Introduction to Chiral Perturbation Theory

H. Leutwyler University of Bern

SCHOOL ON FLAVOUR PHYSICS

Benasque, July 14 - 24, 2008

I. Standard Model at low energies

1. Interactions

Local symmetries

2. QED+QCD

Precision theory for $E \ll 100 \, \mathrm{GeV}$ Qualitative difference QED \iff QCD

3. Chiral symmetry

Some of the quarks happen to be light Approximate chiral symmetry Spontaneous symmetry breakdown

4. Goldstone theorem

If N_f of the quark masses are put equal to zero QCD contains N_f^2-1 Goldstone bosons

5. Gell-Mann-Oakes-Renner relation

Quark masses break chiral symmetry Goldstone bosons pick up mass M_π^2 is proportional to $m_u + m_d$

II. Chiral perturbation theory

6. Group geometry

Symmetry group of the Hamiltonian GSymmetry group of the ground state HGoldstone bosons live on G/H

7. Effective action

Generating functional of QCD

8. Ward identities

Symmetries of the effective action

9. Low energy expansion

Taylor series in powers of external momenta Goldstone bosons \Rightarrow infrared singularities

10. Effective Lagrangian

Singularities due to the Goldstone bosons can be worked with an effective field theory

III. Illustrations

11. Some tree level calculations

Leading terms of the chiral perturbation series for the quark condensate and for M_{π}, F_{π}

12. M_{π} beyond tree level

Contributions to M_π at NL and NNL orders

13. F_{π} to one loop

Chiral logarithm in F_{π} , low energy theorem for scalar radius

14. Lattice results for M_{π}, F_{π}

Determination of the effective coupling constants ℓ_3, ℓ_4 on the lattice

15. $\pi\pi$ scattering

 χ PT, lattice, experiment

16. Conclusions for $SU(2)\times SU(2)$

17. Expansion in powers of m_s

Convergence, validity of Zweig rule

18. Conclusions for $SU(3)\times SU(3)$

I. Standard Model at low energies

1. Interactions

strong weak e.m. gravity

$$SU(3) \times SU(2) \times U(1) \times D$$

Gravity

understood only at classical level gravitational waves √ quantum theory of gravity? classical theory adequate for

$$r \gg \sqrt{\frac{G \, \hbar}{c^3}} = 1.6 \cdot 10^{-35} \,\mathrm{m}$$

Weak interaction

frozen at low energies

$$E \ll M_{\rm W} c^2 \simeq 80 \,{\rm GeV}$$

- ⇒ structure of matter: only strong and electromagnetic interaction
- ⇒ neutrini decouple

Electromagnetic interaction

Maxwell \sim 1860 survived relativity and quantum theory, unharmed

• Electrons in electromagnetic field $(\hbar=c=1)$

$$\frac{1}{i}\frac{\partial\psi}{\partial t} - \frac{1}{2m_e^2}(\vec{\nabla} + i\,e\vec{A})^2\psi - e\,\varphi\,\psi = 0$$

contains the potentials \vec{A} , φ

• only $\vec{E}=-\vec{\nabla}\varphi-\frac{\partial\vec{A}}{\partial t}$ and $\vec{B}=\vec{\nabla}\times\vec{A}$ are of physical significance

 Schrödinger equation is invariant under gauge transformations

$$\vec{A}' = \vec{A} + \vec{\nabla}f$$
, $\varphi' = \varphi - \frac{\partial f}{\partial t}$, $\psi' = e^{-ief} \psi$

describe the same physical situation as \vec{A}, φ, ψ

• Equivalence principle of the e.m. interaction:

 ψ physically equivalent to $e^{-ief}\,\psi$

- e^{-ief} is unitary 1×1 matrix, $e^{-ief} \in U(1)$ $f = f(\vec{x}, t)$ space-time dependent function
- gauge invariance
 ⇔ local U(1) symmetry electromagnetic field is gauge field of U(1) Weyl 1929
- U(1) symmetry + renormalizability fully determine the e.m. interaction

Strong interaction

nuclei = p + n
$$\sim$$
 1930

• Nuclear forces Yukawa ~ 1935

$$V_{e.m.}=-rac{e^2}{4\pi r}$$
 $V_s=-rac{h^2}{4\pi r}\,e^{-rac{r}{r_0}}$ $rac{e^2}{4\pi}\simeq rac{1}{137}$ $rac{h^2}{4\pi}\simeq 13$ Iong range short range $r_0=\infty$ $r_0=rac{\hbar}{M_\pi c}=1.4\cdot 10^{-15}\,\mathrm{m}$ $M_\gamma=0$ $M_\pi\,c^2\simeq 140\,\mathrm{MeV}$

• Problem with Yukawa formula: p and n are extended objects diameter comparable to range of force formula only holds for $r\gg$ diameter

Protons, neutrons composed of quarks

$$p = uud$$
 $n = udd$

Quarks carry internal quantum number

$$u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \qquad d = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$$

occur in 3 "colours"

Strong interaction is invariant under local rotations in colour space 1973

$$u' = U \cdot u \qquad d' = U \cdot d$$

$$U = \begin{pmatrix} U_{11} & U_{12} & U_{13} \\ U_{21} & U_{22} & U_{23} \\ U_{31} & U_{32} & U_{33} \end{pmatrix} \in SU(3)$$

 Can only be so if the strong interaction is also mediated by a gauge field

gauge field of $SU(3) \Longrightarrow strong interaction$

Quantum chromodynamics

Comparison of e.m. and strong interaction

	QED	QCD
symmetry	U(1)	SU(3)
gauge field	$ec{A},arphi$	gluon field
particles	photons	gluons
source	charge	colour
coupling constant	e	g

- All charged particles generate e.m. field
- All coloured particles generate gluon field
- Leptons do not interact strongly because they do not carry colour
- Equivalence principle of the strong interaction:

$$U \cdot \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$
 physically equivalent to $\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$

2. QED+QCD

Effective theory for $E \ll M_{\rm W}c^2 \simeq 80 \, {\rm GeV}$

Symmetry
$$U(1) \times SU(3)$$

Lagrangian $QED+QCD$

- Dynamical variables: gauge fields for photons and gluons Fermi fields for leptons and quarks
- Interaction fully determined by group geometry Lagrangian contains 2 coupling constants

 Quark and lepton mass matrices can be brought to diagonal form, eigenvalues real, positive

$$m_e, m_{\mu}, m_{\tau}, m_u, m_d, m_s, m_c, m_b, m_t$$

Transformation generates vacuum angle

 Precision theory for cold matter, atomic structure, solids, ...

Bohr radius:
$$a = \frac{4\pi}{e^2 m_e}$$

ullet θ breaks CP

Neutron dipole moment is very small

 \Rightarrow strong upper limit, $\theta \simeq 0$

Qualitative difference between e.m. and strong interactions

- Photons do not have charge
- Gluons do have colour

$$x_1 \cdot x_2 = x_2 \cdot x_1$$
 for $x_1, x_2 \in U(1)$ abelian $x_1 \cdot x_2 \neq x_2 \cdot x_1$ for $x_1, x_2 \in SU(3)$

⇒ Consequence for vacuum polarization

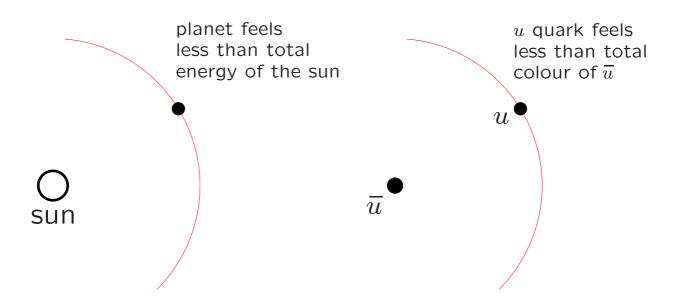


Comparison with gravity

- source of gravitational field: energy gravitational field does carry energy
- source of e.m. field: charge
 e.m. field does not carry charge
- source of gluon field: colour gluon field does carry colour

gravity

strong interaction



Perihelion shift of Mercury:

$$43'' = 50'' - 7''$$
 per century

ullet Force between u and \overline{u} :

$$V_{s} = -\frac{4}{3} \frac{g^{2}}{4\pi r}$$
, $g \to 0$ for $r \to 0$
$$\frac{g^{2}}{4\pi} = \frac{6\pi}{(11N_{c} - 2N_{f}) |\ln(r \Lambda_{\rm QCD})|}$$
$$|\ln(r \Lambda_{\rm QCD})| \simeq 7 \quad \text{for } r = \frac{\hbar}{M_{7} c} \simeq 2 \cdot 10^{-18} \, \text{m}$$

- Vacuum amplifies gluonic field of a bare quark
- Field energy surrounding isolated quark $= \infty$ Only colour neutral states have finite energy
- ⇒ Confinement of colour
 - Theoretical evidence for confinement meagre Experimental evidence much more convincing

QED: interaction weak at low energies

QCD: interaction strong at low energies

$$\frac{e^2}{4\pi} \simeq \frac{1}{137} \qquad \qquad \frac{g^2}{4\pi} \simeq 1$$
 photons, leptons gluons, quarks nearly decouple confined

Nuclear forces = van der Waals forces of QCD

3. Chiral symmetry

For bound states of quarks,
 e.m. interaction is a small perturbation

Perturbation series in powers of $\frac{e^2}{4\pi}$ \checkmark

Discuss only the leading term: set e = 0

Lagrangian then reduces to QCD

$$g\,,\,m_u\,,m_d\,,\,m_s\,,\,m_c\,,\,m_b\,,\,m_t$$

• m_u, m_d, m_s happen to be light

Consequence:

Approximate flavour symmetries

Play a crucial role for the low energy properties

Theoretical paradise

$$m_u = m_d = m_s = 0$$

$$m_c = m_b = m_t = \infty$$

QCD with 3 massless quarks

- ullet Lagrangian contains a single parameter: g g is net colour of a quark depends on radius of the region considered
- Colour contained within radius r

$$\frac{g^2}{4\pi} = \frac{2\pi}{9|\ln(r\Lambda_{QCD})|}$$

- Intrinsic scale Λ_{QCD} is meaningful, but not dimensionless
- ⇒ No dimensionless free parameter

All dimensionless physical quantities are pure numbers, determined by the theory Cross sections can be expressed in terms of Λ_{QCD} or in the mass of the proton

• Interactions of u,d,s are identical If the masses are set equal to zero, there is no difference at all

$$q = \begin{pmatrix} u \\ d \\ s \end{pmatrix}$$

ullet Lagrangian symmetric under $u \leftrightarrow d \leftrightarrow s$

$$q' = V \cdot q$$
 $V \in SU(3)$

V acts on quark flavour, mixes u,d,s

- More symmetry: For massless fermions, right and left do not communicate
- ⇒ Lagrangian of massless QCD is invariant under independent rotations of the right— and left handed quark fields

$$\begin{split} q_{\mathrm{R}} &= \frac{1}{2}(1+\gamma_{5})\,q\;, \quad q_{\mathrm{L}} = \frac{1}{2}(1-\gamma_{5})\,q\\ q_{\mathrm{R}}' &= V_{\mathrm{R}} \cdot q_{\mathrm{R}} \qquad q_{\mathrm{L}}' = V_{\mathrm{L}} \cdot q_{\mathrm{L}}\\ &\quad \mathrm{SU(3)_{\mathrm{R}} \times \mathrm{SU(3)_{\mathrm{L}}} \end{split}$$

- Massless QCD invariant under $SU(3)_R \times SU(3)_L$ SU(3) has 8 parameters
- ⇒ Symmetry under Lie group with 16 parameters
- ⇒ 16 conserved "charges"

$$Q_1^{\vee}, \ldots, Q_8^{\vee}$$
 (vector currents)

$$Q_1^A, \ldots, Q_8^A$$
 (axial currents)

commute with the Hamiltonian:

$$[Q_i^{\vee}, H_0] = 0$$
 $[Q_i^{\wedge}, H_0] = 0$

"Chiral symmetry" of massless QCD

- Vafa and Witten 1984: state of lowest energy is invariant under the vector charges $Q_i^{\rm V} |0\rangle = 0$
- Axial charges ? $Q_i^A |0\rangle = ?$

Two alternatives for axial charges

$$Q_i^{\mathsf{A}} |0\rangle = 0$$

Wigner-Weyl realization of G ground state is symmetric

$$\langle 0 | \overline{q}_{R} q_{I} | 0 \rangle = 0$$

ordinary symmetry spectrum contains parity partners degenerate multiplets of G

$$Q_i^{\mathsf{A}}|0\rangle \neq 0$$

Nambu-Goldstone realization of G ground state is asymmetric

$$\langle 0 | \overline{q}_{\rm R} \, q_{\rm L} \, | 0 \rangle \neq 0$$

"order parameter" spontaneously broken symmetry spectrum contains Goldstone bosons degenerate multiplets of $SU(3)_{V} \subset G$

$$G = SU(3)_R \times SU(3)_L$$

- Spontaneous symmetry breakdown was discovered in condensed matter physics:
 Spontaneous magnetization selects direction
- ⇒ Rotation symmetry is spontaneously broken Goldstone bosons = spin waves, magnons
 - Nambu 1960: state of lowest energy in particle physics is not invariant under chiral rotations $Q_i^{\rm A} |0\rangle \neq 0$

For dynamical reasons, the state of lowest energy must be asymmetric

- ⇒ Chiral symmetry is spontaneously broken
 - Very strong experimental evidence √
 - Theoretical understanding on the basis of the QCD Lagrangian?

Analog of Magnetization ?

$$\overline{q}_{\mathsf{R}} q_{\mathsf{L}} = \begin{pmatrix} \overline{u}_{\mathsf{R}} u_{\mathsf{L}} & \overline{d}_{\mathsf{R}} u_{\mathsf{L}} & \overline{s}_{\mathsf{R}} u_{\mathsf{L}} \\ \overline{u}_{\mathsf{R}} d_{\mathsf{L}} & \overline{d}_{\mathsf{R}} d_{\mathsf{L}} & \overline{s}_{\mathsf{R}} d_{\mathsf{L}} \\ \overline{u}_{\mathsf{R}} s_{\mathsf{L}} & \overline{d}_{\mathsf{R}} s_{\mathsf{L}} & \overline{s}_{\mathsf{R}} s_{\mathsf{L}} \end{pmatrix}$$

Transforms like $(\bar{3},3)$ under $SU(3)_R \times SU(3)_L$

If the ground state were symmetric, the matrix $\langle 0|\overline{q}_{\rm R}\,q_{\rm L}\,|0\rangle$ would have to vanish, because it singles out a direction in flavour space

"quark condensate", is quantitative measure of spontaneous symmetry breaking "order parameter"

 $\langle 0 | \overline{q}_{R} q_{L} | 0 \rangle \Leftrightarrow \text{magnetization}$

- Ground state is invariant under SU(3)_V
- $\Rightarrow \langle 0 | \overline{q}_{R} q_{L} | 0 \rangle$ is proportional to unit matrix

$$\langle 0|\bar{u}_{R} u_{L}|0\rangle = \langle 0|\bar{d}_{R} d_{L}|0\rangle = \langle 0|\bar{s}_{R} s_{L}|0\rangle$$

$$\langle 0|\overline{u}_{R} d_{L}|0\rangle = \ldots = 0$$

4. Goldstone Theorem

• Consequence of $Q_i^A |0\rangle \neq 0$:

$$H_0 Q_i^A |0\rangle = Q_i^A H_0 |0\rangle = 0$$

spectrum must contain 8 states

$$Q_1^A |0\rangle, \ldots, Q_8^A |0\rangle$$
 with $E = 0$,

spin 0, negative parity, octet of $SU(3)_{\lor}$ Goldstone bosons

Argument is not water tight:

$$\langle 0|\,Q_i^{\rm A}\,Q_k^{\rm A}\,|0\rangle = \int\!\!d^3\!xd^3\!y\,\langle 0|\,A_i^0(x)\,A_k^0(y)\,|0\rangle$$

$$\langle 0|\,A_i^0(x)\,A_k^0(y)\,|0\rangle \ \ \text{only depends on } \vec x-\vec y$$

 $\Rightarrow \langle 0|\,Q_i^{\rm A}\,Q_k^{\rm A}\,|0\rangle$ is proportional to the volume of the universe, $|Q_i^{\rm A}\,|0\rangle|=\infty$

• Rigorous version of Goldstone theorem: $\langle 0|\overline{q}_R q_L|0\rangle \neq 0 \Rightarrow \exists$ massless particles

Proof

$$Q = \int d^3x \, \bar{u} \gamma^0 \gamma_5 d$$
$$[Q, \bar{d} \gamma_5 u] = -\bar{u}u - \bar{d}d$$

• $F^{\mu}(x-y) \equiv \langle 0|\bar{u}(x)\gamma^{\mu}\gamma_5 d(x)d(y)\gamma_5 u(y)|0\rangle$ Lorentz invariance $\Rightarrow F^{\mu}(z) = z^{\mu}f(z^2)$ Chiral symmetry $\Rightarrow \partial_{\mu}F^{\mu}(z) = 0$

$$F^{\mu}(z) = \frac{z^{\mu}}{z^4} \times \text{constant (for } z^2 \neq 0)$$

Spectral decomposition:

$$F^{\mu}(x-y) = \langle 0|\bar{u}(x)\gamma^{\mu}\gamma_{5}d(x)\bar{d}(y)\gamma_{5}u(y)|0\rangle$$
$$= \sum_{n} \langle 0|\bar{u}\gamma^{\mu}\gamma_{5}d|n\rangle\langle n|\bar{d}\gamma_{5}u|0\rangle e^{-ip_{n}(x-y)}$$

 $p_n^0 \geq 0 \Rightarrow F^\mu(z)$ is analytic in z^0 for ${\rm Im}\,z^0 < 0$

$$F^{\mu}(z) = \frac{z^{\mu}}{\{(z^0 - i\epsilon)^2 - \vec{z}^2\}^2} \times \text{constant}$$

Positive frequency part of massless propagator:

$$\Delta^{+}(z,0) = \frac{i}{(2\pi)^{3}} \int \frac{d^{3}p}{2p^{0}} e^{-ipz} , \quad p^{0} = |\vec{p}|$$

$$= \frac{1}{4\pi i \{(z^{0} - i\epsilon)^{2} - \vec{z}^{2}\}}$$

Result

$$\langle 0|\bar{u}(x)\gamma^{\mu}\gamma_5 d(x)\bar{d}(y)\gamma_5 u(y)|0\rangle = C \partial^{\mu}\Delta^{+}(z,0)$$

• Compare Källen-Lehmann representation:

$$\langle 0|\overline{u}(x)\gamma^{\mu}\gamma_{5}d(x)\overline{d}(y)\gamma_{5}u(y)|0\rangle$$

$$= (2\pi)^{-3} \int d^{4}p \, p^{\mu} \, \rho(p^{2})e^{-ip(x-y)}$$

$$= \int_{0}^{\infty} ds \, \rho(s)\partial^{\mu}\Delta^{+}(x-y,s)$$

 $\Delta^{+}(z,s) \iff$ massive propagator

$$\Delta^{+}(z,s) = \frac{i}{(2\pi)^{3}} \int d^{4}p \,\theta(p^{0}) \,\delta(p^{2} - s) \,e^{-ipz}$$

→ Only massless intermedate states contribute:

$$\rho(s) = C \, \delta(s)$$

- Why only massless intermediate states ? $\langle n|\bar{d}\gamma_5 u\,|0\rangle \neq 0 \text{ only if } \langle n| \text{ has spin 0}$ If $|n\rangle$ has spin $0 \Rightarrow \langle 0|\bar{u}(x)\gamma^\mu\gamma_5 d(x)|n\rangle \propto p^\mu\,e^{-ipx}$ $\partial_\mu(\bar{u}\gamma^\mu\gamma_5 d) = 0 \Rightarrow p^2 = 0$
- \Rightarrow Either \exists massless particles or C = 0
 - Claim: $\langle 0|\overline{q}_R q_L|0\rangle \neq 0 \Rightarrow C \neq 0$ Lorentz invariance, chiral symmetry
- $\Rightarrow \langle 0 | \bar{d}(y) \gamma_5 u(y) \bar{u}(x) \gamma^{\mu} \gamma_5 d(x) | 0 \rangle = C' \partial^{\mu} \Delta^{-}(z)$
- $\Rightarrow \langle 0 | [\overline{u}(x)\gamma^{\mu}\gamma_5 d(x), \overline{d}(y)\gamma_5 u(y)] | 0 \rangle$

$$= C\partial^{\mu}\Delta^{+}(z,0) - C'\partial^{\mu}\Delta^{-}(z,0)$$

- Causality: if x-y is spacelike, then $\langle 0| [\overline{u}(x)\gamma^{\mu}\gamma_5 d(x), \overline{d}(y)\gamma_5 u(y)] |0\rangle = 0$
- $\Rightarrow C' = -C$
- $\Rightarrow \langle 0 | [\bar{u}(x)\gamma^{\mu}\gamma_5 d(x), \bar{d}(y)\gamma_5 u(y)] | 0 \rangle = C\partial^{\mu}\Delta(z, 0)$
- $\Rightarrow \langle 0 | [Q, \overline{d}(y)\gamma_5 u(y)] | 0 \rangle = C$
 - $\langle 0|\left[Q,\, \overline{d}(y)\gamma_5 u(y)\right]|0\rangle = -\langle 0|\overline{u}u+\overline{d}d\,|0\rangle = C$ Hence $\langle 0|\overline{u}u+\overline{d}d\,|0\rangle \neq 0$ implies $C\neq 0$ qed.

5. Gell-Mann-Oakes-Renner relation

- \Rightarrow Spectrum of QCD with 3 massless quarks must contain 8 massless physical particles, $J^P=0^-$
 - Indeed, the 8 lightest mesons do have these quantum numbers:

$$\pi^+, \pi^0, \pi^-, K^+, K^0, \bar{K}^0, K^-, \eta$$

But massless they are not

• Real world \neq paradise

$$m_u, m_d, m_s \neq 0$$

Quark masses break chiral symmetry, allow left to talk to right

Chiral symmetry broken in two ways:

spontaneously $\langle 0|\overline{q}_{R} \, q_{L} \, |0\rangle \neq 0$ explicitly $m_{u} \, , \, m_{d} \, , \, m_{s} \neq 0$

• $H_{\rm QCD}$ only has approximate symmetry to the extent that m_u, m_d, m_s are small

$$H_{\text{QCD}} = H_0 + H_1$$

$$H_1 = \int d^3x \left\{ m_u \overline{u}u + m_d \overline{d}d + m_s \overline{s}s \right\}$$

- H_0 is Hamiltonian of the massless theory, invariant under $SU(3)_R \times SU(3)_L$
- H_1 breaks the symmetry, transforms with $(3, \overline{3}) \oplus (\overline{3}, 3)$
- For the low energy structure of QCD, the heavy quarks do not play an essential role: c,b,t are singlets under $SU(3)_R \times SU(3)_L$ Can include the heavy quarks in H_0
- Goldstone bosons are massless only if the symmetry is exact

$$M_{\pi}^{2} = (m_{u} + m_{d}) \times |\langle 0|\overline{u}u|0\rangle| \times \frac{1}{F_{\pi}^{2}}$$

$$\uparrow \qquad \uparrow \qquad 1968$$

explicit spontaneous

Coefficient: decay constant F_{π}

Derivation

Pion matrix elements in massless theory:

$$\langle 0|\bar{u}\gamma^{\mu}\gamma_{5}d|\pi^{-}\rangle = i\sqrt{2} F p^{\mu}$$

 $\langle 0|\bar{u}i\gamma_{5}d|\pi^{-}\rangle = \sqrt{2} G$

Only the one-pion intermediate state

$$\langle 0|\bar{u}(x)\gamma^{\mu}\gamma_{5}d(x)\bar{d}(y)\gamma_{5}u(y)|0\rangle = C \partial^{\mu}\Delta^{+}(z,0)$$

$$\uparrow |\pi^{-}\rangle\langle\pi^{-}|$$

contributes. Hence 2 FG = C

Value of C fixed by quark condensate

$$C = -\langle 0|\bar{u}u + \bar{d}d|0\rangle$$

⇒ Exact result in massless theory:

$$FG = -\langle 0|\overline{u}u|0\rangle$$

• Matrix elements for $m_{\text{quark}} \neq 0$:

$$\langle 0|\bar{u}\gamma^{\mu}\gamma_{5}d|\pi^{-}\rangle = i\sqrt{2} F_{\pi} p^{\mu}$$

 $\langle 0|\bar{u}i\gamma_{5}d|\pi^{-}\rangle = \sqrt{2} G_{\pi}$

Current conservation

$$\partial_{\mu}(\overline{u}\gamma^{\mu}\gamma_{5}d) = (m_{u} + m_{d})\overline{u}\,i\,\gamma_{5}d$$

$$\Rightarrow F_{\pi}M_{\pi}^{2} = (m_{u} + m_{d})\,G_{\pi}$$

$$M_{\pi}^{2} = (m_{u} + m_{d})\,\frac{G_{\pi}}{F_{\pi}}$$
exact for $m \neq 0$

• $F_{\pi} \to F$, $G_{\pi} \to G$ for $m \to 0$

$$FG = -\langle 0|\bar{u}u|0\rangle$$

$$\Rightarrow \frac{G_{\pi}}{F_{\pi}} = -\frac{\langle 0|\overline{u}u|0\rangle}{F_{\pi}^2} + O(m)$$

$$\Rightarrow M_{\pi}^{2} = (m_{u} + m_{d}) \left(\frac{-\langle 0|\overline{u}u|0\rangle}{F_{\pi}^{2}} \right) + O(m^{2}) \checkmark$$

 $\Rightarrow \langle 0|\bar{u}u|0\rangle \leq 0$ if quark masses are positive

•
$$M_{\pi}^2 = (m_u + m_d) B + O(m^2)$$

 $B = \frac{|\langle 0|\bar{u} u |0\rangle|}{F_{\pi}^2}$

- M_{π} disappears if the symmetry breaking is turned off, $m_u, m_d \to 0$ \checkmark
- Explains why the pseudoscalar mesons have very different masses

$$M_{K^{+}}^{2} = (m_u + m_s) B + O(m^2)$$

 $M_{K^{-}}^{2} = (m_d + m_s) B + O(m^2)$

- $\Rightarrow M_K^2$ is about 13 times larger than M_π^2 , because m_u, m_d happen to be small compared to m_s
 - First order perturbation theory also yields

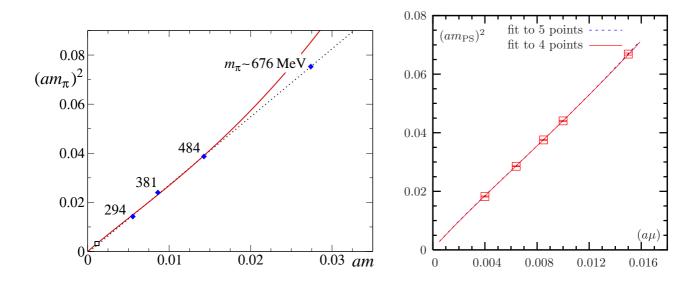
$$M_{\eta}^2 = \frac{1}{3}(m_u + m_d + 4m_s)B + O(m^2)$$

$$\Rightarrow M_{\pi}^2 - 4M_K^2 + 3M_{\eta}^2 = O(m^2)$$

Gell-Mann-Okubo formula for M^2 \checkmark

Checking the GMOR formula on a lattice

• Can determine M_{π} as function of $m_u = m_d = m$



Lüscher, Lattice conference 2005 ETM collaboration, hep-lat/0701012

- No quenching, quark masses sufficiently light
- \Rightarrow Legitimate to use χ PT for the extrapolation to the physical values of m_u, m_d

- Quality of data is impressive
- Proportionality of M_π^2 to the quark mass appears to hold out to values of m_u, m_d that are an order of magnitude larger than in nature
- \bullet Main limitation: systematic uncertainties in particular: $N_f=2 \rightarrow N_f=3$

II. Chiral perturbation theory

6. Group geometry

- QCD with 3 massless quarks: spontaneous symmetry breakdown from SU(3)_R×SU(3)_L to SU(3)_V generates 8 Goldstone bosons
- Generalization: suppose symmetry group of Hamiltonian is Lie group G Generators $Q_1, Q_2, \ldots, Q_D, D = \dim(G)$ For some generators $Q_i | 0 \rangle \neq 0$ How many Goldstone bosons ?
- Consider those elements of the Lie algebra $Q = \alpha_1 Q_1 + \ldots + \alpha_n Q_D$, for which $Q | 0 \rangle = 0$ These elements form a subalgebra: $Q | 0 \rangle = 0$, $Q' | 0 \rangle = 0 \Rightarrow [Q, Q'] | 0 \rangle = 0$ Dimension of subalgebra: $d \leq D$
- Of the D vectors $Q_i | 0 \rangle$ D-d are linearly independent $\Rightarrow D-d$ different physical states of zero mass $\Rightarrow D-d$ Goldstone bosons

- Subalgebra generates subgroup H ⊂ G
 H is symmetry group of the ground state
 coset space G/H contains as many parameters
 as there are Goldstone bosons
 d = dim(H), D = dim(G)
- ⇒ Goldstone bosons live on the coset G/H
 - Example: QCD with N_f massless quarks $\mathbf{G} = \mathrm{SU}(N_f)_{\mathrm{R}} \times \mathrm{SU}(N_f)_{\mathrm{L}}$ $\mathbf{H} = \mathrm{SU}(N_f)_{\mathrm{V}}$ $D = 2\,(N_f^2-1),\ d = N_f^2-1$ $N_f^2-1 \ \mathrm{Goldstone} \ \mathrm{bosons}$
 - ullet It so happens that $m_u, m_d \ll m_s$
 - $m_u=m_d=0$ is an excellent approximation $SU(2)_R \times SU(2)_L$ is a nearly exact symmetry $N_f=2$, $N_f^2-1=3$ Goldstone bosons (pions)

7. Effective action

Basic objects for quantitative analysis of QCD:
 Green functions of the currents

$$V_a^{\mu} = \overline{q} \, \gamma^{\mu} \frac{1}{2} \lambda_a \, q \,, \quad A_a^{\mu} = \overline{q} \, \gamma^{\mu} \gamma_5 \frac{1}{2} \lambda_a \, q \,,$$
$$S_a = \overline{q} \, \frac{1}{2} \lambda_a \, q \,, \qquad P_a = \overline{q} \, i \, \gamma_5 \, \frac{1}{2} \lambda_a \, q \,,$$

Include singlets, with $\lambda_0 = \sqrt{2/3} \times 1$, as well as

$$\omega = \frac{1}{16\pi^2} \operatorname{tr}_c G_{\mu\nu} \tilde{G}^{\mu\nu}$$

• Can collect all of the Green functions formed with these operators in a generating functional: Perturb the system with external fields $v_{\mu}^{a}(x), a_{\mu}^{a}(x), s_{a}(x), p^{a}(x), \theta(x)$

Replace the Lagrangian of the massless theory

$$\mathcal{L}_0 = -\frac{1}{2g^2} \operatorname{tr}_c G_{\mu\nu} G^{\mu\nu} + \overline{q} i \gamma^{\mu} (\partial_{\mu} - i G_{\mu}) q$$
 by
$$\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1$$

$$\mathcal{L}_1 = v_{\mu}^a V_a^{\mu} + a_{\mu}^a A_a^{\mu} - s^a S_a - p^a P_a - \theta \omega$$

• Quark mass terms are included in the external field $s_a(x)$

• $|0 \text{ in}\rangle$: system is in ground state for $x^0 \to -\infty$ Probability amplitude for finding ground state when $x^0 \to +\infty$:

$$e^{iS_{eff}\{v,a,s,p,\theta\}} = \langle 0 \text{ out} | 0 \text{ in} \rangle_{v,a,s,p,\theta}$$

ullet Expressed in terms of ground state of \mathcal{L}_0 :

$$e^{iS_{e\!f\!f}\{v,a,s,p,\theta\}}\!=\!\langle \mathbf{0} |\, T \exp i\!\int\!\!dx \mathcal{L}_{\!1} \, |\mathbf{0}\rangle$$

• Expansion of $S_{eff}\{v,a,s,p,\theta\}$ in powers of the external fields yields the connected parts of the Green functions of the massless theory

$$S_{eff}\{v, a, s, p, \theta\} = -\int dx \, s_a(x) \langle 0| S^a(x) | 0 \rangle$$
$$+ \frac{i}{2} \int dx \, dy \, a_\mu^a(x) a_\nu^b(y) \langle 0| T A_a^\mu(x) A_b^\nu(y) | 0 \rangle_{conn} + \dots$$

• For Green functions of full QCD, set

$$s_a(x)=m_a+\tilde{s}_a(x)\,,\quad m_a={\rm tr}\lambda_a\,m$$
 and expand around $\tilde{s}_a(x)=0$

Path integral representation of effective action:

$$e^{iS_{eff}\{v,a,s,p\}} = \mathcal{N} \int [dG] \, e^{i\int\!dx\,\mathcal{L}_{\mathsf{G}}} \, \det D$$

$$\mathcal{L}_{G} = -\frac{1}{2g^{2}} \operatorname{tr}_{c} G_{\mu\nu} G^{\mu\nu} - \frac{\theta}{16\pi^{2}} \operatorname{tr}_{c} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

$$D = i\gamma^{\mu} \{\partial_{\mu} - i(G_{\mu} + v_{\mu} + a_{\mu}\gamma_{5})\} - s - i\gamma_{5}p$$

 G_{μ} is matrix in colour space v_{μ}, a_{μ}, s, p are matrices in flavour space $v_{\mu}(x) \equiv \frac{1}{2} \lambda_a \, v_{\mu}^a(x)$, etc.

8. Ward identities

Symmetry in terms of Green functions

Lagrangian is invariant under

$$q_{\mathsf{R}}(x) \to V_{\mathsf{R}}(x) \, q_{\mathsf{R}}(x) \,, \quad q_{\mathsf{L}}(x) \to V_{\mathsf{L}}(x) \, q_{\mathsf{L}}(x)$$
 $V_{\mathsf{R}}(x), V_{\mathsf{L}}(x) \in \mathsf{U}(3)$

provided the external fields are transformed with

$$v'_{\mu} + a'_{\mu} = V_{\mathsf{R}}(v_{\mu} + a_{\mu})V_{\mathsf{R}}^{\dagger} - i\partial_{\mu}V_{\mathsf{R}}V_{\mathsf{R}}^{\dagger}$$
$$v'_{\mu} - a'_{\mu} = V_{\mathsf{L}}(v_{\mu} - a_{\mu})V_{\mathsf{L}}^{\dagger} - i\partial_{\mu}V_{\mathsf{L}}V_{\mathsf{L}}^{\dagger}$$
$$s' + i p' = V_{\mathsf{R}}(s + i p)V_{\mathsf{L}}^{\dagger}$$

The operation takes the Dirac operator into

$$D' = \{ P_{-}V_{R} + P_{+}V_{L} \} D \{ P_{+}V_{R}^{\dagger} + P_{-}V_{L}^{\dagger} \}$$

$$P_{\pm} = \frac{1}{2} (1 \pm \gamma_{5})$$

- \bullet $\det D$ requires regularization
 - ∄ symmetric regularization
- \Rightarrow det $D' \neq$ det D, only $|\det D'| = |\det D|$ symmetry does not survive quantization

ullet Change in $\det D$ can explicitly be calculated For an infinitesimal transformation

$$V_{\mathsf{R}} = 1 + i \alpha + i \beta + \dots, \quad V_{\mathsf{L}} = 1 + i \alpha - i \beta + \dots$$

the change in the determinant is given by

$$\det D' = \det D \ e^{-i\int dx \left\{2\langle\beta\rangle\omega + \langle\beta\Omega\rangle\right\}}$$

$$\langle A \rangle \equiv \operatorname{tr} A$$

$$\omega = \frac{1}{16\pi^2} \operatorname{tr}_c G_{\mu\nu} \tilde{G}^{\mu\nu} \qquad \text{gluons}$$

$$\Omega = \frac{N_c}{4\pi^2} \epsilon^{\mu\nu\rho\sigma} \partial_{\mu} v_{\nu} \partial_{\rho} v_{\sigma} + \dots \quad \text{ext. fields}$$

• Consequence for effective action: The term with ω amounts to a change in θ , can be compensated by $\theta' = \theta - 2 \, \langle \beta \rangle$ Pull term with $\langle \beta \Omega \rangle$ outside the path integral

$$\Rightarrow \left| S_{eff}\{v', a', s', p', \theta'\} = S_{eff}\{v, a, s, p, \theta\} - \int dx \langle \beta \Omega \rangle \right|$$

$$S_{eff}\{v', a', s', p', \theta'\} = S_{eff}\{v, a, s, p, \theta\} - \int dx \langle \beta \Omega \rangle$$

- S_{eff} is invariant under U(3)_R×U(3)_L, except for a specific change due to the anomalies
- Relation plays key role in low energy analysis: collects all of the Ward identities
 For the octet part of the axial current, e.g.

$$\partial_{\mu}^{x}\langle 0|TA_{a}^{\mu}(x)P_{b}(y)|0\rangle = -\frac{1}{4}i\delta(x-y)\langle 0|\overline{q}\{\lambda_{a},\lambda_{b}\}q|0\rangle$$
$$+\langle 0|T\overline{q}(x)i\gamma_{5}\{m,\frac{1}{2}\lambda_{a}\}q(x)P_{b}(y)|0\rangle$$

Symmetry of the effective action implies the operator relations

$$\partial_{\mu}V_{a}^{\mu} = \overline{q} i [m, \frac{1}{2}\lambda_{a}] q, \qquad a = 0, \dots, 8$$

$$\partial_{\mu}A_{a}^{\mu} = \overline{q} i \gamma_{5} \{m, \frac{1}{2}\lambda_{a}\} q, \qquad a = 1, \dots, 8$$

$$\partial_{\mu}A_{0}^{\mu} = \sqrt{\frac{2}{3}} \overline{q} i \gamma_{5} m q + \sqrt{6} \omega$$

 Textbook derivation of the Ward identities goes in inverse direction, but is slippery formal manipulations, anomalies?

9. Low energy expansion

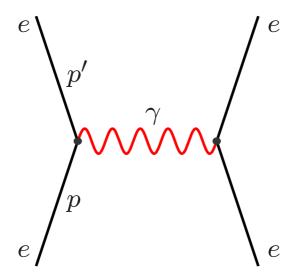
- If the spectrum has an energy gap
- \Rightarrow no singularities in scattering amplitudes or Green functions near p=0
- \Rightarrow low energy behaviour may be analyzed with Taylor series expansion in powers of p

$$f(t) = 1 + \frac{1}{6} \langle r^2 \rangle t + \dots$$
 form factor $T(p) = a + b p^2 + \dots$ scattering amplitude

Cross section dominated by
$$S$$
—wave scattering length $\frac{d\sigma}{d\Omega} \simeq |a|^2$

- Expansion parameter: $\frac{p}{m} = \frac{\text{momentum}}{\text{energy gap}}$
- Taylor series only works if the spectrum has an energy gap, i.e. if there are no massless particles

• Illustration: Coulomb scattering



Photon exchange \Rightarrow pole at t = 0

$$T = \frac{e^2}{(p'-p)^2}$$

Scattering amplitude does not admit Taylor series expansion in powers of p

- QCD does have an energy gap but the gap is very small: M_{π}
- \Rightarrow Taylor series has very small radius of convergence, useful only for $p < M_\pi$

- Massless QCD contains infrared singularities due to the Goldstone bosons
- For $m_u = m_d = 0$, pion exchange gives rise to poles and branch points at p = 0
- ⇒ Low energy expansion is not a Taylor series, contains logarithms

Singularities due to Goldstone bosons can be worked out with an effective field theory "Chiral Perturbation Theory"

Weinberg, Dashen, Pagels, Gasser, . . .

- Chiral perturbation theory correctly reproduces the infrared singularities of QCD
- Quantities of interest are expanded in powers of external momenta and quark masses
- Expansion has been worked out to next-to-leading order for many quantities "Chiral perturbation theory to one loop"
- In quite a few cases, the next-to-next-to-leading order is also known

- Properties of the Goldstone bosons are governed by the hidden symmetry that is responsible for their occurrence
- Focus on the singularities due to the pions

$$H_{QCD} = H_0 + H_1$$

 $H_1 = \int d^3x \{ m_u \bar{u}u + m_d \bar{d}d \}$

 H_0 is invariant under $G = SU(2)_R \times SU(2)_L$ $|0\rangle$ is invariant under $H = SU(2)_V$ mass term of strange quark is included in H_0

ullet Treat H_1 as a perturbation

$$\begin{array}{c} \text{Expansion in} \\ \text{powers of } H_1 \end{array} \iff \begin{array}{c} \text{Expansion in} \\ \text{powers of } m_u, m_d \end{array}$$

• Extension to $SU(3)_R \times SU(3)_L$ straightforward: include singularities due to exchange of K, η

10. Effective Lagrangian

Replace quarks and gluons by pions

$$\vec{\pi}(x) = \{\pi^1(x), \pi^2(x), \pi^3(x)\}$$

$$\mathcal{L}_{QCD} \to \mathcal{L}_{eff}$$

Central claim:

A. Effective theory yields alternative representation for effective action of QCD

$$e^{iS_{eff}\{v,a,s,p,\theta\}} = \mathcal{N}_{eff}\int [d\pi]e^{i\int dx \mathcal{L}_{eff}\{\vec{\pi},v,a,s,p,\theta\}}$$

B. $\mathcal{L}_{e\!f\!f}$ has the same symmetries as $\mathcal{L}_{\sf QCD}$

- \Rightarrow Can calculate the low energy expansion of the Green functions with the effective theory. If \mathcal{L}_{eff} is chosen properly, this reproduces the low energy expansion of QCD, order by order.
 - Proof of A and B: H.L., Annals Phys. 1994

• Pions live on the coset G/H = SU(2)

$$\vec{\pi}(x) \to U(x) \in SU(2)$$

The fields $\vec{\pi}(x)$ are the coordinates of U(x)Can use canonical coordinates, for instance

$$U = \exp i \, \vec{\pi} \cdot \vec{\tau} \in SU(2)$$

Action of the symmetry group on the quarks:

$$q_{\mathsf{R}}' = V_{\mathsf{R}} \cdot q_{\mathsf{R}}, \quad q_{\mathsf{L}}' = V_{\mathsf{L}} \cdot q_{\mathsf{L}}$$

Action on the pion field:

$$U' = V_{\mathsf{R}} \cdot U \cdot V_{\mathsf{L}}^{\dagger}$$

Note: Transformation law for the coordinates $\vec{\pi}$ is complicated, nonlinear

ullet Except for the contribution from the anomalies, $\mathcal{L}_{e\!f\!f}$ is invariant

$$\mathcal{L}_{eff}\{U', v', a', s', p', \theta'\} = \mathcal{L}_{eff}\{U, v, a, s, p, \theta\}$$

Symmetry of $S_{e\!f\!f}$ implies symmetry of $\mathcal{L}_{e\!f\!f}$

First ignore the external fields,

$$\mathcal{L}_{eff} = \mathcal{L}_{eff}(U, \partial U, \partial^2 U, \dots)$$

Derivative expansion:

$$\mathcal{L}_{eff} = f_0(U) + f_1(U) \times \Box U + f_2(U) \times \partial_{\mu} U \times \partial^{\mu} U + \dots$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$O(1) \qquad O(p^2) \qquad O(p^2)$$

Amounts to expansion in powers of momenta

- Term of O(1): $f_0(U) = f_0(V_R U V_L^{\dagger})$ $V_R = 1$, $V_L = U \rightarrow V_R U V_L^{\dagger} = 1$
- $\Rightarrow f_0(U) = f_0(1)$ irrelevant constant, drop it
 - ullet Term with $\square U$: integrate by parts
- \Rightarrow can absorb $f_1(U)$ in $f_2(U)$

 \Rightarrow Derivative expansion of $\mathcal{L}_{e\!f\!f}$ starts with

$$\mathcal{L}_{eff} = f_2(U) \times \partial_{\mu}U \times \partial^{\mu}U + O(p^4)$$

Replace the partial derivative by

$$\Delta_{\mu} \equiv \partial_{\mu} U U^{\dagger} \,, \quad \text{tr} \Delta_{\mu} = 0$$

 Δ_{μ} is invariant under SU(2)_L and transforms with the representation $D^{(1)}$ under SU(2)_R:

$$\Delta_{\mu} \to V_{\mathsf{R}} \, \Delta_{\mu} \, V_{\mathsf{R}}^{\dagger}$$

In this notation, leading term is of the form

$$\mathcal{L}_{eff} = \tilde{f}_2(U) \times \Delta_{\mu} \times \Delta^{\mu} + O(p^4)$$

- Invariance under $SU(2)_{L}$: $\tilde{f}_{2}(U) = \tilde{f}_{2}(UV_{L}^{\dagger})$
- $\Rightarrow \tilde{f}_2(U)$ is independent of U
 - Invariance under SU(2)_R: $\Delta_{\mu} \times \Delta^{\mu}$ transforms with $D^{(1)} \times D^{(1)} \to \text{contains unity exactly once:}$ $\text{tr}(\Delta_{\mu}\Delta^{\mu}) = \text{tr}(\partial_{\mu}UU^{\dagger}\partial^{\mu}UU^{\dagger}) = -\text{tr}(\partial_{\mu}U\partial^{\mu}U^{\dagger})$
- ⇒ Geometry fixes leading term up to a constant

$$\mathcal{L}_{eff} = \frac{F^2}{4} \operatorname{tr}(\partial_{\mu} U \partial^{\mu} U^{\dagger}) + O(p^4)$$

$$\mathcal{L}_{eff} = \frac{F^2}{4} \operatorname{tr}(\partial_{\mu} U \partial^{\mu} U^{\dagger}) + O(p^4)$$

- ullet Lagrangian of the nonlinear σ -model
- Expansion in powers of $\vec{\pi}$:

$$U = \exp i \, \vec{\pi} \cdot \vec{\tau} = 1 + i \, \vec{\pi} \cdot \vec{\tau} - \frac{1}{2} \, \vec{\pi}^{\, 2} + \dots$$

$$\Rightarrow \mathcal{L}_{eff} = \frac{F^2}{2} \partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi} + \frac{F^2}{48} tr\{ [\partial_{\mu} \pi, \pi] [\partial^{\mu} \pi, \pi] \} + \dots$$

For the kinetic term to have the standard normalization: rescale the pion field, $\vec{\pi} \to \vec{\pi}/F$

$$\mathcal{L}_{eff} = \frac{1}{2} \partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi} + \frac{1}{48F^2} \text{tr} \{ [\partial_{\mu} \pi, \pi] [\partial^{\mu} \pi, \pi] \} + \dots$$

- ⇒ a. Symmetry requires the pions to interact
 - b. Derivative coupling: Goldstone bosons only interact if their momentum does not vanish $\sqrt{\pi^4}$

• Expression given for $\mathcal{L}_{e\!f\!f}$ only holds if the external fields are turned off. Also, $\operatorname{tr}(\partial_{\mu}U\partial^{\mu}U^{\dagger})$ is invariant only under global transformations Suffices to replace $\partial_{\mu}U$ by

$$D_{\mu}U = \partial_{\mu}U - i(v_{\mu} + a_{\mu})U + iU(v_{\mu} - a_{\mu})$$

In contrast to $\text{tr}(\partial_{\mu}U\partial^{\mu}U^{\dagger})$, the term $\text{tr}(D_{\mu}UD^{\mu}U^{\dagger})$ is invariant under local $\text{SU}(2)_{R}\times \text{SU}(2)_{L}$

• Can construct further invariants: s+ip transforms like $U\Rightarrow {\rm tr}\{(s+ip)U^{\dagger}\}$ is invariant Violates parity, but ${\rm tr}\{(s+ip)U^{\dagger}\}+{\rm tr}\{(s-ip)U\}$ is even under $p\to -p, \vec{\pi}\to -\vec{\pi}$

In addition, \exists invariant independent of U: $D_{\mu}\theta D^{\mu}\theta$, with $D_{\mu}\theta = \partial_{\mu}\theta + 2\operatorname{tr}(a_{\mu})$

• Count the external fields as $\theta = O(1), \quad v_{\mu}, a_{\mu} = O(p), \quad s, p = O(p^2)$

Derivative expansion yields string of the form

$$\mathcal{L}_{eff} = \mathcal{L}^{(2)} + \mathcal{L}^{(4)} + \mathcal{L}^{(6)} + \dots$$

Full expression for leading term:

$$\mathcal{L}^{(2)} = \frac{F^2}{4} \langle D_{\mu} U D^{\mu} U^{\dagger} + \chi U^{\dagger} + U \chi^{\dagger} \rangle + h_0 D_{\mu} \theta D^{\mu} \theta$$
$$\chi \equiv 2 B (s + ip), \quad \langle X \rangle \equiv \text{tr}(X)$$

- Contains 3 constants: F, B, h_0 "effective coupling constants"
- Next-to-leading order:

$$\mathcal{L}^{(4)} = \frac{\ell_1}{4} \langle D_{\mu} U D^{\mu} U \rangle^2 + \frac{\ell_2}{4} \langle D_{\mu} U D_{\nu} U \rangle \langle D^{\mu} U D^{\nu} U \rangle$$
$$+ \frac{\ell_3}{4} \langle \chi U^{\dagger} + U \chi^{\dagger} \rangle^2 + \frac{\ell_4}{4} \langle D_{\mu} \chi D^{\mu} U^{\dagger} + D_{\mu} U D^{\mu} \chi^{\dagger} \rangle$$
$$+ \dots$$

 Number of effective coupling constants rapidly grows with the order of the expansion

- Infinitely many effective coupling constants
 Symmetry does not determine these
 Predictivity ?
- Essential point: If \mathcal{L}_{eff} is known to given order \Rightarrow can work out low energy expansion of the Green functions to that order (Weinberg 1979)
- NLO expressions for F_{π}, M_{π} involve 2 new coupling constants: ℓ_3, ℓ_4 .
 - In the $\pi\pi$ scattering amplitude, two further coupling constants enter at NLO: ℓ_1, ℓ_2 .
- Note: effective theory is a quantum field theory
 Need to perform the path integral

$$e^{iS_{eff}\{v,a,s,p,\theta\}} = \mathcal{N}_{eff} \int [d\pi] e^{i\int dx \mathcal{L}_{eff}\{\vec{\pi},v,a,s,p,\theta\}}$$

- Classical theory
 ⇔ tree graphs
 Need to include graphs with loops
- Power counting in dimensional regularization: Graphs with ℓ loops are suppressed by factor $p^{2\ell}$ as compared to tree graphs
- ⇒ Leading contributions given by tree graphs Graphs with one loop contribute at next-toleading order, etc.
 - The leading contribution to S_{eff} is given by the sum of all tree graphs = classical action:

$$S_{eff}\{v, a, s, p, \theta\} = \underset{U(x)}{\operatorname{extremum}} \int dx \, \mathcal{L}_{eff}\{U, v, a, s, p, \theta\}$$

III. Illustrations

11. Some tree level calculations

A. Condensate in terms of effective action

• To calculate the quark condensate of the massless theory, it suffices to consider the effective action for $v=a=p=\theta=0$ and to take a constant scalar external field

$$s = \begin{pmatrix} m_u & 0 \\ 0 & m_d \end{pmatrix}$$

ullet Expansion in powers of m_u and m_d treats

$$H_1 = \int\!\! d^3\!x\,\{m_u \bar u u + m_d \bar d d\}$$
 as a perturbation

$$S_{eff}\{0,0,m,0,0\} = S_{eff}^{0} + S_{eff}^{1} + \dots$$

- $S_{e\!f\!f}^0$ is independent of the quark masses (cosmological constant)
- ullet $S^1_{e\!f\!f}$ is linear in the quark masses

• First order in m_u , $m_d \Rightarrow$ expectation value of H_1 in unperturbed ground state is relevant

$$S_{eff}^{1} = -\int dx \langle 0| m_u \overline{u}u + m_d \overline{d}d | 0 \rangle$$

 \Rightarrow $\langle 0|\bar{u}u|0\rangle$ and $\langle 0|dd|0\rangle$ are the coefficients of the terms in $S_{e\!f\!f}$ that are linear in m_u and m_d

B. Condensate in terms of effective theory

- Need the effective action for $v=a=p=\theta=0$ to first order in s
- ⇒ classical level of effective theory suffices.
 - ullet extremum of the classical action: U=1

$$S_{eff}^1 = \int \! dx F^2 B(m_u + m_d)$$

comparison with

$$S_{eff}^1 = -\int \!\! dx \langle 0| \, m_u \overline{u}u + m_d \, \overline{d}d \, |0\rangle$$
 yields

$$\left| \langle 0 | \bar{u}u | 0 \rangle = \langle 0 | \bar{d}d | 0 \rangle = -F^2 B \right| \tag{1}$$

C. Evaluation of M_{π} at tree level

 In classical theory, the square of the mass is the coefficient of the term in the Lagrangian that is quadratic in the meson field:

$$\frac{F^2}{4} \langle \chi U^{\dagger} + U \chi^{\dagger} \rangle = \frac{F^2 B}{2} \langle m(U^{\dagger} + U) \rangle$$
$$= F^2 B(m_u + m_d) \{ 1 - \frac{\vec{\pi}^2}{2F^2} + \ldots \}$$

Hence

$$M_{\pi}^{2} = (m_{u} + m_{d})B \tag{2}$$

• Tree level result for F_{π} :

$$F_{\pi} = F \tag{3}$$

• $(1) + (2) + (3) \Rightarrow GMOR$ relation:

$$M_{\pi}^{2} = \frac{(m_{u} + m_{d}) \left| \langle 0 | \overline{u}u | 0 \rangle \right|}{F_{\pi}^{2}}$$

12. M_{π} beyond tree level

- The formula $M_\pi^2=(m_u+m_d)B$ only holds at tree level, represents leading term in expansion of M_π^2 in powers of m_u,m_d
- Disregard isospin breaking: set $m_u = m_d = m$ B. M_π to 1 loop
- Claim: at next-to-leading order, the expansion of M_{π}^2 in powers of m contains a logarithm:

$$M_{\pi}^{2} = M^{2} - \frac{1}{2} \frac{M^{4}}{(4\pi F)^{2}} \ln \frac{\Lambda_{3}^{2}}{M^{2}} + O(M^{6})$$
$$M^{2} = 2mB$$

• Proof: Pion mass \Leftrightarrow pole position, for instance in the Fourier transform of $\langle 0|TA_a^\mu(x)A_b^\nu(y)|0\rangle$ Suffices to work out the perturbation series for this object to one loop of the effective theory

Result

$$M_{\pi}^{2} = M^{2} + \frac{2\ell_{3}M^{4}}{F^{2}} + \frac{M^{2}}{2F^{2}} \frac{1}{i} \Delta(0, M^{2}) + O(M^{6})$$

 $\Delta(0, M^2)$ is the propagator at the origin

$$\Delta(0, M^2) = \frac{1}{(2\pi)^d} \int \frac{d^d p}{M^2 - p^2 - i\epsilon}$$
$$= i (4\pi)^{-d/2} \Gamma(1 - d/2) M^{d-2}$$

• Contains a pole at d = 4:

$$\Gamma(1-d/2) = \frac{2}{d-4} + \dots$$

• Divergent part is proportional to M^2 :

$$M^{d-2} = M^2 \mu^{d-4} (M/\mu)^{d-4} = M^2 \mu^{d-4} e^{(d-4)\ln(M/\mu)}$$
$$= M^2 \mu^{d-4} \{ 1 + (d-4)\ln(M/\mu) + \ldots \}$$

Denote the singular factor by

$$\lambda \equiv \frac{1}{2} (4\pi)^{-d/2} \Gamma(1 - d/2) \mu^{d-4}$$

$$= \frac{\mu^{d-4}}{16\pi^2} \left\{ \frac{1}{d-4} - \frac{1}{2} (\ln 4\pi + \Gamma'(1) + 1) + O(d-4) \right\}$$

The propagator at the origin then becomes

$$\frac{1}{i}\Delta(0,M^2) = M^2 \left\{ 2\lambda + \frac{1}{16\pi^2} \ln \frac{M^2}{\mu^2} + O(d-4) \right\}$$

• In the expression for M_π^2

$$M_{\pi}^{2} = M^{2} + \frac{2\ell_{3}M^{4}}{F^{2}} + \frac{M^{2}}{2F^{2}} \frac{1}{i} \Delta(0, M^{2}) + O(M^{6})$$

the divergence can be absorbed in ℓ_3 :

$$\ell_3 = -\frac{1}{2}\lambda + \ell_3^{\text{ren}}$$

ullet $\ell_3^{\,\mathrm{ren}}$ depends on the renormalization scale μ

$$\ell_3^{\rm ren} = \frac{1}{64\pi^2} \ln \frac{\mu^2}{\Lambda_3^2} \ {\rm running \ coupling \ constant}$$

• Λ_3 is the ren. group invariant scale of ℓ_3 Net result for M_π^2

$$M_{\pi}^{2} = M^{2} - \frac{1}{2} \frac{M^{4}}{(4\pi F)^{2}} \ln \frac{\Lambda_{3}^{2}}{M^{2}} + O(M^{6})$$

 $\Rightarrow M_{\pi}^2$ contains a chiral logarithm at NLO

• Crude estimate for Λ_3 , based on SU(3) mass formulae for the pseudoscalar octet:

0.2 GeV
$$<\Lambda_3<$$
 2 GeV $ar\ell_3\equiv\ln\frac{\Lambda_3^2}{M_\pi^2}=$ 2.9 \pm 2.4 Gasser & L. 1984

⇒ Next-to-leading term is small correction:

$$0.005 < \frac{1}{2} \frac{M_{\pi}^2}{(4\pi F_{\pi})^2} \ln \frac{\Lambda_3^2}{M_{\pi}^2} < 0.04$$

 Scale of the expansion is set by size of pion mass in units of decay constant:

$$\frac{M^2}{(4\pi F)^2} \simeq \frac{M_\pi^2}{(4\pi F_\pi)^2} = 0.0144$$

B. M_{π} to 2 loops

• Terms of order m_{quark}^3 :

$$M_{\pi}^{2} = M^{2} - \frac{1}{2} \frac{M^{4}}{(4\pi F)^{2}} \ln \frac{\Lambda_{3}^{2}}{M^{2}} + \frac{17}{18} \frac{M^{6}}{(4\pi F)^{4}} \left(\ln \frac{\Lambda_{M}^{2}}{M^{2}} \right)^{2} + k_{M} M^{6} + O(M^{8})$$

F is pion decay constant for $m_u=m_d=0$ ChPT to two loops Colangelo 1995

- Coefficients $\frac{1}{2}$ and $\frac{17}{18}$ determined by symmetry
- ullet $\Lambda_3, \Lambda_{\mathsf{M}}$ and $k_{\mathsf{M}} \Longleftrightarrow$ coupling constants in $\mathcal{L}_{e\!f\!f}$

13. F_{π} to one loop

Also contains a logarithm at NLO:

$$F_{\pi} = F \left\{ 1 - \frac{M^2}{16\pi^2 F^2} \ln \frac{M^2}{\Lambda_4^2} + O(M^4) \right\}$$

$$M_{\pi}^2 = M^2 \left\{ 1 + \frac{M^2}{32\pi^2 F^2} \ln \frac{M^2}{\Lambda_3^2} + O(M^4) \right\}$$

F is pion decay constant in limit $m_u, m_d \rightarrow 0$

 Structure is the same, coefficients and scale of logarithm are different • Low energy theorem: Λ_4 also determines the slope of the scalar form factor to leading order

$$\langle r^2 \rangle_s = \frac{6}{(4\pi F)^2} \left\{ \ln \frac{\Lambda_4^2}{M_\pi^2} - \frac{13}{12} + O(M^2) \right\}$$

- Scalar form factor of the pion can be calculated by means of dispersion theory
- Result for the slope:

$$\langle r^2 \rangle_{\!s} = 0.61 \pm 0.04 \, \mathrm{fm}^2$$

Colangelo, Gasser & L. Nucl. Phys. 2001

 \Rightarrow Corresponding value of the scale Λ_4 :

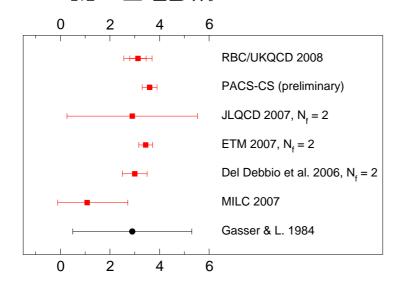
$$\Lambda_4 = 1.26 \pm 0.14 \, \text{GeV}$$

14. Lattice results for M_{π}, F_{π}

A. Results for M_{π}

• Determine the scale Λ_3 by comparing the lattice results for M_π as function of m with the χ PT formula

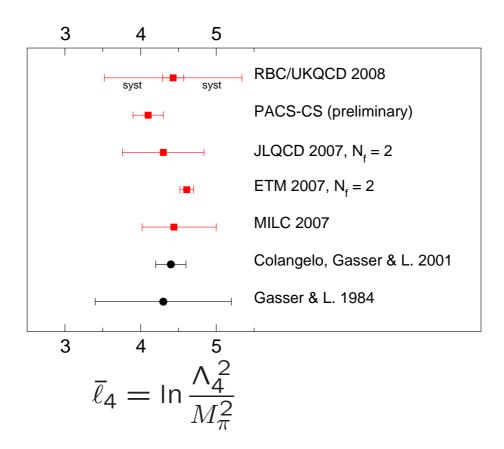
$$M_{\pi}^{2} = M^{2} - \frac{1}{2} \frac{M^{4}}{(4\pi F)^{2}} \ln \frac{\Lambda_{3}^{2}}{M^{2}} + O(M^{6})$$
$$M^{2} \equiv 2Bm$$



Horizontal axis shows the value of $\ \bar{\ell}_3 \equiv \ln \frac{\Lambda_3^2}{M_\pi^2}$

Range for Λ_3 obtained in 1984 corresponds to $~\bar{\ell}_3 = 2.9 \pm 2.4$

Result of RBC/UKQCD 2008: $\bar{\ell}_3 = 3.13 \pm 0.33 \pm 0.24$



• Lattice results beautifully confirm the prediction for the sensitivity of F_{π} to m_u, m_d :

$$rac{F_\pi}{F} = 1.072 \pm 0.007$$
 Colangelo and Dürr 2004

15. $\pi\pi$ scattering

A. Low energy scattering of pions

- Consider scattering of pions with $\vec{p} = 0$
- At $\vec{p} = 0$, only the S-waves survive (angular momentum barrier). Moreover, these reduce to the scattering lengths
- Bose statistics: S-waves cannot have I=1, either have I=0 or I=2
- \Rightarrow At $\vec{p}=0$, the $\pi\pi$ scattering amplitude is characterized by two constants: a_0^0, a_0^2
 - Chiral symmetry suppresses the interaction at low energy: Goldstone bosons of zero momentum do not interact
- \Rightarrow a_0^0, a_0^2 disappear in the limit $m_u, m_d \to 0$
- \Rightarrow $a_0^0, a_0^2 \sim M_\pi^2$ measure symmetry breaking

B. Tree level of χ PT

Low Energy theorem Weinberg 1966:

$$a_0^0 = \frac{7M_\pi^2}{32\pi F_\pi^2} + O(M_\pi^4)$$

$$a_0^2 = -\frac{M_\pi^2}{16\pi F_\pi^2} + O(M_\pi^4)$$

- \Rightarrow Chiral symmetry predicts a_0^0, a_0^2 in terms of F_π
 - Accuracy is limited: Low energy theorem only specifies the first term in the expansion in powers of the quark masses
 Corrections from higher orders ?

C. Scattering lengths at 1 loop

Next term in the chiral perturbation series:

$$a_0^0 = \frac{7M_\pi^2}{32\pi F_\pi^2} \left\{ 1 + \frac{9}{2} \frac{M_\pi^2}{(4\pi F_\pi)^2} \ln \frac{\Lambda_0^2}{M_\pi^2} + O(M_\pi^4) \right\}$$

- Coefficient of chiral logarithm unusually large Strong, attractive final state interaction
- Scale Λ_0 is determined by the coupling constants of $\mathcal{L}_{eff}^{(4)}$:

$$\frac{9}{2} \ln \frac{\Lambda_0^2}{M_\pi^2} = \frac{20}{21} \bar{\ell}_1 + \frac{40}{21} \bar{\ell}_2 - \frac{5}{14} \bar{\ell}_3 + 2\bar{\ell}_4 + \frac{5}{2}$$

ullet Information about $\overline{\ell}_1,\ldots,\,\overline{\ell}_4$?

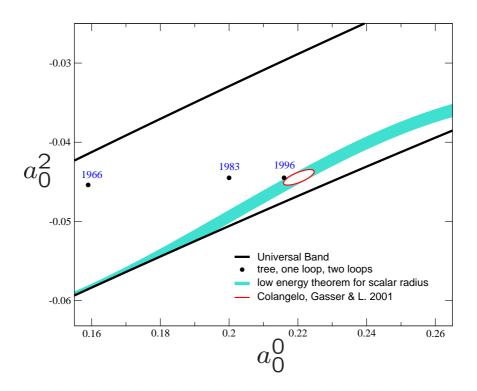
$$\overline{\ell}_1,\overline{\ell}_2 \Longleftrightarrow \begin{array}{l} \text{momentum dependence} \\ \text{of scattering amplitude} \end{array}$$

⇒ Can be determined phenomenologically

$$\bar{\ell}_3, \bar{\ell}_4 \iff \text{dependence of scattering amplitude on quark masses}$$

Have discussed their values already

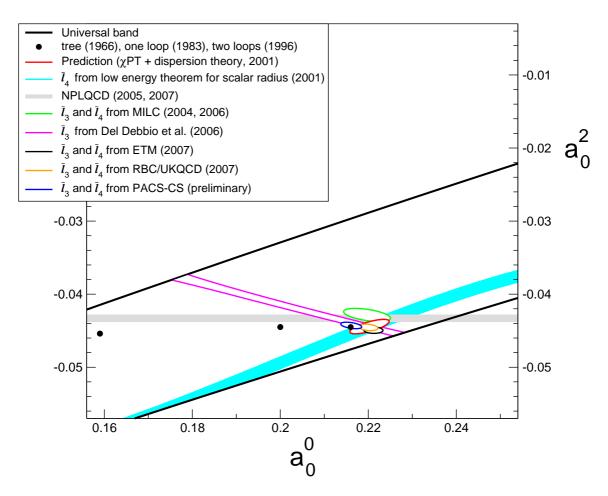
D. Numerical predictions from χ PT



Sizable corrections in a_0^0 a_0^2 nearly stays put

E. Consequence of lattice results for ℓ_3 , ℓ_4

- Uncertainty in prediction for a_0^0, a_0^2 is dominated by the uncertainty in the effective coupling constants ℓ_3 , ℓ_4
- Can make use of the lattice results for these



F. Experiments concerning a_0^0, a_0^2

• Production experiments $\pi N \to \pi\pi N$, $\psi \to \pi\pi\omega$, $B \to D\pi\pi$, . . .

Problem: pions are not produced in vacuo

 \Rightarrow Extraction of $\pi\pi$ scattering amplitude is not simple

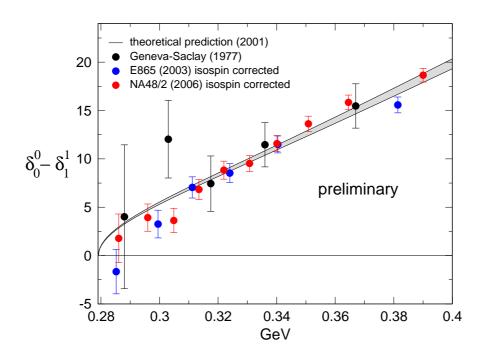
Accuracy rather limited

- $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu$ data: CERN-Saclay, E865, NA48/2
- $K^{\pm} \to \pi^0 \pi^0 \pi^{\pm}$, $K^0 \to \pi^0 \pi^0 \pi^0$: cusp near threshold, NA48/2
- $\pi^+\pi^-$ atoms, DIRAC

G. Results from K_{e4} decay

$$K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu$$

• Allows clean measurement of $\delta_0^0-\delta_1^1$ Theory predicts $\delta_0^0-\delta_1^1$ as function of energy



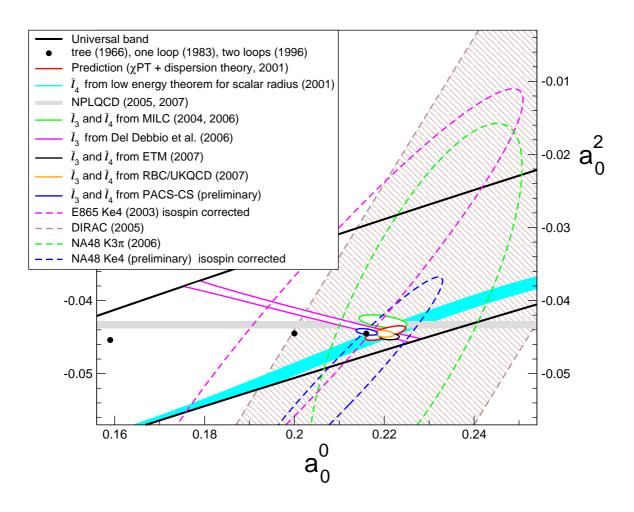
There was a discrepancy here, because a pronounced isospin breaking effect from

$$K \to \pi^0 \pi^0 e \nu \to \pi^+ \pi^- e \nu$$

had not been accounted for in the data analysis

Colangelo, Gasser, Rusetsky 2007, Bloch-Devaux 2007

H. Summary for a_0^0, a_0^2



16. Conclusions for $SU(2)\times SU(2)$

- ullet Expansion in powers of m_u, m_d yields a very accurate low energy representation of QCD
- Lattice results confirm the GMOR relation
- $\Rightarrow M_{\pi}$ is dominated by the contribution from the quark condensate
- ⇒ Energy gap of QCD is understood very well
 - Lattice approach allows an accurate measurement of the effective coupling constant ℓ_3 already now
 - Even for ℓ_4 , the lattice starts becoming competitive with dispersion theory

17. Expansion in powers of m_s

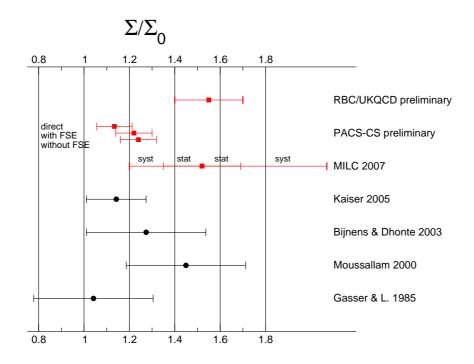
- Theoretical reasoning
 - The eightfold way is an approximate symmetry
 - The only coherent way to understand this within QCD: $m_s-m_d,\ m_d-m_u$ can be treated as perturbations
 - Since $m_u, m_d \ll m_s$
 - $\Rightarrow m_s$ can be treated as a perturbation
 - \Rightarrow Expect expansion in powers of m_s to work, but convergence to be comparatively slow
- In principle, this can now also be checked on the lattice

- ullet Consider the limit $m_u, m_d o 0$, m_s physical
 - F is value of F_{π} in this limit
 - Σ is value of $|\langle 0|\bar{u}u||0\rangle$ in this limit
 - B is value of $M_{\pi}^2/(m_u+m_d)$ in this limit
- Exact relation: $\Sigma = F^2 B$
- F_0, B_0, Σ_0 : values for $m_u = m_d = m_s = 0$
- Paramagnetic inequalities: both F and Σ should decrease if m_s is taken smaller

$$F>F_0\,,\;\Sigma>\Sigma_0$$
 Jan Stern et al. 2000

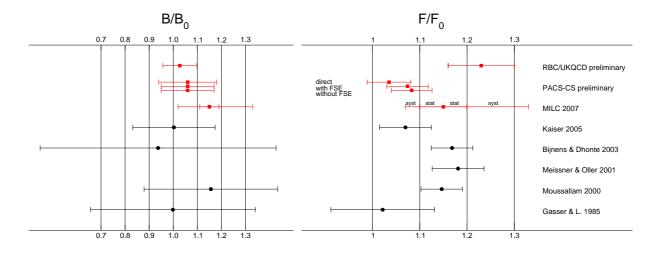
- $N_c \to \infty$: F, Σ, B become independent of m_s
- \Rightarrow $(F/F_0-1), (\Sigma/\Sigma_0-1), (B/B_0-1)$ violate the OZI rule

A. Condensate



- Central values of RBC/UKQCD and PACS-CS for Σ/Σ_0 lead to qualitatively different conclusions concerning OZI-violations
- ⇒ Discrepancy indicates large systematic errors
- The lattice results confirm the parametric inequalities, but do not yet allow to draw conclusions about the size of the OZI-violations

B. Results for B, F



- Results for B are coherent, indicate small OZI-violations in B
- \Rightarrow F is the crucial factor in $\Sigma = F^2B$

18. Conclusions for $SU(3) \times SU(3)$

- The available lattice data allow for very juicy OZI-violations, but are also consistent with $B/B_0 \simeq F/F_0 \simeq \Sigma/\Sigma_0 \simeq 1$
- If the central value $F/F_0 = 1.23$ of RBC/UKQCD were confirmed within small uncertainties, we would be faced with a qualitative puzzle:
 - F_{π} is the pion wave function at the origin
 - F_K is larger because one of the two valence quarks is heavier \to moves more slowly \to wave function more narrow \to higher at the origin: $F_K/F_\pi \simeq 1.19$
 - $F/F_0=1.23$ indicates that the wave function is more sensitive to the mass of the sea quarks than to the mass of the valence quarks . . . very strange \rightarrow extraordinarily interesting
- Note: most of the numbers quoted are preliminary, errors purely statistical, continuum limit, finite size effects, . . .