{T} v_{h}(t) e^{-i \lambda_{n}(h) t} d t=\frac{(-1)^{n} h}{\sqrt{2} \sin (|n| \pi h)}\left(i \lambda_{n}(h) a_{|n|}^{0}+a_{|n|}^{1}\right), 1 \leq|n| \leq N . \tag{5}
\end{equation*}
$$

(PROBLEM OF MOMENTS)

- $\left(U_{h}^{0}, U_{h}^{1}\right)=\left(\varphi_{m}(h), 0\right) \Rightarrow \int_{0}^{T} v_{h}^{0, m}(t) e^{-i \lambda_{n}(h) t} d t=\frac{(-1)^{m} h i \lambda_{|m|}(h)}{\sqrt{2} \sin (|m| \pi h)} \delta_{m n}, 1 \leq|n| \leq N$.
- $\left(U_{h}^{0}, U_{h}^{1}\right)=\left(0, \varphi_{m}(h)\right) \Rightarrow \int_{0}^{T} v_{h}^{1, m}(t) e^{-i \lambda_{n}(h) t} d t=\frac{(-1)^{m} h}{\sqrt{2} \sin (|m| \pi h)} \delta_{m n}, 1 \leq|n| \leq N$.
- $\left(U_{h}^{0}, U_{h}^{1}\right)=\sum_{n=1}^{N}\left(a_{n}^{0}, a_{n}^{1}\right) \varphi_{n}(h) \Rightarrow v_{h}=\sum_{1 \leq|m| \leq N}\left(a_{m}^{0} v_{h}^{0, m}+a_{m}^{1} v_{h}^{1, m}\right)$.

Definition. $\left(\Theta_{m}\right)_{1 \leq|m| \leq N}$ is a biorthogonal sequence to the family of complex exponentials $\left(e^{-i \lambda_{j}(h) t}\right)_{1 \leq|j| \leq N}$ in $L^{2}\left(-\frac{T}{2}, \frac{T}{2}\right)$ if

$$
\begin{equation*}
\int_{-\frac{T}{2}}^{\frac{T}{2}} \Theta_{m}(t) e^{-i \lambda_{n}(h) t} d t=\delta_{m n}, \quad 1 \leq|n| \leq N \tag{6}
\end{equation*}
$$

A control of the initial data $\left(U_{h}^{0}, U_{h}^{1}\right)=\sum_{n=1}^{N}\left(a_{n}^{0}, a_{n}^{1}\right) \varphi_{n}(h)$ is given by

$$
v_{h}=\sum_{1 \leq|m| \leq N} \frac{(-1)^{m} h}{\sqrt{2} \sin (|m| \pi h)} e^{i \lambda_{m}(h) \frac{T}{2}} \Theta_{m}\left(t-\frac{T}{2}\right)\left(i \lambda_{m}(h) a_{|m|}^{0}+a_{|m|}^{1}\right)
$$

Theorem. (S. M., Numer. Math. 2002) If $T>0$ is independent of h and $\left(\psi_{m}\right)_{\substack{|m| \leqslant N \\ m \neq 0}}$ is any biorthogonal to $\left(e^{i \lambda_{n} t}\right)_{\substack{|n| \leqslant N \\ n \neq 0}}$ in $L^{2}\left(-\frac{T}{2}, \frac{T}{2}\right)$ there exists a positive constants C independent of N, such that

$$
\begin{equation*}
\left\|\psi_{N}\right\|_{L^{2}} \geq C e^{\sqrt{N}} . \tag{7}
\end{equation*}
$$

- There are regular initial data (exponentially small coefficients $\left(a_{n}\right)_{n}$) that are not uniformly controllable.
- The problems come from trying to control the high, spurious, numerical frequencies.
- Glowinski R. and Lions J.-L.: Exact and approximate controllability for distributed parameter systems, Acta Numerica, 5 (1996), pp. 159-333.
- Negreanu M. and Zuazua E.: Uniform boundary controllability of a discrete 1-D wave equation, System and Control Letters, 48 (2003), pp. 261-280.
- Castro C. and M. S.: Boundary controllability of a linear semidiscrete 1-D wave equation derived from a mixed finite element method, Numer. Math., 102 (2006), pp. 413-462.
- Münch A.: A uniformly controllable and implicit scheme for the 1-D wave equation, M2NA, 39 (2005), pp. 377-418.

Finite differences method with numerical viscosity
$N \in \mathbb{N}^{*}, h=\frac{1}{N+1}, x_{j}=j h, 0 \leq j \leq N+1$.

$$
\left\{\begin{array}{l}
u_{j}^{\prime \prime}(t)=\frac{u_{j+1}(t)+u_{j-1}(t)-2 u_{j}(t)}{h^{2}}+\varepsilon \frac{u_{j+1}^{\prime}(t)+u_{j-1}^{\prime}(t)-2 u_{j}^{\prime}(t)}{h^{2}}, t>0 \tag{8}\\
u_{0}(t)=0, t>0 \\
u_{N+1}(t)=v_{h}(t), t>0 \\
u_{j}(0)=u_{j}^{0}, u_{j}^{\prime}(0)=u_{j}^{1}, 1 \leq j \leq N
\end{array}\right.
$$

Discrete controllability problem: given $T>0$ and $\left(U_{h}^{0}, U_{h}^{1}\right)=$ $\left(u_{j}^{0}, u_{j}^{1}\right)_{1 \leq j \leq N} \in \mathbb{R}^{2 N}$, there exists a control function $v_{h} \in L^{2}(0, T)$ such that the solution u of (3) satisfies

$$
\begin{equation*}
u_{j}(T)=u_{j}^{\prime}(T)=0, \forall j=1,2, \ldots, N \tag{9}
\end{equation*}
$$

The term $\varepsilon \frac{u_{j+1}^{\prime}(t)+u_{j-1}^{\prime}(t)-2 u_{j}^{\prime}(t)}{h^{2}}$ is a numerical viscosity which vanishes in the limit:

$$
\lim _{h \rightarrow 0} \varepsilon=0
$$

- Tcheugoué Tébou L. R. and Zuazua E.: Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity, Numer. Math., 95 (2003), pp. 563-598.
- Ramdani K., Takahashi T. and Tucsnak M.: Uniformly Exponentially Stable Approximations for a Class of Second Order Evolution Equations, ESAIM: COCV, to appear.
- DiPerna R. J.: Convergence of approximate solutions to conservation Iaws, Arch. Rational Mech. Anal., 82 (1983), pp. 27-70.
- Majda A. and Osher S.: Numerical viscosity and the entropy condition, Comm. Pure Appl. Math., 32 (1979), pp. 797-838.

Spectral Analysis We chose $\varepsilon=h$, but other choices are possible. The eigenvalues corresponding to this system are:

$$
\mu_{n}(h)=i \frac{2}{h} \sin \left(\frac{n \pi h}{2}\right)\left(\cos \left(\frac{n \pi h}{2}\right)+i \sin \left(\frac{n \pi h}{2}\right)\right), \quad 1 \leq|n| \leq N .
$$

Fig 2. Imaginary and real part of the eigenvalues of the finite differences discrete equation with viscosity.

Problem of moments

Property. System (8) is controllable if and only if for any initial data $\left(U_{h}^{0}, U_{h}^{1}\right)=\sum_{n=1}^{N}\left(a_{n}^{0}, a_{n}^{1}\right) \varphi_{n}(h)$ there exists $v_{h} \in L^{2}(0, T)$ such that

$$
\begin{equation*}
\int_{0}^{T} v_{h}(t) e^{-\mu_{n}(h) t} d t=\frac{(-1)^{n} h}{\sqrt{2} \sin (|n| \pi h)}\left(\frac{\left(\lambda_{n}(h)\right)^{2}}{\bar{\mu}_{n}(h)} a_{|n|}^{0}+a_{|n|}^{1}\right), 1 \leq|n| \leq N . \tag{10}
\end{equation*}
$$

(PROBLEM OF MOMENTS)

If $\left(\Theta_{m}\right)_{1 \leq|m| \leq N}$ is a biorthogonal sequence to the family of complex exponentials $\left(e^{-\mu_{j}(h) t}\right)_{1 \leq|j| \leq N}$ in $L^{2}\left(-\frac{T}{2}, \frac{T}{2}\right)$, then a control of the initial data $\left(U_{h}^{0}, U_{h}^{1}\right)=\sum_{n=1}^{N}\left(a_{n}^{0}, a_{n}^{1}\right) \varphi_{n}(h)$ is given by

$$
v_{h}=\sum_{1 \leq|m| \leq N} \frac{(-1)^{m} h}{\sqrt{2} \sin (|m| \pi h)} e^{\mu_{m}(h) \frac{T}{2}} \Theta_{m}\left(t-\frac{T}{2}\right)\left(\frac{\left(\lambda_{m}(h)\right)^{2}}{\bar{\mu}_{m}(h)} a_{|m|}^{0}+a_{|m|}^{1}\right) .
$$

Theorem. For any $T>0$ sufficiently large but independent of h, there exists a sequence $\left(\Theta_{m}\right)_{\substack{|m| \leq N \\ m \neq 0}}$, biorthogonal in $L^{2}\left(-\frac{T}{2}, \frac{T}{2}\right)$ to the family $\left(e^{-\mu_{j}(h) t}\right)_{\substack{|j| \leq N \\ j \neq 0}}$, such that

$$
\begin{equation*}
\left\|\Theta_{m}\right\|_{L^{2}\left(-\frac{T}{2}, \frac{T}{2}\right)} \leq C \cos \left(\frac{m \pi h}{2}\right) e^{\omega\left|\Re\left(\mu_{m}\right)\right|}, \quad 1 \leq|m| \leq N \tag{11}
\end{equation*}
$$

where C and ω are positive constants, independent of m and N.

- Any initial data of (1) such that

$$
\begin{equation*}
\sum_{n \geq 1}\left(\left|a_{n}^{0}\right|+\frac{1}{n \pi}\left|a_{n}^{1}\right|\right)<\infty \tag{12}
\end{equation*}
$$

are uniformly controllable.

Numerical Experiments: Initial data $\left(u^{0}, u^{1}\right)$ to be controlled.

Numerical Experiments: Approximations of the control with four different values of h and $\frac{\Delta t}{h}=7 / 8$

Open problem: Improve the rate of convergence

Numerical results obtained with $\Delta t=7 / 8 h$ and $\epsilon=h$.

h	$1 / 100$	$1 / 500$	$1 / 1000$	$1 / 2000$				
$\left\\|v{ }_{h}^{1}\right\\|_{L^{2}}$	1.4739	1.8103	1.8845	1.9354				
$\left\\|v{ }_{h}^{1}-v\right\\|_{L^{2}} /\\|v\\|_{L^{2}}$	0.4882	0.3209	0.2699	0.2264				

Numerical results obtained with $\Delta t=7 / 8 h$ and $\epsilon=h^{1.5}$.

h	$1 / 100$	$1 / 500$	$1 / 1000$				
$\left\\|v_{h}^{1.5}\right\\|_{L^{2}}$	1.8496	1.9877	2.0101				
$\left\\|v_{h}^{1.5}-v\right\\|_{L^{2}} /\\|v\\|_{L^{2}}$	0.0801	0.0114	0.0005				

$$
\|v\|_{L^{2}}=2.0106
$$

Open problem: Changing the viscosity

$$
\begin{equation*}
u_{j}^{\prime \prime}(t)=\left(\Delta_{h} u\right)_{j}+\varepsilon\left(\Delta_{h} u\right)_{j} \tag{13}
\end{equation*}
$$

(14)

$$
u_{j}^{\prime \prime}(t)=\left(\Delta_{h} u\right)_{j}-\varepsilon\left(\Delta_{h}^{2} u\right)_{j}
$$

Open problem: evaluation of the error

$$
\left\|v_{h}-v\right\| \leq C h^{r}
$$

Benasque, 2009 (???)

