Introduction to Accelerators Overview

Elena Wildner

Contents

1. INTRODUCTION
2. THE ACCELERATOR CHAIN
3. HOW TO KEEP THE BEAM IN PLACE
4. Steering
5. Focusing
6. Acceleration
7. HOW TO SERVE THE EXPERIMENTS
8. Targets, Colliders
9. Luminosity
10. (Decay Rings)
11. ACCELERATORTECHNOLOGI
12. Vacuum
13. Superconducting Magnets
14. REFERENCES

Application Areas

- In your old TV set: Cathode Tube
- Material Physics

Photons from Electrons, Synchrotron Light Material Surface

- Medicine
- X-rays (photons from electrons)

Protons and Ions

- Food treatment

- Physics
- Collisions
- Neutrino production...
- Etc.

Accelerators and LHC experiments at CERN

Units, Energy and Momentum

Einstein's relativity formula:We all might know the units Joules and Newton meter but here we are talking about eV...??

If we push a block over a distance of 1 meter with a force of 1
Newton, we use 1 Joule of energy.
Thus: $1 \mathrm{Nm}=1$ Joule

The energy acquired by an electron in a potential of 1 Volt is defined as being 1 eV .

1 eV is 1 elementary charge 'pushed' by 1 Volt.
Thus : $1 \mathrm{eV}=1.6 \times 10^{-19}$ Joules.
The unit eV is too small to be used currently, we use:
$1 \mathrm{KeV}=10^{3} \mathrm{eV} ; 1 \mathrm{MeV}=10^{6} \mathrm{eV} ; 1 \mathrm{GeV}=10^{9}$.

Relativity

When particles are accelerated to velocities (v) coming close to the velocity of light (c):
then we must consider relativistic effects

$$
\gamma=1 / \sqrt{1-\beta^{2}} ; \beta=v / c
$$

Total Energy

Relativity

Energy and Momentum

Einstein's relativity formula: $E=m c^{2}$

* For a mass at rest this will be:

\# Define: $\gamma=\frac{E}{F}$ As being the ratio between the total energy and the rest energy
\# Then the mass of a moving particle is: $m=\gamma m_{\text {a }}$
\# Define: $\beta=\frac{v}{c}$, then we can write: $\beta=\frac{m v c}{m c^{2}}$
\# $p=m v$, which is always true and gives:

Units, Energy and Momentum

Therefore the units for momentum are $\mathrm{GeV} / \mathrm{c}$...etc.
Attention:
when $\beta=1$ energy and momentum are equal, when $\beta<1$ the energy and momentum are not equal.

Units, Example PS injection

Kinetic energy at injection $E_{\text {kinetic }}=1.4 \mathrm{GeV}$.
Proton rest energy $E_{0}=938.27 \mathrm{MeV}$.
The total energy is then: $E=E_{\text {kinetic }}+E_{0}=2.338 \mathrm{GeV}$.

We know that $\quad \gamma=\frac{E}{E_{0}}$, which gives $\gamma=2.4921$.
We can derive $\quad \beta=\sqrt{1-\frac{1}{\gamma^{2}}}$, which gives $\beta=0.91597$.
Using $\quad p=\frac{E \beta}{c}$ we get $p=\underline{2.14 \mathrm{GeV} / \mathrm{c}}$

In this case: Energy \& Momentum

Particle Sources and acceleration

- Natural Radioactivity: alfa particles and electrons. Alfa particles have an energy of around 5 MeV (corresponds to a speed of $\sim 15,000 \mathrm{~km} / \mathrm{s}$).
- Production of particles: Particle sources
- Electrostatic fields are used for the first acceleration step after the source

Linear accelerators accelerate the particles using Radio Frequency (RF) Fields

- \quad Circular accelerators use RF and electromagnetic fields. Protons are today (2008?) accelerated to an energy of 7 TeV
- The particles need to circulate in vacuum (tubes or tanks) not to collide with other particles disturbing their trajectories.

Particle Sources 1

Particle Sources 2

Particle Sources 3

Time Varying Electrical Fields

Linear accelerators

Simplified Linac

Wideroe 1928

The particles are grouped together to make sure that the field has the correct direction at the time the particle group passes the gap.

The speed of the particles increases and the length of the modules change so that the particle's arrival in the gap is synchronized with the field direction in the gap

Alvarez: Resonance tank

The Cyclotron

Centripetal force=-Centrifugal force:

$$
\frac{m v^{2}}{r}=B q v
$$

$$
f=\frac{B q}{2 m \pi}
$$

The frequency does not depend on the radius, if the mass is contant. When the particles become relativistic this is not valid any more. The frequency must change with the particle velocity: synchrocyclotron. The field can also change with
 the radius: isochronous cyclotron

Synchrotrons at CERN

The Synchrotron

Groups of particles are circulating synchronously with the RF field in the accelerating cavities

Each particle is circulating around an ideal (theoretical) orbit: for this to work out, acceleration and magnet fields must obey stability criteria!!

- - RF Gap

Forces on the particles

The Dipole

Dipole Magnet, bends the particle trajectory in the horizontal plane (vertical field). Exception: correctors...

STEERING

$$
\begin{aligned}
& F_{x}=-e v_{s} B_{y} \\
& F_{r}=m v_{s}^{2} / \rho \\
& p=m v_{s} \\
& \frac{1}{\rho(x, y, s)}=\frac{e}{p} B_{y}(x, y, s) \\
& B \rho=\frac{p}{e}
\end{aligned}
$$

"Magnetic rigidity": 3.3356 p [Tm] with units $\mathrm{GeV} / \mathrm{c}$ for momentum

Brho for ions

dm／m0（total）	$\mathrm{dm} / \mathrm{m0} 0$（Eeb）	p $\mathrm{GeV} / \mathrm{c}$	$\begin{aligned} & \text { B*rho } \\ & \text { T.m } \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{GeV} \end{aligned}$	mass in nmu nmu	B
1．8E－04	$1.4 \mathrm{E}-08$	560.525707	934.8563	554.948198	6.019441	6.00541757
2．7E－04	3．6E－08	560.123808	622.7906	554.550299	6.015125	4.00074111
3．0E－04	2．1E－07	1676.62648	559.2624	1659.94322	18.005158	3.59264241
2．7E－04	$1.6 \mathrm{E}-07$	1676.25794	621.2661	1659.57834	18.001200	3.99094745
2．9E－04	2．0E－07	1769.41467	590.2132	1751.80812	19.001602	3.79146713
2．6E－04	$1.5 \mathrm{E}-07$	1769.14182	655.6913	1751.53798	18.998672	4.21209164
2．1E－04	$2.7 \mathrm{E}-08$	747.099269	830.6850	739.665261	8.023039	5.33623231
2．7E－04	2．1E－08	372.719374	621.6290	369.010631	4.002604	3.99327889
3．4E－04	9．0E－08	747.194578	498.4746	739.759621	8.024063	3.20214783
2．7E－04	2．1E－08	372.719374	621.6290	369.010631	4.002604	3.99327889

The Dipole

A dipole with a uniform dipolar field deviates a particle by an angle θ.
The deviation angle θ depends on the length L and the magnetic field B.
The angle θ can be calculated:

$$
\sin \left(\frac{\theta}{2}\right)=\frac{L}{2 \rho}=\frac{1}{2} \frac{L B}{(B \rho)}
$$

If θ is small:

$$
\sin \left(\frac{\theta}{2}\right)=\frac{\theta}{2}
$$

So we can write:

$$
\theta=\frac{L B}{(B \rho)}
$$

Focusing: The Quadrupole 1

The particles need to be focussed to stay in the accelerator. Similar principle as in optical systems.

The Quadrupole 2

The 'normalised gradient', $\underline{\mathbf{k}}$ is defined as: $\quad \frac{K}{(B \rho)}\left(m^{-2}\right)$
Focal length: $1 / \mathrm{kl}$ where l is the length of the quadrupole

The Focusing System

"Alternate gradient focusing" gives an overall focusing effect (compare for example optical systems in cameras)

The beam takes up less space in the vacuum chamber, the amplitudes are smaller and for the same magnet aperture the field quality is better (cost optimization)

Synchrotron design: The magnets are of alternating field (focusing-defocusing)

The oscillating particles

The following kind of differential equations can be derived, compare the simple pendulum:
$x^{\prime \prime}(s)+\left(\frac{1}{\rho^{2}(s)}-k(s)\right) \cdot x(s)=\frac{1}{\rho(s)} \Delta p / p \quad ; \quad k=\frac{e}{p} \frac{\partial B_{z}}{\partial x}$
$z^{\prime \prime}(s)+k(s) \cdot z(s)=0$
$x(s)=\sqrt{\varepsilon \beta_{x}}(s) \cos \left(\frac{2 \pi}{L} Q \cdot s+\delta\right)$

Oscillating movement with varying amplitude!
The number of oscillations the particle makes in one turn is called the "tune" and is denoted \mathbf{Q}. The \mathbf{Q}-value is slightly different in two planes (the horizontal and the vertical planes). L is the circumference of the ring.

The Beta Function

All particle excursions are confined by a function: the square root of the the beta function and the emmittance.

The emmittance, a measure of the beam size and the particle divirgences, canno \dagger be smaller than after injection into the accelerator (normalized)

Closed orbit, and field errors

Theoretically the particles oscillate around a nominal, calculated orbit.

The magnets are not perfect, in addition they cannot be perfectly aligned.

For the quadrupoles for example this means that the force that the particles feel is either too large or too small with respect to the theoretically calculated force. Effect: the whole beam is deviated.

$$
\begin{aligned}
& F_{x}=g \cdot x \\
& F_{y}=-g \cdot y
\end{aligned}
$$

Correctors

Beam Position Monitors are used to measure the center of the beam near a quadrupole, the beam should be in the center at this position.
Small dipole magnets are used to correct possible beam position errors.

Other types of magnets are used to correct other types of errors (non perfect magnetic fields).

Possible errors 1

The Q－value gives the number of oscillations the particles make in one turn．If this value in an integer，the beam ＂sees＂the same magnet－error over and over again and we may have a resonance phenomenon．Therfore the Q－value is not an integer．

The magnets have to be good enough so that resonance phenomena do not occur．Non wanted magnetic field components（sextupolar，octupolar etc．）are comparable to 10^{-4} relative to the main component of a magnet（dipole in a bending magnet，quadrupole in a focussing magnet etc．）． This is valid for LHC

Possible errors 2

Types of effects that may influence the accelerator performance and has to be taken into account:

Movement of the surface of the earth
Trains
The moon
The seasons
Construction work

Calibration of the magnets is important Current regulation in the magnets

The energy of the particles must correspond to the field in the magnets, to permit the particle to stay in their orbits. Control of the acceleration!

Electrical Fields for Acceleration

The Synchrotron: Acceleration 0

An early particle gets less energy increase

"Bucket": Energy/phase condition for stability

Experiment

Targets:
Bombarding material with a beam directed out of the accelerator.
Bubbelchamber

Available energy is calculated in the center of mass of the system (colliding objects)

To collide particle more interesting
1960: electron/positron collider
1970: proton antiproton collider
2000: ions, gold

Colliders

anti-particles

All particles do not collide at the same time -> long time is needed

- Two beams are needed

Antiparticles are difficult (expensive) to produce (~1 antiproton/10^6 protons)

The beams affect each other: the beams have to be separated when not colliding

Colliders: Luminosity

Number of particles per

Synchrotron light

Electromagnetic waves
Accelerated charged particles emit photons
Radio signals and x-ray

$$
\begin{array}{ll}
P \propto \frac{\gamma^{4}}{\rho^{2}} & E \propto \frac{\gamma^{3}}{\rho}
\end{array} \quad \text { LEP: } \gamma=200000
$$

Bremsstrahlung + Coulomb Scattering

- "Blow up" of the beam
- Particle losses

Non wanted collisions in the experiments

- Limits the Luminosity

Superconducting Technology 1

Why superconducting magnets?
Small radius, less number of particles in the machine, smaller machine

Energy saving, BUT infrastructure very complex

The Superconducting Dipole for LHC

LHC dipole (1232 + reserves) built in 3 firms (Germany France and Italy, very large high tech project)

The LHC Dipole

TECHNOLOGY

Working

 temperature 1.9 K !Coldest spot i the universe...

The LHC Dipole in the tunnel

The LHC Magnet interconnection

LEAR

New CERN Control Centre (CCC) ar CERN

References 2

- M. Sands, 'The Physics of Electron Storage Rings', SLAC-121, 1970.
- E.D. Courant and H.S. Snyder, 'Theory of the Alternating-Gradient Synchrotron', Annals of Physics 3, 1-48 (1958).
- CERN Accelerator School, RF Engeneering for Particle Accelerators, CERN Report 92-03, 1992.
- CERN Accelerator School, 50 Years of Synchrotrons, CERN Report 97-04, 1997.
- E.J.N. Wilson, Accelerators for the Twenty-First Century - A Review, CERN Report 90-05, 1990.
Special Topics and Detailed Information:
- J.D. Jackson, 'Calssical Electrodynamics', Wiley, New York, 1975.
- Lichtenberg and Lieberman, 'Regular and Stochastic Motion', Applied

Mathematical Sciences 38, Springer Verlag.

- A.W. Chao, 'Physics of Collective Beam Instabilities in High Energy Accelerators', Wiley, New York 1993.
- M. Diens, M. Month and S. Turner, 'Frontiers of Particle Beams: Intensity Limitations', Springer-Verlag 1992, (ISBN 3-540-55250-2 or 0-387-55250-2) (Hilton Head Island 1990) 'Physics of Collective Beam Instabilities in High Energy Accelerators', Wiley, New York 1993. - R.A. Carrigan, F.R. Huson and M. Month, 'The State of Particle Accelerators and High Energy Physics', American Institute of Physics New Yorkm 1982, (ISBN 0-88318-191-6) (AIP 92 1981) 'Physics of Collective Beam Instabilities in High Energy Accelerators', Wiley, New York 1993.

Special thanks to Oliver Bruning for the reference list

