Introduction to Neutrino Oscillation Physics

Carlo Giunti

INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino

mailto://giunti@to.infn.it

Neutrino Unbound: http://www.nu.to.infn.it

9-13 June 2008, Benasque, Spain NUFACT'08 School

C. Giunti and C.W. Kim Fundamentals of Neutrino Physics and Astrophysics Oxford University Press 15 March 2007 – 728 pages

Part I: Theory of Neutrino Masses and Mixing

- Dirac Neutrino Masses
- Majorana Neutrino Masses
- Dirac-Majorana Mass Term

Part II: Neutrino Oscillations in Vacuum and in Matter

- Neutrino Oscillations in Vacuum
- CPT, CP and T Symmetries
- Two-Neutrino Oscillations
- Question: Do Charged Leptons Oscillate?
- Neutrino Oscillations in Matter

Part III: Phenomenology of Three-Neutrino Mixing

- Phenomenology of Three-Neutrino Oscillations
- Absolute Scale of Neutrino Masses
- Tritium Beta-Decay
- Cosmological Bound on Neutrino Masses
- Neutrinoless Double-Beta Decay
- Conclusions

Part I

Theory of Neutrino Masses and Mixing

Dirac Neutrino Masses

- Dirac Neutrino Masses
 - Dirac Mass
 - Higgs Mechanism in SM
 - Dirac Lepton Masses
 - Three-Generations Dirac Neutrino Masses
 - Massive Chiral Lepton Fields
 - Massive Dirac Lepton Fields
 - Quantization
 - Mixing
 - Flavor Lepton Numbers
 - Total Lepton Number
 - Mixing Matrix
 - Standard Parameterization of Mixing Matrix
 - CP Violation
 - Example: $\vartheta_{12} = 0$
 - Example: $\vartheta_{13} = \pi/2$
 - Example: $m_{pr} = m_{pr}$ C, Guntr – Neutrino Oscillation Physics – 9-13 June 2008, Benasque, Spain – 6

Dirac Mass

- Dirac Equation: $(i\partial \!\!\!/ m)\nu(x) = 0$ $(\partial \!\!\!/ \equiv \gamma^{\mu}\partial_{\mu})$
- ► Dirac Lagrangian: $\mathscr{L}(x) = \overline{\nu}(x) (i\partial \!\!/ m) \nu(x)$
- Chiral decomposition: $\nu_L \equiv \frac{1 \gamma^5}{2} \nu$, $\nu_R \equiv \frac{1 + \gamma^5}{2} \nu$, $\nu_R \equiv \frac{1 + \gamma^5}{2} \nu$

$$\mathscr{L} = \overline{\nu_L} i \partial \!\!\!/ \nu_L + \overline{\nu_R} i \partial \!\!\!/ \nu_R - m \left(\overline{\nu_L} \nu_R + \overline{\nu_R} \nu_L \right)$$

- In SM only $\nu_L \Longrightarrow$ no Dirac mass
- Oscillation experiments have shown that neutrinos are massive
- Simplest extension of the SM: add ν_R

Higgs Mechanism in SM

SM: fermion masses are generated through the Higgs mechanism

• Higgs Doublet:
$$\Phi(x) = \begin{pmatrix} \phi^+(x) \\ \phi^0(x) \end{pmatrix}$$

- Higgs Lagrangian: $\mathscr{L}_{Higgs} = (D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) V(\Phi)$
- Higgs Potential: $V(\Phi) = \mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$

•
$$\mu^2 < 0$$
, $\lambda > 0 \implies V(\Phi) = \lambda \left(\Phi^{\dagger} \Phi - \frac{v^2}{2} \right)^2$, with $v \equiv \sqrt{-\frac{\mu^2}{\lambda}}$

- ► Vacuum: V_{\min} for $\Phi^{\dagger}\Phi = \frac{v^2}{2} \Longrightarrow \langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$
- ► Spontaneous Symmetry Breaking: $SU(2)_L \times U(1)_Y \rightarrow U(1)_Q$
- Unitary Gauge: $\Phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix}$

Dirac Lepton Masses

$$L_L \equiv \begin{pmatrix}
u_L \\
\ell_L \end{pmatrix} \qquad \ell_R \qquad
u_R$$

Lepton-Higgs Yukawa Lagrangian

$$\mathscr{L}_{\mathsf{H},\mathsf{L}} = -y^{\ell} \,\overline{L_L} \,\Phi \,\ell_R - y^{\nu} \,\overline{L_L} \,\widetilde{\Phi} \,\nu_R + \mathsf{H.c.}$$

Unitary Gauge

$$\Phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix} \qquad \qquad \tilde{\Phi} = i\tau_2 \Phi^* = \frac{1}{\sqrt{2}} \begin{pmatrix} v + H(x) \\ 0 \end{pmatrix}$$

$$egin{aligned} \mathscr{L}_{H,\mathsf{L}} &= & -rac{y^{\ell}}{\sqrt{2}} ig(\overline{
u_L} & \overline{\ell_L} ig) ig(igned{v} + H(x) igg) \ell_R \ & -rac{y^{
u}}{\sqrt{2}} ig(\overline{
u_L} & \overline{\ell_L} ig) ig(igvee + H(x) igg)
u_R + \mathsf{H.c} \end{aligned}$$

$$\mathcal{L}_{H,L} = -y^{\ell} \frac{v}{\sqrt{2}} \overline{\ell_L} \ell_R - y^{\nu} \frac{v}{\sqrt{2}} \overline{\nu_L} \nu_R$$
$$- \frac{y^{\ell}}{\sqrt{2}} \overline{\ell_L} \ell_R H - \frac{y^{\nu}}{\sqrt{2}} \overline{\nu_L} \nu_R H + \text{H.c.}$$

Three-Generations Dirac Neutrino Masses

$$\begin{array}{|c|c|c|c|c|} L'_{eL} \equiv \begin{pmatrix} \nu'_{eL} \\ \ell'_{eL} \equiv e'_{L} \end{pmatrix} & L'_{\mu L} \equiv \begin{pmatrix} \nu'_{\mu L} \\ \ell'_{\mu L} \equiv \mu'_{L} \end{pmatrix} & L'_{\tau L} \equiv \begin{pmatrix} \nu'_{\tau L} \\ \ell'_{\tau L} \equiv \tau'_{L} \end{pmatrix} \\ \hline \ell'_{eR} \equiv e'_{R} & \ell'_{\mu R} \equiv \mu'_{R} & \ell'_{\tau R} \equiv \tau'_{R} \\ \hline \nu'_{eR} & \nu'_{\mu R} & \nu'_{\tau R} \end{array}$$

Lepton-Higgs Yukawa Lagrangian

$$\mathscr{L}_{\mathsf{H},\mathsf{L}} = -\sum_{\alpha,\beta=e,\mu,\tau} \left[Y^{\prime\ell}_{\alpha\beta} \, \overline{L^{\prime}_{\alpha L}} \, \Phi \, \ell^{\prime}_{\beta R} + Y^{\prime\nu}_{\alpha\beta} \, \overline{L^{\prime}_{\alpha L}} \, \widetilde{\Phi} \, \nu^{\prime}_{\beta R} \right] + \mathsf{H.c.}$$

Unitary Gauge

$$\Phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix} \qquad \qquad \tilde{\Phi} = i\tau_2 \Phi^* = \frac{1}{\sqrt{2}} \begin{pmatrix} v + H(x) \\ 0 \end{pmatrix}$$

$$\mathscr{L}_{H,L} = -\left(\frac{\nu+H}{\sqrt{2}}\right) \sum_{\alpha,\beta=e,\mu,\tau} \left[Y_{\alpha\beta}^{\prime\ell} \,\overline{\ell_{\alpha L}^{\prime}} \,\ell_{\beta R}^{\prime} + Y_{\alpha\beta}^{\prime\nu} \,\overline{\nu_{\alpha L}^{\prime}} \,\nu_{\beta R}^{\prime} \right] + \text{H.c.}$$

$$\mathscr{L}_{H,L} = -\left(\frac{\nu+H}{\sqrt{2}}\right) \left[\overline{\ell'_L} Y'^{\ell} \ell'_R + \overline{\nu'_L} Y'^{\nu} \nu'_R\right] + \mathsf{H.c}$$

$$\mathscr{L}_{H,L} = -\left(\frac{\nu+H}{\sqrt{2}}\right) \left[\overline{\ell'_L} Y'^{\ell} \ell'_R + \overline{\nu'_L} Y'^{\nu} \nu'_R\right] + \text{H.c.}$$

Diagonalization of Y'^{ℓ} and Y'^{ν} with unitary V_L^{ℓ} , V_R^{ℓ} , V_L^{ν} , V_R^{ν}

$$\ell_L' = V_L^\ell \, \ell_L \qquad \ell_R' = V_R^\ell \, \ell_R \qquad
u_L' = V_L^
u \, \mathbf{n}_L \qquad
u_R' = V_R^
u \, \mathbf{n}_R$$

Kinetic terms are invariant under unitary transformations of the fields

$$\mathscr{L}_{\mathsf{H},\mathsf{L}} = -\left(\frac{\nu+H}{\sqrt{2}}\right) \left[\overline{\ell_L} V_L^{\ell\dagger} Y^{\prime\ell} V_R^{\ell} \ell_R + \overline{\nu_L} V_L^{\nu\dagger} Y^{\prime\nu} V_R^{\nu} \nu_R\right] + \mathsf{H.c.}$$
$$V_L^{\ell\dagger} Y^{\prime\ell} V_R^{\ell} = Y^{\ell} \qquad Y_{\alpha\beta}^{\ell} = y_{\alpha}^{\ell} \delta_{\alpha\beta} \qquad (\alpha,\beta=e,\mu,\tau)$$
$$V_L^{\nu\dagger} Y^{\prime\nu} V_R^{\nu} = Y^{\nu} \qquad Y_{kj}^{\nu} = y_k^{\nu} \delta_{kj} \qquad (k,j=1,2,3)$$

Real and Positive y_{α}^{ℓ} , y_{k}^{ν}

$$V_L^{\dagger} Y' V_R = Y \iff Y' = V_R^{\dagger} Y V_L$$
$$2N^2 N^2 N N^2$$
$$18 \qquad 9 \qquad 3 \qquad 9$$

Massive Chiral Lepton Fields

$$\ell_{L} = V_{L}^{\ell \dagger} \ell_{L}^{\prime} \equiv \begin{pmatrix} e_{L} \\ \mu_{L} \\ \tau_{L} \end{pmatrix} \qquad \ell_{R} = V_{R}^{\ell \dagger} \ell_{R}^{\prime} \equiv \begin{pmatrix} e_{R} \\ \mu_{R} \\ \tau_{R} \end{pmatrix}$$
$$\mathbf{n}_{L} = V_{L}^{\nu \dagger} \nu_{L}^{\prime} \equiv \begin{pmatrix} \nu_{1L} \\ \nu_{2L} \\ \nu_{3L} \end{pmatrix} \qquad \mathbf{n}_{R} = V_{R}^{\nu \dagger} \nu_{R}^{\prime} \equiv \begin{pmatrix} \nu_{1R} \\ \nu_{2R} \\ \nu_{3R} \end{pmatrix}$$

$$\mathcal{L}_{H,L} = -\left(\frac{\nu+H}{\sqrt{2}}\right) \left[\overline{\ell_L} Y^{\ell} \ell_R + \overline{\mathbf{n}_L} Y^{\nu} n_R\right] + \text{H.c.}$$
$$= -\left(\frac{\nu+H}{\sqrt{2}}\right) \left[\sum_{\alpha=e,\mu,\tau} y^{\ell}_{\alpha} \overline{\ell_{\alpha L}} \ell_{\alpha R} + \sum_{k=1}^3 y^{\nu}_k \overline{\nu_{k L}} \nu_{k R}\right] + \text{H.c.}$$

Massive Dirac Lepton Fields

$$\ell_{lpha} \equiv \ell_{lpha L} + \ell_{lpha R}$$
 $(lpha = e, \mu, \tau)$
 $u_k = v_{kL} + v_{kR}$ $(k = 1, 2, 3)$

$$\mathscr{L}_{H,L} = -\sum_{\alpha=e,\mu,\tau} \frac{y_{\alpha}^{\ell} v}{\sqrt{2}} \overline{\ell_{\alpha}} \ell_{\alpha} - \sum_{k=1}^{3} \frac{y_{k}^{\nu} v}{\sqrt{2}} \overline{\nu_{k}} \nu_{k} \qquad \text{Mass Terms}$$
$$-\sum_{\alpha=e,\mu,\tau} \frac{y_{\alpha}^{\ell}}{\sqrt{2}} \overline{\ell_{\alpha}} \ell_{\alpha} H - \sum_{k=1}^{3} \frac{y_{k}^{\nu}}{\sqrt{2}} \overline{\nu_{k}} \nu_{k} H \qquad \text{Lepton-Higgs Couplings}$$

Charged Lepton and Neutrino Masses

$$m_{\alpha} = \frac{y_{\alpha}^{\ell} v}{\sqrt{2}}$$
 $(\alpha = e, \mu, \tau)$ $m_{k} = \frac{y_{k}^{\nu} v}{\sqrt{2}}$ $(k = 1, 2, 3)$

Lepton-Higgs coupling **x** Lepton Mass

Quantization

 $\nu_k(x) = \int \frac{\mathrm{d}^3 p}{(2\pi)^3 \, 2E_k} \sum_{h=\pm 1} \left[a_k^{(h)}(p) \, u_k^{(h)}(p) \, e^{-ip \cdot x} + b_k^{(h)\dagger}(p) \, v_k^{(h)}(p) \, e^{ip \cdot x} \right]$

$$p^{0} = E_{k} = \sqrt{\vec{p}^{2} + m_{k}^{2}}$$
 $(\not p - m_{k}) u_{k}^{(h)}(p) = 0$
 $(\not p + m_{k}) v_{k}^{(h)}(p) = 0$

$$\frac{\vec{p} \cdot \vec{\Sigma}}{|\vec{p}|} u_k^{(h)}(p) = h u_k^{(h)}(p) \frac{\vec{p} \cdot \vec{\Sigma}}{|\vec{p}|} v_k^{(h)}(p) = -h v_k^{(h)}(p)$$

 $\{a_{k}^{(h)}(p), a_{k}^{(h')\dagger}(p')\} = \{b_{k}^{(h)}(p), b_{k}^{(h')\dagger}(p')\} = (2\pi)^{3} 2E_{k} \,\delta^{3}(\vec{p} - \vec{p}') \,\delta_{hh'} \\ \{a_{k}^{(h)}(p), a_{k}^{(h')}(p')\} = \{a_{k}^{(h)\dagger}(p), a_{k}^{(h')\dagger}(p')\} = 0 \\ \{b_{k}^{(h)}(p), b_{k}^{(h')}(p')\} = \{b_{k}^{(h)\dagger}(p), b_{k}^{(h')\dagger}(p')\} = 0 \\ \{a_{k}^{(h)}(p), b_{k}^{(h')}(p')\} = \{a_{k}^{(h)\dagger}(p), b_{k}^{(h')\dagger}(p')\} = 0 \\ \{a_{k}^{(h)}(p), b_{k}^{(h')\dagger}(p')\} = \{a_{k}^{(h)\dagger}(p), b_{k}^{(h')\dagger}(p')\} = 0 \\ \{a_{k}^{(h)}(p), b_{k}^{(h')\dagger}(p')\} = \{a_{k}^{(h)\dagger}(p), b_{k}^{(h')\dagger}(p')\} = 0 \\ \}$

Mixing

Charged-Current Weak Interaction Lagrangian

$$\mathscr{L}_{\mathsf{I}}^{(\mathsf{CC})} = -\frac{g}{2\sqrt{2}}j_{W}^{\rho}W_{\rho} + \mathsf{H.c.}$$

Weak Charged Current: $j_W^{\rho} =$

$$j_W^\rho = j_{W,\mathsf{L}}^\rho + j_{W,\mathsf{Q}}^\rho$$

Leptonic Weak Charged Current

$$\begin{split} j_{W,L}^{\rho} &= \sum_{\alpha = e, \mu, \tau} \overline{\nu_{\alpha}'} \, \gamma^{\rho} \left(1 - \gamma^{5} \right) \, \ell_{\alpha}' = 2 \sum_{\alpha = e, \mu, \tau} \overline{\nu_{\alpha L}'} \, \gamma^{\rho} \, \ell_{\alpha L}' = 2 \overline{\nu_{L}'} \, \gamma^{\rho} \, \ell_{L}' \\ \ell_{L}' &= V_{L}^{\ell} \, \ell_{L} \qquad \nu_{L}' = V_{L}^{\nu} \, \mathbf{n}_{L} \\ j_{W,L}^{\rho} &= 2 \, \overline{\mathbf{n}_{L}} \, V_{L}^{\nu\dagger} \, \gamma^{\rho} \, V_{L}^{\ell} \, \ell_{L} = 2 \, \overline{\mathbf{n}_{L}} \, V_{L}^{\nu\dagger} \, V_{L}^{\rho} \, \rho \, \ell_{L} = 2 \, \overline{\mathbf{n}_{L}} \, U^{\dagger} \, \gamma^{\rho} \, \ell_{L} \\ \text{Mixing Matrix} \\ U^{\dagger} &= V_{L}^{\nu\dagger} \, V_{L}^{\ell} \qquad U = V_{L}^{\ell\dagger} \, V_{L}^{\nu} \end{split}$$

Definition: Left-Handed Flavor Neutrino Fields

$$\boldsymbol{\nu}_{L} = U \, \boldsymbol{\mathsf{n}}_{L} = V_{L}^{\ell \dagger} \, \boldsymbol{\nu}_{L}' = \begin{pmatrix} \boldsymbol{\nu}_{eL} \\ \boldsymbol{\nu}_{\mu L} \\ \boldsymbol{\nu}_{\tau L} \end{pmatrix}$$

► They allow us to write the Leptonic Weak Charged Current as in the SM: $j_{W,L}^{\rho} = 2 \overline{\nu_L} \gamma^{\rho} \ell_L = 2 \sum_{\alpha = e, \mu, \tau} \overline{\nu_{\alpha L}} \gamma^{\rho} \ell_{\alpha L}$

- Each left-handed flavor neutrino field is associated with the corresponding charged lepton field which describes a massive charged lepton (e, μ, τ).
- In practice left-handed flavor neutrino fields are useful for calculations in the SM approximation of massless neutrinos (interactions).
- ► If neutrino masses must be taken into account, it is necessary to use $j_{W,L}^{\rho} = 2 \,\overline{\mathbf{n}_L} \, U^{\dagger} \, \gamma^{\rho} \, \ell_L = 2 \sum_{k=1}^{3} \sum_{\alpha = e, \mu, \tau} U_{\alpha k}^* \, \overline{\nu_{kL}} \, \gamma^{\rho} \, \ell_{\alpha L}$

Flavor Lepton Numbers

Flavor Neutrino Fields are useful for defining Flavor Lepton Numbers as in the SM

	L _e	L_{μ}	$L_{ au}$		L _e	L_{μ}	$L_{ au}$
(u_e,e^-)	+1	0	0	(u^c_e,e^+)	-1	0	0
(u_{μ},μ^{-})	0	+1	0	$\left(u_{\mu}^{c},\mu^{+} ight)$	0	-1	0
$(u_{ au}, au^{-})$	0	0	+1	$(u^{c}_{ au}, au^{+})$	0	0	-1

$$L = L_e + L_\mu + L_\tau$$

Standard Model:

Lepton numbers are conserved

 Leptonic Weak Charged Current is invariant under the global U(1) gauge transformations

If neutrinos are massless (SM), Noether's theorem implies that there is, for each flavor, a conserved current:

$$j^{\rho}_{\alpha} = \overline{\nu_{\alpha L}} \, \gamma^{\rho} \, \nu_{\alpha L} + \overline{\ell_{\alpha}} \, \gamma^{\rho} \, \ell_{\alpha} \qquad \qquad \partial_{\rho} j^{\rho}_{\alpha} = 0$$

and a conserved charge:

$$L_{\alpha} = \int d^3 x j^0_{\alpha}(x) \qquad \qquad \partial_0 L_{\alpha} = 0$$

$$\begin{aligned} : \mathsf{L}_{\alpha} : &= \int \frac{\mathsf{d}^{3}p}{(2\pi)^{3} \, 2E} \left[a_{\nu_{\alpha}}^{(-)\dagger}(p) \, a_{\nu_{\alpha}}^{(-)}(p) - b_{\nu_{\alpha}}^{(+)\dagger}(p) \, b_{\nu_{\alpha}}^{(+)}(p) \right] \\ &+ \int \frac{\mathsf{d}^{3}p}{(2\pi)^{3} \, 2E} \sum_{h=\pm 1} \left[a_{\ell_{\alpha}}^{(h)\dagger}(p) \, a_{\ell_{\alpha}}^{(h)}(p) - b_{\ell_{\alpha}}^{(h)\dagger}(p) \, b_{\ell_{\alpha}}^{(h)}(p) \right] \end{aligned}$$

Lepton-Higgs Yukawa Lagrangian:

2

$$\mathscr{L}_{H,L} = -\left(\frac{\nu+H}{\sqrt{2}}\right) \left[\sum_{\alpha=e,\mu,\tau} y_{\alpha}^{\ell} \overline{\ell_{\alpha L}} \ell_{\alpha R} + \sum_{k=1}^{3} y_{k}^{\nu} \overline{\nu_{k L}} \nu_{k R}\right] + \text{H.c.}$$

• Mixing:
$$\nu_{\alpha L} = \sum_{k=1}^{3} U_{\alpha k} \nu_{kL} \iff \nu_{kL} = \sum_{\alpha = e, \mu, \tau} U_{\alpha k}^{*} \nu_{\alpha L}$$

$$\mathscr{L}_{H,L} = -\left(\frac{\nu + H}{\sqrt{2}}\right) \sum_{\alpha = e, \mu, \tau} \left[y_{\alpha}^{\ell} \overline{\ell_{\alpha L}} \ell_{\alpha R} + \overline{\nu_{\alpha L}} \sum_{k=1}^{3} U_{\alpha k} y_{k}^{\nu} \nu_{kR} \right] + \text{H.c.}$$

Invariant for $\ell_{\alpha L} \rightarrow e^{i\varphi_{\alpha}} \ell_{\alpha L}, \quad \nu_{\alpha L} \rightarrow e^{i\varphi_{\alpha}} \nu_{\alpha L}$ $\ell_{\alpha R} \rightarrow e^{i\varphi_{\alpha}} \ell_{\alpha R}, \quad \sum_{k=1}^{3} U_{\alpha k} y_{k}^{\nu} \nu_{kR} \rightarrow e^{i\varphi_{\alpha}} \sum_{k=1}^{3} U_{\alpha k} y_{k}^{\nu} \nu_{kR}$

But kinetic part of neutrino Lagrangian is not invariant

$$\mathscr{L}_{\text{kinetic}}^{(\nu)} = \sum_{\alpha = e, \mu, \tau} \overline{\nu_{\alpha L}} i \partial \!\!\!/ \nu_{\alpha L} + \sum_{k=1}^{S} \overline{\nu_{k R}} i \partial \!\!\!/ \nu_{k R}$$

because $\sum_{k=1}^{3} U_{\alpha k} y_{k}^{\nu} \nu_{kR}$ is not a unitary combination of the ν_{kR} 's

$$\mathscr{L}^{D}_{mass} = - \begin{pmatrix} \overline{\nu_{eL}} & \overline{\nu_{\mu L}} & \overline{\nu_{\tau L}} \end{pmatrix} \begin{pmatrix} m^{D}_{ee} & m^{D}_{e\mu} & m^{D}_{e\tau} \\ m^{D}_{\mu e} & m^{D}_{\mu \mu} & m^{D}_{\mu \tau} \\ m^{D}_{\tau e} & m^{D}_{\tau \mu} & m^{D}_{\tau \tau} \end{pmatrix} \begin{pmatrix} \nu_{eR} \\ \nu_{\mu R} \\ \nu_{\tau R} \end{pmatrix} + \text{H.c.}$$

 L_e , L_{μ} , L_{τ} are not conserved

L is conserved: $L(\nu_{\alpha R}) = L(\nu_{\beta L}) \Rightarrow |\Delta L| = 0$

Total Lepton Number

- Dirac neutrino masses violate conservation of Flavor Lepton Numbers
- Total Lepton Number is conserved, because Lagrangian is invariant under the global U(1) gauge transformations
 - $egin{aligned} &
 u_{kL}
 ightarrow e^{iarphi} &
 u_{kR}
 ightarrow e^{iarphi} &
 u_{kR}
 ightarrow e^{iarphi} &
 u_{kR}
 ightarrow e^{iarphi} &
 u_{kR}
 ightarrow e^{iarphi} &
 u_{lpha R}
 ightarrow &
 u_{lpha R}
 ightarrow e^{iarphi} &
 u_{lpha R}$
- From Noether's theorem:

$$j^{\rho} = \sum_{k=1}^{\infty} \overline{\nu_{k}} \gamma^{\rho} \nu_{k} + \sum_{\alpha = e, \mu, \tau} \overline{\ell_{\alpha}} \gamma^{\rho} \ell_{\alpha} \qquad \partial_{\rho} j^{\rho} = 0$$

Conserved charge: $L_{\alpha} = \int d^3x j_{\alpha}^0(x)$ $\partial_0 L_{\alpha} = 0$

$$: \mathsf{L}: = \sum_{k=1}^{3} \int \frac{\mathrm{d}^{3}p}{(2\pi)^{3} \, 2E} \sum_{h=\pm 1} \left[a_{\nu_{k}}^{(h)\dagger}(p) \, a_{\nu_{k}}^{(h)}(p) - b_{\nu_{k}}^{(h)\dagger}(p) \, b_{\nu_{k}}^{(h)}(p) \right] \\ + \sum_{\alpha=e,\mu,\tau} \int \frac{\mathrm{d}^{3}p}{(2\pi)^{3} \, 2E} \sum_{h=\pm 1} \left[a_{\ell_{\alpha}}^{(h)\dagger}(p) \, a_{\ell_{\alpha}}^{(h)}(p) - b_{\ell_{\alpha}}^{(h)\dagger}(p) \, b_{\ell_{\alpha}}^{(h)}(p) \right]$$

Mixing Matrix

• Leptonic Weak Charged Current: $j_{W,L}^{\rho} = 2 \overline{\mathbf{n}_L} U^{\dagger} \gamma^{\rho} \ell_L$

$$\blacktriangleright U = V_L^{\ell \dagger} V_L^{\nu} = \begin{pmatrix} U_{11} & U_{12} & U_{13} \\ U_{21} & U_{22} & U_{23} \\ U_{31} & U_{32} & U_{33} \end{pmatrix} \equiv \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

• Unitary $N \times N$ matrix depends on N^2 independent real parameters

$$N = 3 \implies \frac{N(N-1)}{2} = 3$$
 Mixing Angles
 $\frac{N(N+1)}{2} = 6$ Phases

- Not all phases are physical observables
- Only physical effect of mixing matrix occurs through its presence in the Leptonic Weak Charged Current

- Weak Charged Current: $j_{W,L}^{\rho} = 2 \sum_{k=1}^{3} \sum_{\alpha=e,\mu,\tau} \overline{\nu_{kL}} U_{\alpha k}^* \gamma^{\rho} \ell_{\alpha L}$
- Apart from the Weak Charged Current, the Lagrangian is invariant under the global phase transformations

$$u_k o e^{i arphi_k} \,
u_k \quad (k=1,2,3) \,, \qquad \ell_lpha o e^{i arphi_lpha} \, \, \ell_lpha \quad (lpha=e,\mu, au)$$

Performing this transformation, the Charged Current becomes

$$j_{W,L}^{\rho} = 2 \sum_{k=1}^{3} \sum_{\alpha=e,\mu,\tau} \overline{\nu_{kL}} e^{-i\varphi_{k}} U_{\alpha k}^{*} e^{i\varphi_{\alpha}} \gamma^{\rho} \ell_{\alpha L}$$
$$j_{W,L}^{\rho} = 2 \underbrace{e^{-i(\varphi_{1}-\varphi_{e})}}_{1} \sum_{k=1}^{3} \sum_{\alpha=e,\mu,\tau} \overline{\nu_{kL}} \underbrace{e^{-i(\varphi_{k}-\varphi_{1})}}_{N-1=2} U_{\alpha k}^{*} \underbrace{e^{i(\varphi_{\alpha}-\varphi_{e})}}_{N-1=2} \gamma^{\rho} \ell_{\alpha L}$$

- ► There are 1 + (N 1) + (N 1) = 2N 1 = 5 arbitrary phases of the fields that can be chosen to eliminate 5 of the 6 phases of the mixing matrix
- ► 2N 1 and not 2N phases of the mixing matrix can be eliminated because a common rephasing of all the fields leaves the Charged Current invariant ⇔ conservation of Total Lepton Number.

The mixing matrix contains

$$\frac{N(N+1)}{2} - (2N-1) = \frac{(N-1)(N-2)}{2} = 1$$
 Physical Phase

It is convenient to express the 3 × 3 unitary mixing matrix only in terms of the four physical parameters:

3 Mixing Angles and 1 Phase

Standard Parameterization of Mixing Matrix

$$\begin{pmatrix} \nu_{eL} \\ \nu_{\mu L} \\ \nu_{\tau L} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1L} \\ \nu_{2L} \\ \nu_{3L} \end{pmatrix}$$
$$U = R_{23} W_{13} R_{12}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix}$$
$$C_{ab} \equiv \cos \vartheta_{ab} \qquad s_{ab} \equiv \sin \vartheta_{ab} \qquad 0 \le \vartheta_{ab} \le \frac{\pi}{2} \qquad 0 \le \delta_{13} \le 2\pi$$

CP Violation

- $U = U^* \iff CP$ symmetry
- General conditions for CP violation (14 conditions):
 - 1. No two charged leptons or two neutrinos are degenerate in mass (6 conditions)
 - 2. No mixing angle is equal to 0 or $\pi/2$ (6 conditions)
 - 3. The physical phase is different from 0 or π (2 conditions)
- ▶ These 14 conditions are combined into the single condition det $C \neq 0$

 $C = -i \left[M^{\prime \nu} M^{\prime \nu \dagger}, M^{\prime \ell} M^{\prime \ell \dagger} \right]$

$$\det C = -2 J \left(m_{\nu_2}^2 - m_{\nu_1}^2 \right) \left(m_{\nu_3}^2 - m_{\nu_1}^2 \right) \left(m_{\nu_3}^2 - m_{\nu_2}^2 \right) \\ \left(m_{\mu}^2 - m_e^2 \right) \left(m_{\tau}^2 - m_e^2 \right) \left(m_{\tau}^2 - m_{\mu}^2 \right)$$

► Jarlskog invariant: $J = \Im \mathfrak{m} \Big[U_{\mu 3} U_{e 2} U_{\mu 2}^* U_{e 3}^* \Big]$

[C. Jarlskog, Phys. Rev. Lett. 55 (1985) 1039, Z. Phys. C 29 (1985) 491]

[O. W. Greenberg, Phys. Rev. D 32 (1985) 1841]

[I. Dunietz, O. W. Greenberg, Dan-di Wu, Phys. Rev. Lett. 55 (1985) 2935]

Example: $\vartheta_{12} = 0$

 $U = R_{23}R_{13}W_{12}$

$$W_{12} = \begin{pmatrix} \cos\vartheta_{12} & \sin\vartheta_{12}e^{-i\delta_{12}} & 0\\ -\sin\vartheta_{12}e^{-i\delta_{12}} & \cos\vartheta_{12} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$\vartheta_{12} = 0 \implies W_{12} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{1}$$

real mixing matrix $U = R_{23}R_{13}$

Example: $\vartheta_{13} = \pi/2$

 $U = R_{23}W_{13}R_{12}$

$$W_{13} = \begin{pmatrix} \cos \vartheta_{13} & 0 & \sin \vartheta_{13} e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -\sin \vartheta_{13} e^{i\delta_{13}} & 0 & \cos \vartheta_{13} \end{pmatrix}$$

$$\vartheta_{13} = \pi/2 \implies W_{13} = \begin{pmatrix} 0 & 0 & e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -e^{i\delta_{13}} & 0 & 0 \end{pmatrix}$$

$$U = \begin{pmatrix} 0 & 0 & e^{-i\delta_{13}} \\ -s_{12}c_{23}-c_{12}s_{23}e^{i\delta_{13}} & c_{12}c_{23}-s_{12}s_{23}e^{i\delta_{13}} & 0 \\ s_{12}s_{23}-c_{12}c_{23}e^{i\delta_{13}} & -c_{12}s_{23}-s_{12}c_{23}e^{i\delta_{13}} & 0 \end{pmatrix}$$

$$\begin{split} U &= \begin{pmatrix} 0 & 0 & e^{-i\delta_{13}} \\ |U_{\mu 1}|e^{i\lambda_{\mu 1}} & |U_{\mu 2}|e^{i\lambda_{\mu 2}} & 0 \\ |U_{\tau 1}|e^{i\lambda_{\tau 1}} & |U_{\tau 2}|e^{i\lambda_{\tau 2}} & 0 \end{pmatrix} \\ \lambda_{\mu 1} - \lambda_{\mu 2} &= \lambda_{\tau 1} - \lambda_{\tau 2} \pm \pi & \lambda_{\tau 1} - \lambda_{\mu 1} = \lambda_{\tau 2} - \lambda_{\mu 2} \pm \pi \\ \nu_{k} &\to e^{i\varphi_{k}} \nu_{k} \quad (k = 1, 2, 3), \qquad \ell_{\alpha} \to e^{i\varphi_{\alpha}} \ell_{\alpha} \quad (\alpha = e, \mu, \tau) \\ U \to \begin{pmatrix} e^{-i\varphi_{e}} & 0 & 0 \\ 0 & e^{-i\varphi_{\tau}} & 0 \\ 0 & 0 & e^{-i\varphi_{\tau}} \end{pmatrix} \begin{pmatrix} 0 & 0 & e^{-i\delta_{13}} \\ |U_{\mu 1}|e^{i\lambda_{\tau 1}} & |U_{\mu 2}|e^{i\lambda_{\tau 2}} & 0 \\ |U_{\tau 1}|e^{i\lambda_{\tau 1}} & |U_{\tau 2}|e^{i\lambda_{\tau 2}} & 0 \end{pmatrix} \begin{pmatrix} e^{i\varphi_{1}} & 0 & 0 \\ 0 & e^{i\varphi_{2}} & 0 \\ 0 & 0 & e^{i\varphi_{3}} \end{pmatrix} \\ U &= \begin{pmatrix} 0 & 0 & e^{i(\lambda_{\mu 1} - \varphi_{\mu} + \varphi_{1})} & |U_{\mu 2}|e^{i(\lambda_{\mu 2} - \varphi_{\mu} + \varphi_{2})} & 0 \\ |U_{\tau 1}|e^{i(\lambda_{\tau 1} - \varphi_{\tau} + \varphi_{1})} & |U_{\tau 2}|e^{i(\lambda_{\tau 2} - \varphi_{\tau} + \varphi_{2})} & 0 \end{pmatrix} \end{pmatrix} \\ \varphi_{1} &= 0 \qquad \varphi_{\mu} = \lambda_{\mu 1} \qquad \varphi_{\tau} = \lambda_{\tau 1} \qquad \varphi_{2} = \varphi_{\mu} - \lambda_{\mu 2} = \lambda_{\mu 1} - \lambda_{\mu 2} \\ \varphi_{2} &= \varphi_{\tau} - \lambda_{\tau 2} \pm \pi = \lambda_{\tau 1} - \lambda_{\tau 2} \pm \pi = \lambda_{\mu 1} - \lambda_{\mu 2} & \text{OK!} \\ U &= \begin{pmatrix} 0 & 0 & \pm 1 \\ |U_{\mu 1}| & |U_{\mu 2}| & 0 \\ |U_{\tau 1}| & |U_{\mu 2}| & 0 \\ |U_{\tau 1}| & |U_{\tau 2}| & 0 \end{pmatrix} \end{split}$$

Example: $m_{\nu_2} = m_{\nu_3}$

$$j_{W,L}^{\rho} = 2 \,\overline{\mathbf{n}_{L}} \, U^{\dagger} \, \gamma^{\rho} \, \ell_{L}$$

$$U = R_{12}R_{13}W_{23} \implies j_{W,L}^{\rho} = 2 \,\overline{\mathbf{n}_{L}} \, W_{23}^{\dagger}R_{13}^{\dagger}R_{12}^{\dagger} \, \gamma^{\rho} \, \ell_{L}$$

$$W_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \vartheta_{23} & \sin \vartheta_{23} e^{-i\delta_{23}} \\ 0 & -\sin \vartheta_{23} e^{-i\delta_{23}} & \cos \vartheta_{23} \end{pmatrix}$$

$$W_{23}\mathbf{n}_{L} = \mathbf{n}_{L}' \qquad R_{12}R_{13} = U' \implies j_{W,L}^{\rho} = 2 \,\overline{\mathbf{n}_{L}'} \, U'^{\dagger} \, \gamma^{\rho} \, \ell_{L}$$

$$\nu_{2} \text{ and } \nu_{3} \text{ are indistinguishable}$$
drop the prime $\implies j_{W,L}^{\rho} = 2 \,\overline{\mathbf{n}_{L}} \, U^{\dagger} \, \gamma^{\rho} \, \ell_{L}$
real mixing matrix $U = R_{12}R_{13}$

Jarlskog Invariant

$$J = \Im \mathfrak{m} \Big[U_{\mu 3} \, U_{e 2} \, U_{\mu 2}^* \, U_{e 3}^* \Big]$$

All the imaginary parts of the rephasing-invariant quartic products U^{*}_{αk} U_{βk} U_{αj} U^{*}_{βj} are equal up to a sign:
 Sm[U^{*}_{αk} U_{βk} U_{αj} U^{*}_{βj}] = ±J

In the standard parameterization

$$J = c_{12}s_{12}c_{23}s_{23}c_{13}^2s_{13}\sin\delta_{13}$$

= $\frac{1}{8}\sin 2\vartheta_{12}\sin 2\vartheta_{23}\cos\vartheta_{13}\sin 2\vartheta_{13}\sin\delta_{13}$

 The Jarlskog invariant is useful for quantifying CP violation in a parameterization-independent way

Maximal CP Violation

Maximal CP violation is defined as the case in which |J| has its maximum possible value

$$|J|_{\max} = \frac{1}{6\sqrt{3}}$$

In the standard parameterization it is obtained for

$$\vartheta_{12} = \vartheta_{23} = \pi/4$$
, $s_{13} = 1/\sqrt{3}$, $\sin \delta_{13} = \pm 1$

► This case is called Trimaximal Mixing. All the absolute values of the elements of the mixing matrix are equal to 1/√3:

$$U = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \mp \frac{i}{\sqrt{3}} \\ -\frac{1}{2} \mp \frac{i}{2\sqrt{3}} & \frac{1}{2} \mp \frac{i}{2\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{2} \mp \frac{i}{2\sqrt{3}} & -\frac{1}{2} \mp \frac{i}{2\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & \mp i \\ -e^{\pm i\pi/6} & e^{\mp i\pi/6} & 1 \\ e^{\mp i\pi/6} & -e^{\pm i\pi/6} & 1 \end{pmatrix}$$

GIM Mechanism

[S.L. Glashow, J. Iliopoulos, L. Maiani, Phys. Rev. D 2 (1970) 1285]

► The unitarity of V^ℓ_L, V^ℓ_R and V^ν_L implies that the expression of the neutral weak current in terms of the lepton fields with definite masses is the same as that in terms of the primed lepton fields:

$$j_{Z,L}^{\rho} = 2 g_L^{\nu} \overline{\nu_L'} \gamma^{\rho} \nu_L' + 2 g_L' \overline{\ell_L'} \gamma^{\rho} \ell_L' + 2 g_R' \overline{\ell_R'} \gamma^{\rho} \ell_R'$$

$$= 2 g_L^{\nu} \overline{\mathbf{n}_L} V_L^{\nu\dagger} \gamma^{\rho} V_L^{\nu} \mathbf{n}_L + 2 g_L' \overline{\ell_L} V_L^{\ell\dagger} \gamma^{\rho} V_L^{\ell} \ell_L + 2 g_R' \overline{\ell_R} V_R^{\ell\dagger} \gamma^{\rho} V_R^{\ell} \ell_R$$

$$= 2 g_L^{\nu} \overline{\mathbf{n}_L} \gamma^{\rho} \mathbf{n}_L + 2 g_L' \overline{\ell_L} \gamma^{\rho} \ell_L + 2 g_R' \overline{\ell_R} \gamma^{\rho} \ell_R$$

The unitarity of U implies the same expression for the neutral weak current in terms of the flavor neutrino fields ν_L = U n_L:

$$j_{Z,L}^{\rho} = 2 g_L^{\nu} \overline{\nu_L} U \gamma^{\rho} U^{\dagger} \nu_L + 2 g_L^{\prime} \overline{\ell_L} \gamma^{\rho} \ell_L + 2 g_R^{\prime} \overline{\ell_R} \gamma^{\rho} \ell_R$$
$$= 2 g_L^{\nu} \overline{\nu_L} \gamma^{\rho} \nu_L + 2 g_L^{\prime} \overline{\ell_L} \gamma^{\rho} \ell_L + 2 g_R^{\prime} \overline{\ell_R} \gamma^{\rho} \ell_R$$
Lepton Numbers Violating Processes

Dirac mass term allows L_e , L_μ , L_τ violating processes Example: $\mu^{\pm} \rightarrow e^{\pm} + \gamma$, $\mu^{\pm} \rightarrow e^{\pm} + e^+ + e^ \mu^- \rightarrow e^- + \gamma$

 $\sum U_{\mu k}^* U_{ek} = 0 \implies$ only part of u_k propagator $\propto m_k$ contributes $\frac{\int \mathbf{F} \frac{m_{\mu}^{5}}{22\pi^{3}}}{\frac{3\alpha}{32\pi}} \underbrace{\frac{3\alpha}{k}}_{k} \frac{\left|\sum_{k} U_{\mu k}^{*} U_{e k} \frac{m_{k}^{2}}{m_{W}^{2}}\right|^{2}}{\mathbf{BR}} \underbrace{\frac{1}{\mu^{-}} \frac{1}{\mu^{-}}}_{U_{\mu k}^{*}} \underbrace{\frac{1}{\nu_{k}}}_{U_{e k}^{*}} \underbrace{\frac{1}{\nu_{e k}}}_{U_{e k}^{*}}$ Suppression factor: $\frac{m_{k}}{m_{W}} \lesssim 10^{-11}$ for $m_{k} \lesssim 1 \text{ eV}$ $\Gamma = \frac{G_{\mathsf{F}} m_{\mu}^{\mathsf{o}}}{192\pi^3} \frac{3\alpha}{32\pi} \left| \sum_{k} U_{\mu k}^* U_{ek} \frac{m_k^2}{m_W^2} \right|^2$ e^{-} $(BR)_{exp} \le 10^{-11}$ $(BR)_{the} \le 10^{-47}$

Majorana Neutrino Masses

• Dirac Neutrino Masses

• Majorana Neutrino Masses

- Two-Component Theory of a Massless Neutrino
- Majorana Equation
- Majorana Lagrangian
- Majorana Antineutrino Jargon
- Lepton Number
- CP Symmetry
- No Majorana Neutrino Mass in the SM
- Effective Majorana Mass
- Mixing of Three Majorana Neutrinos
- Mixing Matrix
- Neutrinoless Double-Beta Decay
- Effective Majorana Neutrino Mass
- Majorana Neutrino Mass $\Leftrightarrow \beta \beta_{0\nu}$ Decay

Two-Component Theory of a Massless Neutrino

[L. Landau, Nucl. Phys. 3 (1957) 127], [T.D. Lee, C.N. Yang, Phys. Rev. 105 (1957) 1671], [A. Salam, Nuovo Cim. 5 (1957) 299]

- Dirac Equation: $(i\gamma^{\mu}\partial_{\mu} m)\psi = 0$
- Chiral components of a Fermion Field: $\psi = \psi_L + \psi_R$
- The equations for the Chiral components are coupled by the mass:

 $i\gamma^{\mu}\partial_{\mu}\psi_{L} = m\psi_{R}$ $i\gamma^{\mu}\partial_{\mu}\psi_{R} = m\psi_{L}$

They are decoupled for a massless fermion: Weyl Equations (1929)

 $i\gamma^{\mu}\partial_{\mu}\psi_{L}=0$ $i\gamma^{\mu}\partial_{\mu}\psi_{R}=0$

 A massless fermion can be described by a single chiral field ψ_L or ψ_R (Weyl Spinor).

▶ ψ_L and ψ_R have only two independent components: in the chiral representation

$$\psi_L = \begin{pmatrix} 0 \\ \chi_L \end{pmatrix} \qquad \qquad \psi_R = \begin{pmatrix} \chi_R \\ 0 \end{pmatrix}$$

- The possibility to describe a physical particle with a Weyl spinor was rejected by Pauli in 1933 because it leads to the violation of parity
- ► The discovery of parity violation in 1956-57 invalidated Pauli's reasoning, opening the possibility to describe massless particles with Weyl spinor fields ⇒ Two-component Theory of a Massless Neutrino (1957)
- V A Charged-Current Weak Interactions $\implies \nu_L$
- In the 1960s, the Two-component Theory of a Massless Neutrino was incorporated in the SM through the assumption of the absence of ν_R

Majorana Equation

- Can a two-component spinor describe a massive fermion? Yes! (E. Majorana, 1937)
- Trick: ψ_R and ψ_L are not independent.
- The relation connecting ψ_R and ψ_L must be compatible with the Dirac equation:

$$i\gamma^{\mu}\partial_{\mu}\psi_{L} = m\psi_{R}$$
 $i\gamma^{\mu}\partial_{\mu}\psi_{R} = m\psi_{L}$

- ► The two equations must be two ways of writing the same equation for one independent field, say ψ_L.
- Consider $i\gamma^{\mu}\partial_{\mu}\psi_{R} = m\psi_{L}$
- Take the Hermitian conjugate and multiply on the right with γ^0 : $-i\partial_\mu \psi_R^{\dagger} \gamma^{\mu\dagger} \gamma^0 = m \overline{\psi_L}$
- $\blacktriangleright \gamma^0 \gamma^{\mu\dagger} \gamma^0 = \gamma^\mu \Longrightarrow -i \partial_\mu \overline{\psi_R} \gamma^\mu = m \overline{\psi_L}$
- ► Transpose and multiply on the left with $C (C \gamma_{\mu}^{T} C^{-1} = -\gamma_{\mu}) \implies i\gamma^{\mu}\partial_{\mu}C \overline{\psi_{R}}^{T} = mC \overline{\psi_{L}}^{T}$

- $C \overline{\psi_L}^T$ is right-handed and $C \overline{\psi_R}^T$ is left-handed
- $i\gamma^{\mu}\partial_{\mu}C \overline{\psi_R}^{T} = mC \overline{\psi_L}^{T}$ has the same structure as $i\gamma^{\mu}\partial_{\mu}\psi_L = m\psi_R$
- We can consider them as identical by setting

$$\psi_R = \xi \ {\cal C} \, \overline{\psi_L}^{{\cal T}} \qquad {
m with} \qquad |\xi|^2 = 1$$

 \blacktriangleright ξ is unphysical phase factor which can be eliminated by rephasing

$$\psi_L o \xi^{1/2} \psi_L \implies \psi_R = \mathcal{C} \overline{\psi_L}^T$$

• Majorana Equation: $i\gamma^{\mu}\partial_{\mu}\psi_{L} = m C \overline{\psi_{L}}^{T}$

► The field $\psi = \psi_L + \psi_R = \psi_L + C \overline{\psi_L}^T$ is called Majorana Field

• Majorana Condition: $\psi = C \overline{\psi}^T$

A Majorana Field has only two independent components

• Chiral representation: $\psi = \begin{pmatrix} i\sigma^2 \chi_L^* \\ \chi_L \end{pmatrix}$

- Charge Conjugation: $\psi_L^C = C \overline{\psi_L}^T$
- ► Majorana Field: $\psi = \psi_L + \psi_L^C$ Majorana Condition: $\psi = \psi^C$
- The Majorana condition implies the equality of particle and antiparticle
- Only neutral fermions can be Majorana particles
- Dirac equation for fermion with charge q coupled to electromagnetic field A_µ:

$$\begin{aligned} (i\gamma^{\mu}\partial_{\mu} - q\,\gamma^{\mu}A_{\mu} - m)\,\psi &= 0 \qquad (\text{particle}) \\ (i\gamma^{\mu}\partial_{\mu} + q\,\gamma^{\mu}A_{\mu} - m)\,\psi^{C} &= 0 \qquad (\text{antiparticle}) \end{aligned}$$

If $q \neq 0$, ψ and ψ^{C} obey different equations and the Majorana equality cannot be imposed

For a Majorana field, the electromagnetic current vanishes identically: $\overline{\psi}\gamma^{\mu}\psi = \overline{\psi}^{C}\gamma^{\mu}\psi^{C} = -\psi^{T}C^{\dagger}\gamma^{\mu}C\overline{\psi}^{T} = \overline{\psi}C\gamma^{\mu}{}^{T}C^{\dagger}\psi = -\overline{\psi}\gamma^{\mu}\psi = 0$

Majorana Lagrangian

- ► Let us consider first the Dirac Lagrangian $\mathscr{L}^{D} = \overline{\nu} (i\partial \!\!\!/ - m) \nu = \overline{\nu_{L}} i\partial \!\!\!/ \nu_{L} + \overline{\nu_{R}} i\partial \!\!\!/ \nu_{R} - m (\overline{\nu_{R}} \nu_{L} + \overline{\nu_{L}} \nu_{R})$
- ▶ In order to write a Majorana Mass Term using ν_L alone, we make the substitution $\nu_R \rightarrow \nu_L^C = C \overline{\nu_L}^T$
- Majorana Lagrangian: $\mathscr{L}^{\mathsf{M}} = \frac{1}{2} \left[\overline{\nu_L} \, i \partial \!\!\!/ \nu_L + \overline{\nu_L^{\mathsf{C}}} \, i \partial \!\!\!/ \nu_L^{\mathsf{C}} - m \left(\overline{\nu_L^{\mathsf{C}}} \, \nu_L + \overline{\nu_L} \, \nu_L^{\mathsf{C}} \right) \right]$

► The overall factor 1/2 avoids double counting in the derivation of the due to the fact that ν_L^C and $\overline{\nu_L}$ are not independent $(\nu_L^C = C\overline{\nu_L}^T)$ $\mathscr{L}^{\mathsf{M}} = \overline{\nu_L} i \partial \!\!\!/ \nu_L - \frac{m}{2} \left(-\nu_L^T C^\dagger \nu_L + \overline{\nu_L} C \overline{\nu_L}^T \right)$

- Majorana Field: $\nu = \nu_L + \nu_L^C$
- Majorana Condition: $\nu^{C} = \nu$
- Majorana Lagrangian: $\mathscr{L}^{\mathsf{M}} = \frac{1}{2} \overline{\nu} (i \partial \!\!/ m) \nu$
- The factor 1/2 distinguishes the Majorana Lagrangian from the Dirac Lagrangian
- Quantized Dirac Neutrino Field:

$$\nu(x) = \int \frac{d^3 p}{(2\pi)^3 \, 2E} \sum_{h=\pm 1} \left[a^{(h)}(p) \, u^{(h)}(p) \, e^{-ip \cdot x} + b^{(h)^{\dagger}}(p) \, v^{(h)}(p) \, e^{ip \cdot x} \right]$$

► Quantized Majorana Neutrino Field $\begin{bmatrix} b^{(h)}(p) = a^{(h)}(p) \end{bmatrix}$ $\nu(x) = \int \frac{d^3p}{(2\pi)^3 2E} \sum_{h=\pm 1} \left[a^{(h)}(p) u^{(h)}(p) e^{-ip \cdot x} + a^{(h)\dagger}(p) v^{(h)}(p) e^{ip \cdot x} \right]$

A Majorana field has half the degrees of freedom of a Dirac field

Majorana Antineutrino Jargon

- A Majorana neutrino is the same as a Majorana antineutrino
- Neutrino interactions are described by the CC and NC Lagrangians

$$\mathcal{L}_{l,L}^{CC} = -\frac{g}{\sqrt{2}} \left(\overline{\nu_L} \gamma^{\mu} \ell_L W_{\mu} + \overline{\ell_L} \gamma^{\mu} \nu_L W_{\mu}^{\dagger} \right)$$
$$\mathcal{L}_{l,\nu}^{NC} = -\frac{g}{2\cos\vartheta_W} \overline{\nu_L} \gamma^{\mu} \nu_L Z_{\mu}$$

 In practice, since detectable neutrinos are always ultrarelativistic, the neutrino mass can be neglected in interactions • In interaction amplitudes we neglect corrections of order m/E

Common definitions:

Majorana neutrino with negative helicity \equiv neutrino Majorana neutrino with positive helicity \equiv antineutrino

Lepton Number

The Majorana Mass Term

 $\mathscr{L}_{\text{mass}}^{\text{M}} = \frac{1}{2} m \left(\nu_{L}^{T} C^{\dagger} \nu_{L} + \nu_{L}^{\dagger} C \nu_{L}^{*} \right)$ is not invariant under the global U(1) gauge transformation $\nu_{L} \rightarrow e^{i\varphi} \nu_{L}$ $L \rightarrow -1 \qquad \longleftarrow \qquad \underbrace{\nu^{c} = \nu} \qquad \rightarrow \qquad L \rightarrow +1$

• The Total Lepton Number is not conserved: $\Delta L = \pm 2$

- However, the Total Lepton Number is conserved in interactions in the ultrarelativistic approximation of massless neutrinos
- Best process to find the violation of the Total Lepton Number: Neutrinoless Double-β Decay

$$\begin{split} \mathcal{N}(A,Z) &\to \mathcal{N}(A,Z+2) + 2 \, e^- \qquad \left(\beta \beta_{0\nu}^-\right) \\ \mathcal{N}(A,Z) &\to \mathcal{N}(A,Z-2) + 2 \, e^+ \qquad \left(\beta \beta_{0\nu}^+\right) \end{split}$$

CP Symmetry

Under a CP transformation

$$U_{CP}\nu_{L}(x)U_{CP}^{-1} = \xi_{\nu}^{CP}\gamma^{0}\nu_{L}^{C}(x_{P})$$
$$U_{CP}\nu_{L}^{C}(x)U_{CP}^{-1} = -\xi_{\nu}^{CP*}\gamma^{0}\nu_{L}(x_{P})$$
$$U_{CP}\overline{\nu_{L}}(x)U_{CP}^{-1} = \xi_{\nu}^{CP*}\overline{\nu_{L}^{C}}(x_{P})\gamma^{0}$$
$$U_{CP}\overline{\nu_{L}^{C}}(x)U_{CP}^{-1} = -\xi_{\nu}^{CP}\overline{\nu_{L}}(x_{P})\gamma^{0}$$

with $|\xi_{\nu}^{\mathsf{CP}}|^2 = 1$, $x^{\mu} = (x^0, \vec{x})$, and $x_{\mathsf{P}}^{\mu} = (x^0, -\vec{x})$

► The theory is CP-symmetric if there are values of the phase ξ^{CP}_ν such that the Lagrangian transforms as U_{CP}ℒ(x)U⁻¹_{CP} = ℒ(x_P)

in order to keep invariant the action $I = \int d^4x \mathscr{L}(x)$

► The Majorana Mass Term $\mathscr{L}_{mass}^{M}(x) = -\frac{1}{2} m \left[\overline{\nu_{L}^{C}}(x) \nu_{L}(x) + \overline{\nu_{L}}(x) \nu_{L}^{C}(x) \right]$ transforms as

$$U_{CP}\mathscr{L}_{mass}^{M}(x)U_{CP}^{-1} = -\frac{1}{2}m\left[-(\xi_{\nu}^{CP})^{2}\overline{\nu_{L}}(x_{P})\nu_{L}^{C}(x_{P}) - (\xi_{\nu}^{CP*})^{2}\overline{\nu_{L}^{C}}(x_{P})\nu_{L}(x_{P})\right]$$

- ► $U_{CP} \mathscr{L}_{mass}^{M}(x) U_{CP}^{-1} = \mathscr{L}_{mass}^{M}(x_{P})$ for $\xi_{\nu}^{CP} = \pm i$
- The one-generation Majorana theory is CP-symmetric
- The Majorana case is different from the Dirac case, in which the CP phase ξ^{CP}_ν is arbitrary

No Majorana Neutrino Mass in the SM

- ► A Majorana Mass Term $\propto \left[\nu_L^T C^{\dagger} \nu_L \overline{\nu_L} C \overline{\nu_L}^T\right]$ involves only the neutrino left-handed chiral field ν_L , which is present in the SM (one for each lepton generation)
- Eigenvalues of the weak isospin *I*, of its third component *I*₃, of the hypercharge *Y* and of the charge *Q* of the lepton and Higgs multiplets:

		1	<i>I</i> ₃	Y	$Q = I_3 + \frac{Y}{2}$
lepton doublet	$L_L = egin{pmatrix} u_L \ \ell_L \end{pmatrix} = 1/2$	1/2	1/2	-1	0
		1/2	-1/2		-1
lepton singlet	ℓ_R	0	0	-2	-1
Higgs doublet	$\Phi(x) = egin{pmatrix} \phi^+(x) \ \phi^0(x) \end{pmatrix}$:	1/2	1/2	+1	1
			-1/2		0

• $\nu_L^T C^\dagger \nu_L$ has $I_3 = 1$ and $Y = -2 \implies$ needed Higgs triplet with Y = 2

Effective Majorana Mass

- ▶ Dimensional analysis: Fermion Field $\sim [E]^{3/2}$ Boson Field $\sim [E]$
- Dimensionless action: $I = \int d^4 x \, \mathscr{L}(x) \Longrightarrow \mathscr{L}(x) \sim [E]^4$
- Kinetic terms: $\overline{\psi}i\partial\!\!\!/\psi\sim [E]^4$, $(\partial_\mu\phi)^\dagger\,\partial^\mu\phi\sim [E]^4$
- Mass terms: $m \overline{\psi} \psi \sim [E]^4$, $m^2 \phi^{\dagger} \phi \sim [E]^4$
- CC weak interaction: $\overline{\nu_L} \gamma^{
 ho} \ell_L W_{
 ho} \sim [E]^4$
- Yukawa couplings: $\overline{L_{\alpha L}} \Phi \ell'_{\beta R} \sim [E]^4$
- ▶ Product of fields \mathcal{O}_d with energy dimension $d \equiv \text{dim-}d$ operator
- Coupling constant of \mathcal{O}_d has dimension $[E]^{-(d-4)}$
- $\mathcal{O}_{d>4}$ are not renormalizable

- ▶ SM Lagrangian includes all $\mathcal{O}_{d \le 4}$ invariant under $SU(2)_L \times U(1)_Y$
- SM cannot be considered as the final theory of everything
- ► SM is an effective low-energy theory
- It is likely that SM is the low-energy product of the symmetry breaking of a high-energy unified theory
- ► All O_d must respect SU(2)_L × U(1)_Y, because they are generated by the high-energy theory which must include the gauge symmetries of the SM in order to be effectively reduced to the SM at low energies
- Approach analogous to effective non-renormalizable four-fermion Fermi theory of weak interactions, which is a low-energy manifestation of the SM

▶ Ø_{d>4} is suppressed by a coefficient M^{-(d-4)}, where M is a heavy mass characteristic of the symmetry breaking scale of the high-energy unified theory:

$$\mathscr{L} = \mathscr{L}_{\mathsf{SM}} + \frac{g_5}{\mathcal{M}} \mathscr{O}_5 + \frac{g_6}{\mathcal{M}^2} \mathscr{O}_6 + \dots$$

- Analogy with $\mathscr{L}_{eff}^{(CC)} = -\frac{G_F}{\sqrt{2}} j^{\dagger}_{W\mu} j^{\mu}_W$: $\mathscr{O}_6 \to j^{\dagger}_{W\mu} j^{\mu}_W \qquad \frac{g_6}{\mathcal{M}^2} \to \frac{G_F}{\sqrt{2}} = \frac{g^2}{8m_W^2}$
- ► M^{-(d-4)} is a strong suppression factor which limits the observability of the low-energy effects of the new physics beyond the SM
- The difficulty to observe the effects of the effective low-energy non-renormalizable operators increase rapidly with their dimensionality
- $\mathcal{O}_5 \implies$ Majorana neutrino masses (Lepton number violation)
- ▶ 𝔅₆ ⇒ Baryon number violation (proton decay)
 C. Giunti Neutrino Oscillation Physics 9-13 June 2008, Benasque, Spain 54

Only one dim-5 operator:

$$\mathcal{O}_{5} = (L_{L}^{T} \tau_{2} \Phi) \mathcal{C}^{\dagger} (\Phi^{T} \tau_{2} L_{L}) + \text{H.c.}$$
$$= \frac{1}{2} (L_{L}^{T} \mathcal{C}^{\dagger} \tau_{2} \vec{\tau} L_{L}) \cdot (\Phi^{T} \tau_{2} \vec{\tau} \Phi) + \text{H.c.}$$

$$\mathscr{L}_{5} = \frac{g_{5}}{2\mathcal{M}} \left(L_{L}^{T} \mathcal{C}^{\dagger} \tau_{2} \vec{\tau} L_{L} \right) \cdot \left(\Phi^{T} \tau_{2} \vec{\tau} \Phi \right) + \text{H.c.}$$

• Electroweak Symmetry Breaking:
$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \xrightarrow{\text{Symmetry}} \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix}$$

$$\blacktriangleright \ \mathscr{L}_5 \ \xrightarrow{\text{Symmetry}}_{\text{Breaking}} \ \mathscr{L}_{\text{mass}}^{\mathsf{M}} = \frac{1}{2} \frac{g_5 v^2}{\mathcal{M}} v_L^T \ \mathcal{C}^\dagger v_L + \text{H.c.} \implies \qquad m = \frac{g_5 v^2}{\mathcal{M}}$$

The study of Majorana neutrino masses provides the most accessible low-energy window on new physics beyond the SM

• $m \propto \frac{v^2}{M} \propto \frac{m_D^2}{M}$ natural explanation of smallness of neutrino masses (special case: See-Saw Mechanism)

• Example: $m_{\rm D} \sim v \sim 10^2 \, {\rm GeV}$ and ${\cal M} \sim 10^{15} \, {\rm GeV} \implies m \sim 10^{-2} \, {\rm eV}$

Mixing of Three Majorana Neutrinos

$$\boldsymbol{\nu}_{L}^{\prime} \equiv \begin{pmatrix} \nu_{eL}^{\prime} \\ \nu_{\mu L}^{\prime} \\ \nu_{\tau L}^{\prime} \end{pmatrix} \overset{\mathscr{L}_{mass}^{\mathsf{M}} = \frac{1}{2} \left(\boldsymbol{\nu}_{L}^{\prime T} \, \mathcal{C}^{\dagger} \, \mathcal{M}^{L} \, \boldsymbol{\nu}_{L}^{\prime} - \overline{\boldsymbol{\nu}_{L}^{\prime}} \, \mathcal{M}^{L\dagger} \, \mathcal{C} \, \boldsymbol{\nu}_{L}^{\prime T} \right) \\ = \frac{1}{2} \sum_{\alpha, \beta = e, \mu, \tau} \left(\boldsymbol{\nu}_{\alpha L}^{\prime T} \, \mathcal{C}^{\dagger} \, \mathcal{M}_{\alpha \beta}^{L} \, \boldsymbol{\nu}_{\beta L}^{\prime} - \overline{\boldsymbol{\nu}_{\alpha L}^{\prime}} \, \mathcal{M}_{\beta \alpha}^{L*} \, \mathcal{C} \, \boldsymbol{\nu}_{\beta L}^{\prime T} \right)$$

▶ In general, the matrix M^L is a complex symmetric matrix

$$\sum_{\alpha,\beta} \nu_{\alpha L}^{\prime T} C^{\dagger} M_{\alpha \beta}^{L} \nu_{\beta L}^{\prime} = -\sum_{\alpha,\beta} \nu_{\beta L}^{\prime T} M_{\alpha \beta}^{L} (C^{\dagger})^{T} \nu_{\alpha L}^{\prime}$$
$$= \sum_{\alpha,\beta} \nu_{\beta L}^{\prime T} C^{\dagger} M_{\alpha \beta}^{L} \nu_{\alpha L}^{\prime} = \sum_{\alpha,\beta} \nu_{\alpha L}^{\prime T} C^{\dagger} M_{\beta \alpha}^{L} \nu_{\beta L}^{\prime}$$
$$M_{\alpha \beta}^{L} = M_{\beta \alpha}^{L} \iff M^{L} = M^{L}^{T}$$

$$\blacktriangleright \mathscr{L}_{\mathsf{mass}}^{\mathsf{M}} = \frac{1}{2} \left(\boldsymbol{\nu}_{L}^{\prime T} \, \mathcal{C}^{\dagger} \, \boldsymbol{M}^{L} \, \boldsymbol{\nu}_{L}^{\prime} - \overline{\boldsymbol{\nu}_{L}^{\prime}} \, \boldsymbol{M}^{L \dagger} \, \mathcal{C} \, \boldsymbol{\nu}_{L}^{\prime T} \right)$$

• Diagonalization: $\nu'_L = \mathbf{n}_L V_L^{\nu\dagger}$ with unitary V_L^{ν}

- $(V_L^{\nu})^T M^L V_L^{\nu} = M$, $M_{kj} = m_k \,\delta_{kj}$ (k, j = 1, 2, 3)
- Real and Positive m_k

7

• Left-handed chiral fields with definite mass: $\mathbf{n}_L = V_L^{\nu \dagger} \nu'_L = \begin{pmatrix} \nu_{1L} \\ \nu_{2L} \\ \nu_{nL} \end{pmatrix}$

$$\mathcal{L}_{\text{mass}}^{\mathsf{M}} = \frac{1}{2} \left(\mathbf{n}_{L}^{\mathsf{T}} \, \mathcal{C}^{\dagger} \, M \, \mathbf{n}_{L} - \overline{\mathbf{n}_{L}} \, M \, \mathcal{C} \, \mathbf{n}_{L}^{\mathsf{T}} \right)$$
$$= \frac{1}{2} \sum_{k=1}^{3} m_{k} \left(\nu_{kL}^{\mathsf{T}} \, \mathcal{C}^{\dagger} \, \nu_{kL} - \overline{\nu_{kL}} \, \mathcal{C} \, \nu_{kL}^{\mathsf{T}} \right)$$

• Majorana fields of massive neutrinos: $v_k = v_{kL} + v_{kL}^C$

$$\nu_k^C = \nu_k$$

$$\mathbf{h} = \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \Longrightarrow \mathscr{L}^{\mathsf{M}} = \frac{1}{2} \sum_{k=1}^{3} \overline{\nu_k} (i \partial - m_k) \nu_k = \frac{1}{2} \overline{\mathbf{n}} (i \partial - M) \mathbf{n}$$

Mixing Matrix

Leptonic Weak Charged Current:

$$j^{
ho}_{W,\mathsf{L}}=2\,\overline{\mathbf{n}_L}\,U^\dagger\,\gamma^{
ho}\,\ell_L \qquad ext{with} \qquad U=\,V_L^{\ell\dagger}\,V_L^{
u}$$

Definition of the left-handed flavor neutrino fields:

$$u_L = U \mathbf{n}_L = V_L^{\ell \dagger} \, u_L' = \begin{pmatrix}
u_{eL} \\
u_{\mu L} \\
u_{\tau L} \end{pmatrix}$$

Leptonic Weak Charged Current has the SM form

$$j_{W,L}^{\rho} = 2 \, \overline{\nu_L} \, \gamma^{\rho} \, \ell_L = 2 \sum_{\alpha = e, \mu, \tau} \overline{\nu_{\alpha L}} \, \gamma^{\rho} \, \ell_{\alpha L}$$

 Important difference with respect to Dirac case: Two additional CP-violating phases: Majorana phases

- ► The Majorana Mass Term $\mathscr{L}_{mass}^{M} = \frac{1}{2} \sum_{k=1}^{3} m_k \left(\nu_{kL}^T \mathcal{C}^{\dagger} \nu_{kL} \overline{\nu_{kL}} \mathcal{C} \nu_{kL}^T \right)$ is not invariant under the global U(1) gauge transformations $\nu_{kL} \rightarrow e^{i\varphi_k} \nu_{kL} \qquad (k = 1, 2, 3)$
- The left-handed massive neutrino fields cannot be rephased in order to eliminate the two phases that can be factorized on the right of the mixing matrix

$$U = U^{\mathsf{D}} D^{\mathsf{M}} \qquad D^{\mathsf{M}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_2} & 0 \\ 0 & 0 & e^{i\lambda_3} \end{pmatrix}$$

- ► U^D is analogous to a Dirac mixing matrix, with one Dirac phase
- Standard parameterization:

$$U^{\rm D} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix}$$

► Jarlskog invariant: $J = c_{12}s_{12}c_{23}s_{23}c_{13}^2s_{13}\sin\delta_{13}$ as in the Dirac case

► $D^{\mathsf{M}} = \mathsf{diag}(e^{i\lambda_1}, e^{i\lambda_2}, e^{i\lambda_3})$, but only two Majorana phases are physical

 All measurable quantities depend only on the differences of the Majorana phases
 iw ε = i(λ_k = - i(λ_k = φ))

$$\ell_{lpha} o e^{\prime arphi} \ell_{lpha} \implies e^{\prime \lambda_k} o e^{\prime (\lambda_k - \lambda_j)}$$
 remains constant

e

• Our convention: $\lambda_1 = 0 \implies D^{\mathsf{M}} = \mathsf{diag}(1, e^{i\lambda_2}, e^{i\lambda_3})$

CP is conserved if all the elements of each column of the mixing matrix are either real or purely imaginary:
So an = (2 are = or 2 = /2)

$$\delta_{13}=0 ext{ or } \pi$$
 and $\lambda_k=0 ext{ or } \pi/2 ext{ or } \pi$ or $3\pi/2$

Neutrinoless Double-Beta Decay

Two-Neutrino Double- β Decay: $\Delta L = 0$

$$\mathcal{N}(A,Z)
ightarrow \mathcal{N}(A,Z+2) + e^- + e^- + ar{
u}_e + ar{
u}_e$$

 $(T_{1/2}^{2\nu})^{-1} = G_{2\nu} |\mathcal{M}_{2\nu}|^2$

second order weak interaction process in the Standard Model

u

Effective Majorana Neutrino Mass

 $m_{\beta\beta} = \sum_{k} U_{ek}^{2} m_{k} \qquad \text{complex } U_{ek} \Rightarrow \text{possible cancellations}$ $m_{\beta\beta} = |U_{e1}|^{2} m_{1} + |U_{e2}|^{2} e^{i\alpha_{2}} m_{2} + |U_{e3}|^{2} e^{i\alpha_{3}} m_{3}$ $\alpha_{2} = 2\lambda_{2} \qquad \alpha_{3} = 2(\lambda_{3} - \delta_{13})$

Majorana Neutrino Mass $\Leftrightarrow \beta \beta_{0\nu}$ Decay

Dirac-Majorana Mass Term

- Dirac Neutrino Masses
- Majorana Neutrino Masses
- Dirac-Majorana Mass Term
 - One Generation
 - Real Mass Matrix
 - Maximal Mixing
 - Dirac Limit
 - Pseudo-Dirac Neutrinos
 - See-Saw Mechanism
 - Majorana Neutrino Mass?
 - Right-Handed Neutrino Mass Term
 - Singlet Majoron Model
 - Three-Generation Mixing
 - Number of Massive Neutrinos?

One Generation

If ν_R exists, the most general mass term is the

Dirac-Majorana Mass Term

$$\mathscr{L}_{\text{mass}}^{\text{D}+\text{M}} = \mathscr{L}_{\text{mass}}^{\text{D}} + \mathscr{L}_{\text{mass}}^{\text{L}} + \mathscr{L}_{\text{mass}}^{\text{R}}$$

$$\mathscr{L}_{mass}^{D} = -m_{D} \overline{\nu_{R}} \nu_{L} + H.c.$$
 Dirac Mass Term

$$\mathscr{L}_{\text{mass}}^{L} = \frac{1}{2} m_L \nu_L^T C^{\dagger} \nu_L + \text{H.c.} \qquad \text{Majorana Mass Term}$$

 $\mathscr{L}_{\text{mass}}^{R} = \frac{1}{2} m_{R} \nu_{R}^{T} \mathcal{C}^{\dagger} \nu_{R} + \text{H.c.}$ New Majorana Mass Term!

- ► Column matrix of left-handed chiral fields: $N_L = \begin{pmatrix} \nu_L \\ \nu_R^C \end{pmatrix} = \begin{pmatrix} \nu_L \\ C \ \overline{\nu_R}^T \end{pmatrix}$ $\mathscr{L}_{\text{mass}}^{\text{D+M}} = \frac{1}{2} N_L^T C^{\dagger} M N_L + \text{H.c.} \qquad M = \begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix}$
- The Dirac-Majorana Mass Term has the structure of a Majorana Mass Term for two chiral neutrino fields coupled by the Dirac mass

► Diagonalization:
$$n_L = U^{\dagger} N_L = \begin{pmatrix} \nu_{1L} \\ \nu_{2L} \end{pmatrix}$$

 $U^{T} M U = \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix}$ Real $m_k \ge 0$

$$\blacktriangleright \mathscr{L}_{\text{mass}}^{\text{D+M}} = \frac{1}{2} \sum_{k=1,2} m_k \, \nu_{kL}^T \, \mathcal{C}^\dagger \, \nu_{kL} + \text{H.c.} = -\frac{1}{2} \sum_{k=1,2} m_k \, \overline{\nu_k} \, \nu_k$$
$$\nu_k = \nu_{kL} + \nu_{kL}^C$$

Massive neutrinos are Majorana!

$$\nu_k = \nu_k^C$$

Real Mass Matrix

• CP is conserved if the mass matrix is real: $M = M^*$

• $M = \begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix}$ we consider real and positive m_R and m_D and real m_L

• A real symmetric mass matrix can be diagonalized with $U = \mathcal{O} \rho$ $\mathcal{O} = \begin{pmatrix} \cos \vartheta & \sin \vartheta \\ -\sin \vartheta & \cos \vartheta \end{pmatrix}$ $\rho = \begin{pmatrix} \rho_1 & 0 \\ 0 & \rho_2 \end{pmatrix}$ $\rho_k^2 = \pm 1$

$$\bullet \mathcal{O}^{\mathsf{T}} \mathcal{M} \mathcal{O} = \begin{pmatrix} m_1' & 0\\ 0 & m_2' \end{pmatrix} \qquad \tan 2\vartheta = \frac{2m_{\mathsf{D}}}{m_R - m_L}$$
$$m_{2,1}' = \frac{1}{2} \left[m_L + m_R \pm \sqrt{(m_L - m_R)^2 + 4 m_{\mathsf{D}}^2} \right]$$

• m'_1 is negative if $m_L m_R < m_D^2$

$$U^{T}MU = \rho^{T}\mathcal{O}^{T}M\mathcal{O}\rho = \begin{pmatrix} \rho_{1}^{2}m_{1}^{\prime} & 0\\ 0 & \rho_{2}^{2}m_{2}^{\prime} \end{pmatrix} \implies \mathbf{m}_{k} = \rho_{k}^{2}m_{k}^{\prime}$$

▶ m'_2 is always positive:

$$m_2 = m'_2 = \frac{1}{2} \left[m_L + m_R + \sqrt{(m_L - m_R)^2 + 4 m_D^2} \right]$$

• If $m_L m_R \ge m_{\mathsf{D}}^2$, then $m_1' \ge 0$ and $ho_1^2 = 1$

$$m_{1} = \frac{1}{2} \left[m_{L} + m_{R} - \sqrt{(m_{L} - m_{R})^{2} + 4 m_{D}^{2}} \right]$$

$$\rho_{1} = 1 \text{ and } \rho_{2} = 1 \implies U = \begin{pmatrix} \cos \vartheta & \sin \vartheta \\ -\sin \vartheta & \cos \vartheta \end{pmatrix}$$

• If $m_L m_R < m_{
m D}^2$, then $m_1' < 0$ and $ho_1^2 = -1$

$$m_{1} = \frac{1}{2} \left[\sqrt{(m_{L} - m_{R})^{2} + 4 m_{D}^{2}} - (m_{L} + m_{R}) \right]$$

$$\rho_{1} = i \text{ and } \rho_{2} = 1 \implies U = \begin{pmatrix} i \cos \vartheta & \sin \vartheta \\ -i \sin \vartheta & \cos \vartheta \end{pmatrix}$$

If Δm² is small, there are oscillations between active ν_a generated by ν_L and sterile ν_s generated by ν_R^C:

$$P_{\nu_a \to \nu_s}(L, E) = \sin^2 2\vartheta \, \sin^2 \left(\frac{\Delta m^2 L}{4 E}\right)$$
$$\Delta m^2 = m_2^2 - m_1^2 = (m_L + m_R) \sqrt{(m_L - m_R)^2 + 4 m_D^2}$$

► It can be shown that the CP parity of ν_k is $\xi_k^{CP} = i \rho_k^2$: $U_{CP}\nu_k(x)U_{CP}^{-1} = i \rho_k^2 \gamma^0 \nu_k(x_P)$

Special cases:

- $m_L = m_R \implies$ Maximal Mixing
- $m_L = m_R = 0 \implies$ Dirac Limit
- ▶ $|m_L|, m_R \ll m_D \implies$ Pseudo-Dirac Neutrinos
- $m_L = 0$ $m_D \ll m_R \implies$ See-Saw Mechanism

Maximal Mixing

 $m_L = m_R$ $\vartheta = \pi/4$ $m'_{2\,1} = m_L \pm m_D$ $\left\{ \begin{array}{ll} \rho_{1}^{2}=+1\,, \quad m_{1}=m_{L}-m_{D} \quad \text{if} \quad m_{L}\geq m_{D} \\ \rho_{1}^{2}=-1\,, \quad m_{1}=m_{D}-m_{L} \quad \text{if} \quad m_{L}< m_{D} \end{array} \right.$ $m_2 = m_1 + m_D$ $m_L < m_D$ $\begin{cases} \nu_{1L} = \frac{-i}{\sqrt{2}} \left(\nu_L - \nu_R^C \right) \\ \nu_{2L} = \frac{1}{\sqrt{2}} \left(\nu_L + \nu_R^C \right) \end{cases}$ $\begin{cases} \nu_{1} = \nu_{1L} + \nu_{1L}^{C} = \frac{-i}{\sqrt{2}} \left[(\nu_{L} + \nu_{R}) - (\nu_{L}^{C} + \nu_{R}^{C}) \right] \\ \nu_{2} = \nu_{2L} + \nu_{2L}^{C} = \frac{1}{\sqrt{2}} \left[(\nu_{L} + \nu_{R}) + (\nu_{L}^{C} + \nu_{R}^{C}) \right] \end{cases}$
<u>Dirac Limit</u>

$$m_L=m_R=0$$

- $m'_{2,1} = \pm m_{\rm D} \implies \begin{cases} \rho_1^2 = -1, & m_1 = m_{\rm D} \\ \rho_2^2 = +1, & m_2 = m_{\rm D} \end{cases}$
- The two Majorana fields ν₁ and ν₂ can be combined to give one Dirac field:

$$u = \frac{1}{\sqrt{2}}(i\nu_1 + \nu_2) = \nu_L + \nu_R$$

• A Dirac field ν can always be split in two Majorana fields:

$$\nu = \frac{1}{2} \left[\left(\nu - \nu^{C} \right) + \left(\nu + \nu^{C} \right) \right]$$

= $\frac{i}{\sqrt{2}} \left(-i \frac{\nu - \nu^{C}}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{\nu + \nu^{C}}{\sqrt{2}} \right) = \frac{1}{\sqrt{2}} \left(i\nu_{1} + \nu_{2} \right)$

 A Dirac field is equivalent to two Majorana fields with the same mass and opposite CP parities

Pseudo-Dirac Neutrinos

 $|m_L|, m_R \ll m_D$

 $\blacktriangleright m'_{2,1} \simeq \frac{m_L + m_R}{2} \pm m_D$

- $\blacktriangleright m_1' < 0 \implies \rho_1^2 = -1 \implies m_{2,1} \simeq m_{\rm D} \pm \frac{m_L + m_R}{2}$
- The two massive Majorana neutrinos have opposite CP parities and are almost degenerate in mass
- The best way to reveal pseudo-Dirac neutrinos are active-sterile neutrino oscillations due to the small squared-mass difference

$$\Delta m^2 \simeq m_{\rm D} \left(m_L + m_R
ight)$$

The oscillations occur with practically maximal mixing:

$$\tan 2\vartheta = \frac{2m_{\rm D}}{m_R - m_L} \gg 1 \implies \vartheta \simeq \pi/4$$

See-Saw Mechanism

[Minkowski, PLB 67 (1977) 42; Yanagida (1979); Gell-Mann, Ramond, Slansky (1979); Mohapatra, Senjanovic, PRL 44 (1980) 912]

$$m_L = 0$$
 $m_D \ll m_R$

- $\mathscr{L}_{\text{mass}}^{L}$ is forbidden by SM symmetries $\implies m_{L} = 0$
- ► $m_{\rm D} \lesssim v \sim 100 \, {\rm GeV}$ is generated by SM Higgs Mechanism (protected by SM symmetries)
- m_R is not protected by SM symmetries $\implies m_R \sim \mathcal{M}_{\text{GUT}} \gg v$

- Natural explanation of smallness of neutrino masses
- Mixing angle is very small: $\tan 2\vartheta = 2 \frac{m_{\rm D}}{m_R} \ll 1$
- ν_1 is composed mainly of active ν_L : $\nu_{1L} \simeq -i \nu_L$
- ► ν_2 is composed mainly of sterile ν_R : $\nu_{2L} \simeq \nu_R^C$ C. Giunti – Neutrino Oscillation Physics – 9-13 June 2008, Benasque, Spain – 75

Majorana Neutrino Mass?

Majorana neutrino masses provide the most accessible window on New Physics Beyond the Standard Model

Right-Handed Neutrino Mass Term

Majorana mass term for u_R respects the SU(2) $_L imes$ U(1) $_Y$ Standard Model Symmetry!

$$\mathcal{L}_{R}^{\mathsf{M}} = -rac{1}{2} m \left(\overline{\nu_{R}^{c}} \, \nu_{R} + \overline{\nu_{R}} \, \nu_{R}^{c}
ight)$$

Majorana mass term for ν_R breaks Lepton number conservation!

- Lepton number can be explicitly broken
 Lepton number is spontaneously broken locally, with a massive vector boson coupled to the lepton number current
 Lepton number is spontaneously broken globally and a massless Goldstone boson appears in the theory (Majoron)

Singlet Majoron Model

[Chikashige, Mohapatra, Peccei, Phys. Lett. B98 (1981) 265, Phys. Rev. Lett. 45 (1980) 1926]

 ρ = massive scalar, χ = Majoron (massless pseudoscalar Goldstone boson)

The Majoron is weakly coupled to the light neutrino

$$\mathcal{L}_{\chi-\nu} = \frac{iy_s}{\sqrt{2}} \chi \left[\overline{\nu_2} \gamma^5 \nu_2 - \frac{m_{\rm D}}{m_R} \left[\overline{\nu_2} \gamma^5 \nu_1 + \overline{\nu_1} \gamma^5 \nu_2 \right) + \left(\frac{m_{\rm D}}{m_R} \right)^2 \overline{\nu_1} \gamma^5 \nu_1 \right]$$

Three-Generation Mixing

$$\begin{aligned} \mathscr{L}_{\text{mass}}^{\text{D+M}} &= \mathscr{L}_{\text{mass}}^{\text{D}} + \mathscr{L}_{\text{mass}}^{L} + \mathscr{L}_{\text{mass}}^{R} \\ \mathscr{L}_{\text{mass}}^{\text{D}} &= -\sum_{s=1}^{N_{S}} \sum_{\alpha=e,\mu,\tau} \overline{\nu_{sR}'} M_{s\alpha}^{\text{D}} \nu_{\alpha L}' + \text{H.c.} \\ \mathscr{L}_{\text{mass}}^{L} &= \frac{1}{2} \sum_{\alpha,\beta=e,\mu,\tau} \nu_{\alpha L}'^{T} C^{\dagger} M_{\alpha\beta}^{L} \nu_{\beta L}' + \text{H.c.} \\ \mathscr{L}_{\text{mass}}^{R} &= \frac{1}{2} \sum_{s,s'=1}^{N_{S}} \nu_{sR}'^{T} C^{\dagger} M_{ss'}^{R} \nu_{s'R}' + \text{H.c.} \\ N_{L}' &\equiv \begin{pmatrix} \nu_{L}' \\ \nu_{R}' \end{pmatrix} \qquad \nu_{L}' &\equiv \begin{pmatrix} \nu_{eL}' \\ \nu_{\mu L}' \\ \nu_{\tau L}' \end{pmatrix} \qquad \nu_{R}'^{C} &\equiv \begin{pmatrix} \nu_{1R}' \\ \vdots \\ \nu_{NSR}' \end{pmatrix} \\ \mathscr{L}_{\text{mass}}^{\text{D+M}} &= \frac{1}{2} \mathbf{N}_{L}'^{T} C^{\dagger} M^{\text{D+M}} \mathbf{N}_{L}' + \text{H.c.} \qquad M^{\text{D+M}} = \begin{pmatrix} M^{L} & M^{\text{D}}^{T} \\ M^{D} & M^{R} \end{pmatrix} \end{aligned}$$

► Diagonalization of the Dirac-Majorana Mass Term ⇒ massive Majorana neutrinos

- See-Saw Mechanism ⇒ sterile right-handed neutrinos have large masses and are decoupled from the low-energy phenomenology
- ▶ At low energy we have an effective mixing of three Majorana neutrinos

Number of Massive Neutrinos?

 $Z
ightarrow
u ar{
u} \, \Rightarrow \,
u_e \,
u_\mu \,
u_ au$ active flavor neutrinos

mixing

$$\Rightarrow \quad \nu_{\alpha L} = \sum_{k=1}^{N} U_{\alpha k} \nu_{kL} \qquad \alpha = e, \mu, \tau \qquad \begin{array}{c} N \geq 3 \\ \text{no upper limit} \end{array}$$

$$\begin{array}{c} \text{Mass Basis:} \quad \nu_{1} \quad \nu_{2} \quad \nu_{3} \quad \nu_{4} \quad \nu_{5} \quad \cdots \\ \text{Flavor Basis:} \quad \nu_{e} \quad \nu_{\mu} \quad \nu_{\tau} \quad \nu_{s_{1}} \quad \nu_{s_{2}} \quad \cdots \end{array}$$

ACTIVE STERILE

STERILE NEUTRINOS

singlets of SM \implies no interactions!

active \rightarrow sterile transitions are possible if ν_4, \ldots are light (no see-saw) \Downarrow disappearance of active neutrinos

Part II

Neutrino Oscillations in Vacuum and in Matter

Neutrino Oscillations in Vacuum

- Neutrino Oscillations in Vacuum
 - Ultrarelativistic Approximation
 - Neutrino Oscillations in Vacuum
 - Neutrinos and Antineutrinos
- CPT, CP and T Symmetries
- Two-Neutrino Oscillations
- Question: Do Charged Leptons Oscillate?
- Neutrino Oscillations in Matter

Ultrarelativistic Approximation

Only neutrinos with energy $\gtrsim 0.1 \textit{MeV}$ are detectable!

Charged-Current Processes: Threshold

u + A ightarrow B + C	$ u_e + {}^{71}Ga o {}^{71}Ge + e^-$	$E_{\rm th}=0.233{ m MeV}$
↓	$ u_e + {}^{37} ext{Cl} o {}^{37} ext{Ar} + e^-$	$E_{ m th}=0.81 m MeV$
$s=2Em_A+m_A^2\geq (m_B+m_C)^2$	$ar{ u}_e + p ightarrow n + e^+$	$E_{ m th}=1.8{ m MeV}$
\downarrow	$ u_{\mu}+n ightarrow ho+\mu^{-}$	$E_{\rm th} = 110 {\rm MeV}$
$E_{\rm th} = rac{(m_B + m_C)^2}{2m_A} - rac{m_A}{2}$	$ u_{\mu}+e^{-} ightarrow u_{e}+\mu^{-}$	$E_{ m th}\simeq rac{m_{\mu}^2}{2m_e}=10.9{ m GeV}$

Elastic Scattering Processes: Cross Section \propto Energy $\nu + e^- \rightarrow \nu + e^- \qquad \sigma(E) \sim \sigma_0 E/m_e \qquad \sigma_0 \sim 10^{-44} \text{ cm}^2$ Background $\implies E_{\text{th}} \simeq 5 \text{ MeV} (\text{SK, SNO}), 0.25 \text{ MeV} (\text{Borexino})$

Laboratory and Astrophysical Limits $\implies m_{
u} \lesssim 1\,{
m eV}$

Neutrino Oscillations in Vacuum

[Eliezer, Swift, NPB 105 (1976) 45] [Fritzsch, Minkowski, PLB 62 (1976) 72] [Bilenky, Pontecorvo, SJNP 24 (1976) 316]

[Bilenky, Pontecorvo, Nuovo Cim. Lett. 17 (1976) 569] [Bilenky, Pontecorvo, Phys. Rep. 41 (1978) 225]

Flavor Neutrino Production:
$$j_{W,L}^{\rho} = 2 \sum_{\alpha=e,\mu,\tau} \overline{\nu_{\alpha L}} \gamma^{\rho} \ell_{\alpha L}$$

 $\nu_{\alpha L} = \sum_{k} U_{\alpha k}^{*} \overline{\nu_{k L}} \implies |\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k}^{*} |\nu_{k}\rangle$ States
 $|\nu_{k}(t,x)\rangle = e^{-iE_{k}t+ip_{k}x} |\nu_{k}\rangle \implies |\nu_{\alpha}(t,x)\rangle = \sum_{k} U_{\alpha k}^{*} e^{-iE_{k}t+ip_{k}x} |\nu_{k}\rangle$
 $|\nu_{k}\rangle = \sum_{\beta=e,\mu,\tau} U_{\beta k} |\nu_{\beta}\rangle \implies |\nu_{\alpha}(t,x)\rangle = \sum_{\beta=e,\mu,\tau} \underbrace{\left(\sum_{k} U_{\alpha k}^{*} e^{-iE_{k}t+ip_{k}x} U_{\beta k}\right)}_{\mathcal{A}_{\nu_{\alpha} \rightarrow \nu_{\beta}}(t,x)} |\nu_{\beta}\rangle$
Transition Probability
 $P_{\nu_{\alpha} \rightarrow \nu_{\beta}}(t,x) = |\langle \nu_{\beta} | \nu_{\alpha}(t,x) \rangle|^{2} = |\mathcal{A}_{\nu_{\alpha} \rightarrow \nu_{\beta}}(t,x)|^{2} = \left|\sum_{k} U_{\alpha k}^{*} e^{-iE_{k}t+ip_{k}x} U_{\beta k}\right|^{2}$

ultra-relativistic neutrinos $\implies t \simeq x = L$ source-detector distance

$$E_k t - p_k x \simeq (E_k - p_k) L = rac{E_k^2 - p_k^2}{E_k + p_k} L = rac{m_k^2}{E_k + p_k} L \simeq rac{m_k^2}{2E} L$$

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \left| \sum_{k} U_{\alpha k}^{*} e^{-im_{k}^{2}L/2E} U_{\beta k} \right|^{2}$$
$$= \sum_{k,j} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp\left(-i\frac{\Delta m_{k j}^{2}L}{2E}\right)$$

$$\Delta m_{kj}^2 \equiv m_k^2 - m_j^2$$

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L/E) = \delta_{\alpha\beta} - 4 \sum_{k>j} \operatorname{Re}\left[U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*}\right] \sin^{2}\left(\frac{\Delta m_{k j}^{2} L}{4E}\right) \\ + 2 \sum_{k>j} \operatorname{Im}\left[U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*}\right] \sin\left(\frac{\Delta m_{k j}^{2} L}{2E}\right)$$

Neutrinos and Antineutrinos

Antineutrinos are described by CP-conjugated fields:

$$u^{\mathsf{CP}} = \gamma^0 \, \mathcal{C} \, \overline{
u}^{\,\mathcal{T}} = - \mathcal{C} \,
u^*$$

- $\begin{array}{rcl} \mathsf{C} & \Longrightarrow & \mathsf{Particle} \leftrightarrows \mathsf{Antiparticle} \\ \mathsf{P} & \Longrightarrow & \mathsf{Left}\text{-Handed} \leftrightarrows \mathsf{Right}\text{-Handed} \end{array}$

Fields:
$$\nu_{\alpha L} = \sum_{k} U_{\alpha k} \nu_{kL} \xrightarrow{\mathsf{CP}} \nu_{\alpha L}^{\mathsf{CP}} = \sum_{k} U_{\alpha k}^{*} \nu_{kL}^{\mathsf{CP}}$$

States: $|\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k}^{*} |\nu_{k}\rangle \xrightarrow{\mathsf{CP}} |\bar{\nu}_{\alpha}\rangle = \sum_{k} U_{\alpha k} |\bar{\nu}_{k}\rangle$

NEUTRINOS $U \leftrightarrows U^*$ ANTINEUTRINOS

 $P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \sum_{k} |U_{\alpha k}|^{2} |U_{\beta k}|^{2} + 2\operatorname{Re} \sum_{k>i} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp\left(-i\frac{\Delta m_{k j}^{2} L}{2E}\right)$ $P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}}(L, E) = \sum_{k} |U_{\alpha k}|^{2} |U_{\beta k}|^{2} + 2\operatorname{Re} \sum_{k < i} U_{\alpha k} U_{\beta k}^{*} U_{\alpha j}^{*} U_{\beta j} \exp\left(-i\frac{\Delta m_{k j}^{2} L}{2E}\right)$ C. Giunti – Neutrino Oscillation Physics – 9-13 June 2008, Benasque, Spain – 87

CPT, CP and T Symmetries

- Neutrino Oscillations in Vacuum
- CPT, CP and T Symmetries
 - CPT Symmetry
 - CP Symmetry
 - T Symmetry
- Two-Neutrino Oscillations
- Question: Do Charged Leptons Oscillate?
- Neutrino Oscillations in Matter

CPT Symmetry

 $P_{\nu_{\alpha} \to \nu_{\beta}} \xrightarrow{\text{CPT}} P_{\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha}}$ CPT Asymmetries: $A_{\alpha\beta}^{CPT} = P_{\nu_{\alpha} \rightarrow \nu_{\beta}} - P_{\bar{\nu}_{\beta} \rightarrow \bar{\nu}_{\alpha}}$ Local Quantum Field Theory $\implies A_{\alpha\beta}^{CPT} = 0$ CPT Symmetry $P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \sum_{k} |U_{\alpha k}|^{2} |U_{\beta k}|^{2} + 2\operatorname{Re} \sum_{k \in \mathbb{N}} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp\left(-i\frac{\Delta m_{k j}^{2} L}{2E}\right)$ is invariant under CPT: $U \hookrightarrow U^* \quad \alpha \hookrightarrow \beta$ $P_{
u_lpha
ightarrow
u_eta}=P_{ar
u_eta
ightarrowar
u_lpha}$

(solar ν_e , reactor $\bar{\nu}_e$, accelerator ν_{μ})

C. Giunti – Neutrino Oscillation Physics – 9-13 June 2008, Benasque, Spain – 89

 $P_{\nu_{\alpha} \to \nu_{\alpha}} = P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\alpha}}$

CP Symmetry

$$P_{
u_{lpha} o
u_{eta}} \stackrel{\mathsf{CP}}{\longrightarrow} P_{\overline{
u}_{lpha} o \overline{
u}_{eta}}$$

 $\begin{array}{l} \text{CP Asymmetries: } A_{\alpha\beta}^{\text{CP}} = P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}} & \text{CPT} \Rightarrow A_{\alpha\beta}^{\text{CP}} = -A_{\beta\alpha}^{\text{CP}} \\ A_{\alpha\beta}^{\text{CP}}(L,E) = 2\text{Re} \sum_{k>j} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp\left(-i\frac{\Delta m_{k j}^{2} L}{2E}\right) - 2\text{Re} \sum_{k>j} U_{\alpha k} U_{\beta k}^{*} U_{\alpha j}^{*} U_{\beta j} \exp\left(-i\frac{\Delta m_{k j}^{2} L}{2E}\right) \\ & A_{\alpha\beta}^{\text{CP}}(L,E) = 4 \sum_{k>j} J_{\alpha\beta;k j} \sin\left(\frac{\Delta m_{k j}^{2} L}{2E}\right) \\ & \text{Jarlskog invariants: } & J_{\alpha\beta;k j} = \text{Im}\left[U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*}\right] \end{array}$

violation of CP symmetry depends only on Dirac phases (three neutrinos: $J_{\alpha\beta;kj} = \pm c_{12}s_{12}c_{23}s_{23}c_{13}^2s_{13}\sin\delta_{13}$)

 $\langle A_{\alpha\beta}^{CP} \rangle = 0 \implies$ observation of CP violation needs measurement of oscillations

T Symmetry

-

$$P_{\nu_{\alpha} \to \nu_{\beta}} \xrightarrow{P} P_{\nu_{\beta} \to \nu_{\alpha}}$$
T Asymmetries: $A_{\alpha\beta}^{\mathsf{T}} = P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\nu_{\beta} \to \nu_{\alpha}}$
CPT $\implies 0 = A_{\alpha\beta}^{\mathsf{CPT}} = P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha}}$
 $= P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\nu_{\beta} \to \nu_{\alpha}} + P_{\nu_{\beta} \to \nu_{\alpha}} - P_{\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha}}$
 $= A_{\alpha\beta}^{\mathsf{T}} + A_{\beta\alpha}^{\mathsf{CP}} = A_{\alpha\beta}^{\mathsf{T}} - A_{\alpha\beta}^{\mathsf{CP}} \implies A_{\alpha\beta}^{\mathsf{T}} = A_{\alpha\beta}^{\mathsf{CP}}$

$$A_{\alpha\beta}^{\mathsf{T}}(L,E) = 4\sum_{k>j} J_{\alpha\beta;kj} \sin\left(\frac{\Delta m_{kj}^2 L}{2E}\right)$$

violation of T symmetry depends only on Dirac phases

 $\left\langle A_{\alpha\beta}^{\mathsf{T}} \right\rangle = 0 \Longrightarrow$ observation of T violation needs measurement of oscillations

Two-Neutrino Oscillations

- Neutrino Oscillations in Vacuum
- CPT, CP and T Symmetries
- Two-Neutrino Oscillations
 - Two-Neutrino Mixing and Oscillations
 - Types of Experiments
 - Average over Energy Resolution of the Detector
 - Anatomy of Exclusion Plots
- Question: Do Charged Leptons Oscillate?
- Neutrino Oscillations in Matter

Two-Neutrino Mixing and Oscillations

$$|\nu_{\alpha}\rangle = \sum_{k=1}^{2} U_{\alpha k} |\nu_{k}\rangle \qquad (\alpha = e, \mu)$$

$$U = \begin{pmatrix} \cos \vartheta & \sin \vartheta \\ -\sin \vartheta & \cos \vartheta \end{pmatrix}$$

$$|\nu_{e}\rangle = \cos \vartheta |\nu_{1}\rangle + \sin \vartheta |\nu_{2}\rangle$$

$$|\nu_{\mu}\rangle = -\sin \vartheta |\nu_{1}\rangle + \cos \vartheta |\nu_{2}\rangle$$

$$\Delta m^2 \equiv \Delta m^2_{21} \equiv m^2_2 - m^2_1$$

Transition Probability:

$$P_{\nu_e \to \nu_{\mu}} = P_{\nu_{\mu} \to \nu_e} = \sin^2 2\vartheta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

 ν_2

Survival Probabilities: $P_{\nu_e \to \nu_e} = P_{\nu_\mu \to \nu_\mu} = 1 - P_{\nu_e \to \nu_\mu}$

two-neutrino mixing transition probability

$$\alpha \neq \beta \qquad \alpha, \beta = e, \mu, \tau$$

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \sin^{2} 2\vartheta \sin^{2} \left(\frac{\Delta m^{2}L}{4E}\right)$$

$$= \sin^{2} 2\vartheta \sin^{2} \left(1.27 \frac{\Delta m^{2} [eV^{2}] L[m]}{E[MeV]}\right)$$

$$= \sin^{2} 2\vartheta \sin^{2} \left(1.27 \frac{\Delta m^{2} [eV^{2}] L[km]}{E[GeV]}\right)$$

oscillation length

$$L^{\rm osc} = \frac{4\pi E}{\Delta m^2} = 2.47 \frac{E \,[{\rm MeV}]}{\Delta m^2 \,[{\rm eV}^2]} \,\mathrm{m} = 2.47 \frac{E \,[{\rm GeV}]}{\Delta m^2 \,[{\rm eV}^2]} \,\mathrm{km}$$

Types of Experiments

Two-Neutrino Mixing

$$P_{\nu_{lpha} o
u_{eta}}(L,E) = \sin^2 2 \vartheta \sin^2 \left(\frac{\Delta m^2 L}{4E} \right)$$

observable if $\frac{\Delta m^2 L}{4E}\gtrsim 1$

 $\label{eq:BL} \begin{array}{ll} {\rm SBL} & {\rm Reactor:} \ L \sim 10 \, {\rm m} \ , \ E \sim 1 \, {\rm MeV} \\ L/E \lesssim 10 \, {\rm eV}^{-2} {\Rightarrow} \Delta m^2 \gtrsim 0.1 \, {\rm eV}^2 & {\rm Accelerator:} \ L \sim 1 \, {\rm km} \ , \ E \gtrsim 0.1 \, {\rm GeV} \end{array}$

 $\underbrace{SUN}_{L/E} = \underbrace{L \sim 10^8 \text{ km}, \quad E \sim 0.1 - 10 \text{ MeV}}_{L/E} = \underbrace{L \sim 10^{11} \text{ eV}^{-2} \Rightarrow \Delta m^2}_{\text{Super-Kamiokande, GALLEX, SAGE, Super-Kamiokande, GNO, SNO, Borexino}}_{\text{Matter Effect (MSW)}} = \underbrace{10^{-4} \lesssim \sin^2 2\vartheta \lesssim 1, \quad 10^{-8} \text{ eV}^2 \lesssim \Delta m^2 \lesssim 10^{-4} \text{ eV}^2}_{\text{KamLAND}}$

Average over Energy Resolution of the Detector

$$\langle P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) \rangle = \frac{1}{2} \sin^2 2\vartheta \left[1 - \int \cos\left(\frac{\Delta m^2 L}{2E}\right) \phi(E) dE \right] \qquad (\alpha \neq \beta)$$

$$\langle P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) \rangle \leq P_{\nu_{\alpha} \to \nu_{\beta}}^{\max} \implies \sin^2 2\vartheta \leq \frac{2P_{\nu_{\alpha} \to \nu_{\beta}}^{\max}}{1 - \int \cos\left(\frac{\Delta m^2 L}{2E}\right)\phi(E) \, \mathrm{d}E}$$

Anatomy of Exclusion Plots

 $\blacktriangleright \Delta m^2 \gg \langle L/E \rangle^{-1}$ $P \simeq \frac{1}{2} \sin^2 2\vartheta \Rightarrow \sin^2 2\vartheta \simeq 2P$ • Min $\left\langle \cos\left(\frac{\Delta m^2 L}{2F}\right) \right\rangle \geq -1$ $\sin^2 2\vartheta = \frac{2P}{1 - \operatorname{Min}\left\langle \cos\left(\frac{\Delta m^2 l}{2\Gamma}\right)\right\rangle} \ge P$ $\Delta m^2 \simeq 2\pi \langle L/E \rangle^{-1}$ $\blacktriangleright \Delta m^2 \ll 2\pi \langle L/E \rangle^{-1}$ $\cos\left(\frac{\Delta m^2 L}{2F}\right) \simeq 1 - \frac{1}{2} \left(\frac{\Delta m^2 L}{2F}\right)^2$ $\Delta m^2 \simeq 4 \left\langle \frac{L}{F} \right\rangle^{-1} \sqrt{\frac{P}{\sin^2 24^9}}$

Question: Do Charged Leptons Oscillate?

- Mass is the only property which distinguishes e, μ , τ .
- The flavor of a charged lepton is defined by its mass!
- ► By definition, the flavor of a charged lepton cannot change.

THE FLAVOR OF CHARGED LEPTONS DOES NOT OSCILLATE

[CG, Kim, FPL 14 (2001) 213] [CG, hep-ph/0409230] [Akhmedov, JHEP 09 (2007) 116]

Correct definition of Charged Lepton Oscillations

[Pakvasa, Nuovo Cim. Lett. 31 (1981) 497]

Analogy

- Neutrino Oscillations: massive neutrinos propagate unchanged between production and detection, with a difference of mass (flavor) of the charged leptons involved in the production and detection processes.
- Charged-Lepton Oscillations: massive charged leptons propagate unchanged between production and detection, with a difference of mass of the neutrinos involved in the production and detection processes.

NO FLAVOR CONVERSION!

The propagating charged leptons must be ultrarelativistic, in order to be produced and detected coherently (if τ is not ultrarelativistic, only e and μ contribute to the phase).

Practical Problems

- The initial and final neutrinos must be massive neutrinos of known type: precise neutrino mass measurements.
- The energy of the propagating charged leptons must be extremely high, in order to have a measurable oscillation length

$$rac{4\pi E}{(m_{\mu}^2-m_e^2)}\simeq rac{4\pi E}{m_{\mu}^2}\simeq 2 imes 10^{-11}\left(rac{E}{
m GeV}
ight)
m cm$$

detailed discussion: [Akhmedov, JHEP 09 (2007) 116, arXiv:0706.1216]

Neutrino Oscillations in Matter

- Neutrino Oscillations in Vacuum
- CPT, CP and T Symmetries
- Two-Neutrino Oscillations
- Question: Do Charged Leptons Oscillate?
- Neutrino Oscillations in Matter
 - Matter Effects
 - Effective Potentials in Matter
 - Evolution of Neutrino Flavors in Matter
 - Constant Matter Density
 - MSW Effect (Resonant Transitions in Matter)
 - Averaged Survival Probability
 - Crossing Probability

Matter Effects

a flavor neutrino u_{lpha} with momentum p is described by

$$\begin{split} |\nu_{\alpha}(p)\rangle &= \sum_{k} U_{\alpha k}^{*} |\nu_{k}(p)\rangle \\ \mathcal{H}_{0} |\nu_{k}(p)\rangle &= \mathbf{E}_{k} |\nu_{k}(p)\rangle \qquad \mathbf{E}_{k} = \sqrt{p^{2} + m_{k}^{2}} \\ \text{in matter} \qquad \mathcal{H} = \mathcal{H}_{0} + \mathcal{H}_{I} \qquad \mathcal{H}_{I} |\nu_{\alpha}(p)\rangle = V_{\alpha} |\nu_{\alpha}(p)\rangle \end{split}$$

 V_{α} = effective potential due to coherent interactions with the medium forward elastic CC and NC scattering

Effective Potentials in Matter

antineutrinos: $\overline{V}_{CC} = -V_{CC}$ $\overline{V}_{NC} = -V_{NC}$

Evolution of Neutrino Flavors in Matter

Schrödinger picture:
$$i \frac{d}{dt} |\nu_{\alpha}(p, t)\rangle = \mathcal{H} |\nu_{\alpha}(p, t)\rangle, \qquad |\nu_{\alpha}(p, 0)\rangle = |\nu_{\alpha}(p)\rangle$$

flavor transition amplitudes:

$$arphi_{lphaeta}(p,t)=\langle
u_eta(p)|
u_lpha(p,t)
angle\,,\qquad arphi_{lphaeta}(p,0)=\delta_{lphaeta}$$

 $i\frac{\mathrm{d}}{\mathrm{d}t}\varphi_{\alpha\beta}(\boldsymbol{\rho},t) = \langle \nu_{\beta}(\boldsymbol{\rho})|\mathcal{H}|\nu_{\alpha}(\boldsymbol{\rho},t)\rangle = \langle \nu_{\beta}(\boldsymbol{\rho})|\mathcal{H}_{0}|\nu_{\alpha}(\boldsymbol{\rho},t)\rangle + \langle \nu_{\beta}(\boldsymbol{\rho})|\mathcal{H}_{I}|\nu_{\alpha}(\boldsymbol{\rho},t)\rangle$

$$egin{aligned} &\langle
u_eta(p) | \mathcal{H}_0 |
u_lpha(p,t)
angle &= \sum_
ho \langle
u_eta(p) | \mathcal{H}_0 |
u_
ho(p)
angle \underbrace{\langle
u_
ho(p) |
u_lpha(p,t)
angle}_{eta lpha
angle} & \left(\underbrace{\langle
u_k(p) | \mathcal{H}_0 |
u_j(p)
angle}_{\delta_{kj} E_k} U_{eta_k}^* (p,t)
ight) \end{aligned}$$

$$\langle
u_{eta}(p) | \mathcal{H}_{I} |
u_{lpha}(p,t)
angle = \sum_{
ho} \underbrace{\langle
u_{eta}(p) | \mathcal{H}_{I} |
u_{
ho}(p)
angle}_{\delta_{eta
ho} V_{eta}} \varphi_{lpha
ho}(p,t) = V_{eta} \varphi_{lpha eta}(p,t)$$

$$i \frac{d}{dt} \varphi_{\alpha\beta} = \sum_{\rho} \left(\sum_{k} U_{\beta k} E_{k} U_{\rho k}^{*} + \delta_{\beta \rho} V_{\beta} \right) \varphi_{\alpha \rho}$$

ultrarelativistic neutrinos: $E_{k} = p + \frac{m_{k}^{2}}{2E} \qquad E = p \qquad t = x$ $V_{e} = V_{CC} + V_{NC} \qquad V_{\mu} = V_{\tau} = V_{NC}$ $i \frac{d}{dx} \varphi_{\alpha\beta}(p, x) = (p + V_{NC}) \varphi_{\alpha\beta}(p, x) + \sum_{\rho} \left(\sum_{k} U_{\beta k} \frac{m_{k}^{2}}{2E} U_{\rho k}^{*} + \delta_{\beta e} \delta_{\rho e} V_{CC} \right) \varphi_{\alpha\rho}(p, x)$

$$\psi_{\alpha\beta}(p,x) = \varphi_{\alpha\beta}(p,x) e^{ipx+i\int_0^x V_{NC}(x') dx'}$$

$$\downarrow i \frac{d}{dx} \psi_{\alpha\beta} = e^{ipx+i\int_0^x V_{NC}(x') dx'} \left(-p - V_{NC} + i \frac{d}{dx}\right) \varphi_{\alpha\beta}$$

$$i\frac{\mathrm{d}}{\mathrm{d}x}\psi_{\alpha\beta}=\sum_{\rho}\left(\sum_{k}U_{\beta k}\frac{m_{k}^{2}}{2E}U_{\rho k}^{*}+\delta_{\beta e}\,\delta_{\rho e}\,V_{\mathrm{CC}}\right)\psi_{\alpha\rho}$$

$$P_{
u_{lpha}
ightarrow
u_{eta}}=|arphi_{lphaeta}|^2=|\psi_{lphaeta}|^2$$

evolution of flavor transition amplitudes in matrix form

$$i \frac{\mathrm{d}}{\mathrm{d}x} \Psi_{lpha} = \frac{1}{2E} \left(U \, \mathbb{M}^2 \, U^{\dagger} + \mathbb{A} \right) \Psi_{lpha}$$

$$\Psi_{\alpha} = \begin{pmatrix} \psi_{\alpha e} \\ \psi_{\alpha \mu} \\ \psi_{\alpha \tau} \end{pmatrix} \quad \mathbb{M}^{2} = \begin{pmatrix} m_{1}^{2} & 0 & 0 \\ 0 & m_{2}^{2} & 0 \\ 0 & 0 & m_{3}^{2} \end{pmatrix} \quad \mathbb{A} = \begin{pmatrix} A_{CC} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \begin{array}{c} A_{CC} = 2EV_{CC} \\ = 2\sqrt{2}EG_{F}N_{e} \\ \end{array}$$

 $\underset{\text{in vacuum}}{\overset{\text{effective}}{\text{matrix}}} \mathbb{M}_{\text{VAC}}^2 = U \mathbb{M}^2 U^{\dagger} \xrightarrow{\text{matter}} U \mathbb{M}^2 U^{\dagger} + 2E \bigvee_{\uparrow} = \mathbb{M}_{\text{MAT}}^2 \xrightarrow{\text{effective}}_{\substack{\text{matrix}\\\text{in matrix}}}$
simplest case: two-neutrino mixing

$$u_e o
u_\mu$$
 transitions with $U = egin{pmatrix} \cos artheta & \sin artheta \ -\sin artheta & \cos artheta \end{pmatrix}$

$$U \mathbb{M}^{2} U^{\dagger} = \begin{pmatrix} \cos^{2}\vartheta m_{1}^{2} + \sin^{2}\vartheta m_{2}^{2} & \cos\vartheta \sin\vartheta (m_{2}^{2} - m_{1}^{2}) \\ \cos\vartheta \sin\vartheta (m_{2}^{2} - m_{1}^{2}) & \sin^{2}\vartheta m_{1}^{2} + \cos^{2}\vartheta m_{2}^{2} \end{pmatrix}$$
$$= \frac{1}{2} \Sigma m^{2} + \frac{1}{2} \begin{pmatrix} -\Delta m^{2} \cos 2\vartheta & \Delta m^{2} \sin 2\vartheta \\ \Delta m^{2} \sin 2\vartheta & \Delta m^{2} \cos 2\vartheta \end{pmatrix}$$

irrelevant common phase

$$\Sigma m^2 \equiv m_1^2 + m_2^2$$
 $\Delta m^2 \equiv m_2^2 - m_1^2$

$$i\frac{d}{dx}\begin{pmatrix}\psi_{ee}\\\psi_{e\mu}\end{pmatrix} = \frac{1}{4E}\begin{pmatrix}-\Delta m^2\cos 2\vartheta + 2A_{CC} & \Delta m^2\sin 2\vartheta\\\Delta m^2\sin 2\vartheta & \Delta m^2\cos 2\vartheta\end{pmatrix}\begin{pmatrix}\psi_{ee}\\\psi_{e\mu}\end{pmatrix}$$

initial $\nu_e \implies \begin{pmatrix}\psi_{ee}(0)\\\psi_{e\mu}(0)\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix}$
$$P_{\nu_e \to \nu_{\mu}}(x) = |\psi_{e\mu}(x)|^2$$
$$P_{\nu_e \to \nu_e}(x) = |\psi_{ee}(x)|^2 = 1 - P_{\nu_e \to \nu_{\mu}}(x)$$

Constant Matter Density

Effective Mixing Angle in Matter

$$an 2artheta_{\mathsf{M}} = rac{ an 2artheta}{1 - rac{ extsf{A}_{\mathsf{CC}}}{ extsf{\Delta}m^2\cos2artheta}}$$

Effective Squared-Mass Difference

$$\Delta m_{\mathsf{M}}^2 = \sqrt{\left(\Delta m^2\cos 2artheta - \mathcal{A}_{\mathsf{CC}}
ight)^2 + \left(\Delta m^2\sin 2artheta
ight)^2}$$

Resonance
$$(\vartheta_{\rm M} = \pi/4)$$

 $A_{\rm CC}^{\rm R} = \Delta m^2 \cos 2\vartheta \implies N_e^{\rm R} = \frac{\Delta m^2 \cos 2\vartheta}{2\sqrt{2}EG_{\rm F}}$

$$i\frac{d}{dx}\begin{pmatrix}\psi_{1}\\\psi_{2}\end{pmatrix} = \frac{1}{4E}\begin{pmatrix}-\Delta m_{M}^{2} & 0\\ 0 & \Delta m_{M}^{2}\end{pmatrix}\begin{pmatrix}\psi_{1}\\\psi_{2}\end{pmatrix}$$

$$\begin{pmatrix}\psi_{ee}\\\psi_{e\mu}\end{pmatrix} = \begin{pmatrix}\cos\vartheta_{M} & \sin\vartheta_{M}\\-\sin\vartheta_{M} & \cos\vartheta_{M}\end{pmatrix}\begin{pmatrix}\psi_{1}\\\psi_{2}\end{pmatrix} \Rightarrow \begin{pmatrix}\psi_{1}\\\psi_{2}\end{pmatrix} = \begin{pmatrix}\cos\vartheta_{M} & -\sin\vartheta_{M}\\\sin\vartheta_{M} & \cos\vartheta_{M}\end{pmatrix}\begin{pmatrix}\psi_{ee}\\\psi_{e\mu}\end{pmatrix}$$

$$\nu_{e} \rightarrow \nu_{\mu} \implies \begin{pmatrix}\psi_{ee}(0)\\\psi_{e\mu}(0)\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix} \implies \begin{pmatrix}\psi_{1}(0)\\\psi_{2}(0)\end{pmatrix}\begin{pmatrix}\cos\vartheta_{M}\\\sin\vartheta_{M}\end{pmatrix}$$

$$\psi_{1}(x) = \cos\vartheta_{M}\exp\left(i\frac{\Delta m_{M}^{2}x}{4E}\right)$$

$$\psi_{2}(x) = \sin\vartheta_{M}\exp\left(-i\frac{\Delta m_{M}^{2}x}{4E}\right)$$

$$\mathcal{P}_{
u_e
ightarrow
u_\mu}(x) = |\psi_{e\mu}(x)|^2 = |-\sinartheta_{\mathsf{M}}\psi_1(x) + \cosartheta_{\mathsf{M}}\psi_2(x)|^2$$

$$P_{\nu_e o
u_\mu}(x) = \sin^2 2 \vartheta_{\mathsf{M}} \sin^2 \left(\frac{\Delta m_{\mathsf{M}}^2 x}{4E} \right)$$

MSW Effect (Resonant Transitions in Matter)

$$\begin{pmatrix} \psi_{ee} \\ \psi_{e\mu} \end{pmatrix} = \begin{pmatrix} \cos\vartheta_{M} & \sin\vartheta_{M} \\ -\sin\vartheta_{M} & \cos\vartheta_{M} \end{pmatrix} \begin{pmatrix} \psi_{1} \\ \psi_{2} \end{pmatrix}$$

$$i\frac{d}{dx} \begin{pmatrix} \psi_{1} \\ \psi_{2} \end{pmatrix} = \begin{bmatrix} \frac{A_{CC}}{4E} + \frac{1}{4E} \begin{pmatrix} -\Delta m_{M}^{2} & 0 \\ 0 & \Delta m_{M}^{2} \end{pmatrix} + \begin{pmatrix} 0 & -i\frac{d\vartheta_{M}}{dx} \\ i\frac{d\vartheta_{M}}{dx} & 0 \end{pmatrix} \end{bmatrix} \begin{pmatrix} \psi_{1} \\ \psi_{2} \end{pmatrix}$$

$$irrelevant common phase \uparrow maximum near resonance$$

$$\begin{pmatrix} \psi_{1}(0) \\ \psi_{2}(0) \end{pmatrix} = \begin{pmatrix} \cos\vartheta_{M}^{0} & -\sin\vartheta_{M}^{0} \\ \sin\vartheta_{M}^{0} & \cos\vartheta_{M}^{0} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \cos\vartheta_{M}^{0} \\ \sin\vartheta_{M}^{0} \end{pmatrix}$$

$$\psi_{1(x)} \simeq \begin{bmatrix} \cos\vartheta_{M}^{0} \exp\left(i\int_{0}^{x_{R}}\frac{\Delta m_{M}^{2}(x')}{4E} dx'\right) A_{11}^{R} + \sin\vartheta_{M}^{0} \exp\left(-i\int_{0}^{x_{R}}\frac{\Delta m_{M}^{2}(x')}{4E} dx'\right) A_{21}^{R} \end{bmatrix}$$

$$\times \exp\left(i\int_{x_{R}}^{x}\frac{\Delta m_{M}^{2}(x')}{4E} dx'\right) A_{12}^{R} + \sin\vartheta_{M}^{0} \exp\left(-i\int_{0}^{x_{R}}\frac{\Delta m_{M}^{2}(x')}{4E} dx'\right) A_{22}^{R} \end{bmatrix}$$

$$\times \exp\left(-i\int_{x_{R}}^{x}\frac{\Delta m_{M}^{2}(x')}{4E} dx'\right) A_{12}^{R} + \sin\vartheta_{M}^{0} \exp\left(-i\int_{0}^{x_{R}}\frac{\Delta m_{M}^{2}(x')}{4E} dx'\right) A_{22}^{R} \end{bmatrix}$$

Averaged Survival Probability

$$\psi_{ee}(x) = \cos \vartheta_{\mathsf{M}}^{\times} \psi_1(x) + \sin \vartheta_{\mathsf{M}}^{\times} \psi_2(x)$$

neglect interference (averaged over energy spectrum)

$$\begin{split} \overline{P}_{\nu_e \to \nu_e}(x) &= |\langle \psi_{ee}(x) \rangle|^2 = \cos^2 \vartheta_{\mathsf{M}}^{\mathsf{x}} \cos^2 \vartheta_{\mathsf{M}}^0 \, |\mathcal{A}_{11}^{\mathsf{R}}|^2 + \cos^2 \vartheta_{\mathsf{M}}^{\mathsf{x}} \sin^2 \vartheta_{\mathsf{M}}^0 \, |\mathcal{A}_{21}^{\mathsf{R}}|^2 \\ &+ \sin^2 \vartheta_{\mathsf{M}}^{\mathsf{x}} \, \cos^2 \vartheta_{\mathsf{M}}^0 \, |\mathcal{A}_{12}^{\mathsf{R}}|^2 + \sin^2 \vartheta_{\mathsf{M}}^{\mathsf{x}} \sin^2 \vartheta_{\mathsf{M}}^0 \, |\mathcal{A}_{22}^{\mathsf{R}}|^2 \end{split}$$

conservation of probability (unitarity)

 $|\mathcal{A}_{12}^{\mathsf{R}}|^2 = |\mathcal{A}_{21}^{\mathsf{R}}|^2 = P_{\mathsf{c}}$ $|\mathcal{A}_{11}^{\mathsf{R}}|^2 = |\mathcal{A}_{22}^{\mathsf{R}}|^2 = 1 - P_{\mathsf{c}}$

 $P_{\rm c} \equiv$ crossing probability

$$\overline{P}_{\nu_e \to \nu_e}(x) = \frac{1}{2} + \left(\frac{1}{2} - P_{\rm c}\right) \cos 2\vartheta_{\rm M}^0 \, \cos 2\vartheta_{\rm M}^{\rm x}$$

[Parke, PRL 57 (1986) 1275]

Crossing Probability

$$P_{\rm c} = \frac{\exp\left(-\frac{\pi}{2}\gamma F\right) - \exp\left(-\frac{\pi}{2}\gamma \frac{F}{\sin^2\vartheta}\right)}{1 - \exp\left(-\frac{\pi}{2}\gamma \frac{F}{\sin^2\vartheta}\right)} - \frac{1}{2}$$

[Kuo, Pantaleone, PRD 39 (1989) 1930]

adiabaticity parameter:
$$\gamma = \frac{\Delta m_{\rm M}^2/2E}{2|d\vartheta_{\rm M}/dx|}\Big|_{\rm R} = \frac{\Delta m^2 \sin^2 2\vartheta}{2E \cos 2\vartheta \left|\frac{d \ln A_{\rm CC}}{dx}\right|_{\rm R}}$$

 $A \propto x \qquad F = 1 \text{ (Landau-Zener approximation)} \quad \text{[Parke, PRL 57 (1986) 1275]}$ $A \propto 1/x \qquad F = (1 - \tan^2 \vartheta)^2 / (1 + \tan^2 \vartheta) \quad \text{[Kuo, Pantaleone, PRD 39 (1989) 1930]}$

[Pizzochero, PRD 36 (1987) 2293]

 $A \propto \exp(-x)$ $F = 1 - \tan^2 artheta$ [Toshev, PLB 196 (1987) 170]

[Petcov, PLB 200 (1988) 373]

Review: [Kuo, Pantaleone, RMP 61 (1989) 937]

Solar Neutrinos

Electron Neutrino Regeneration in the Earth

$$P_{\nu_e \to \nu_e}^{\text{sun+earth}} = \overline{P}_{\nu_e \to \nu_e}^{\text{sun}} + \frac{\left(1 - 2\overline{P}_{\nu_e \to \nu_e}^{\text{sun}}\right) \left(P_{\nu_2 \to \nu_e}^{\text{earth}} - \sin^2\vartheta\right)}{\cos^2\vartheta}$$

[Mikheev, Smirnov, Sov. Phys. Usp. 30 (1987) 759], [Baltz, Weneser, PRD 35 (1987) 528]

[Giunti, Kim, Monteno, NP B 521 (1998) 3]

 $P_{\nu_2 \rightarrow \nu_e}^{\text{earth}}$ is usually calculated numerically approximating the Earth density profile with a step function.

Effective massive neutrinos propagate as plane waves in regions of constant density.

Wave functions of flavor neutrinos are joined at the boundaries of steps.

Phenomenology of Solar Neutrinos

LMA (Large Mixing Angle): LOW (LOW Δm^2): SMA (Small Mixing Angle): QVO (Quasi-Vacuum Oscillations): VAC (VACuum oscillations):

[de Gouvea, Friedland, Murayama, PLB 490 (2000) 125]

[Bahcall, Krastev, Smirnov, JHEP 05 (2001) 015]

In Neutrino Oscillations Dirac = Majorana

Evolution of Amplitudes: $\frac{\mathrm{d}\nu_{\alpha}}{\mathrm{d}t} = \frac{1}{2E}\sum_{\alpha}\left(UM^2U^{\dagger} + 2EV\right)_{\alpha\beta}\nu_{\beta}$

difference: $\begin{cases} \text{Dirac:} & U^{(D)} \\ \text{Majorana:} & U^{(M)} = U^{(D)}D(\lambda) \end{cases}$

$$D(\lambda) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & e^{i\lambda_{21}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{i\lambda_{N1}} \end{pmatrix} \quad \Rightarrow \quad D^{\dagger} = D^{-1}$$

$$M^{2} = \begin{pmatrix} m_{1}^{2} & 0 & \cdots & 0 \\ 0 & m_{2}^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & m_{N}^{2} \end{pmatrix} \implies DM^{2} = M^{2}D \implies DM^{2}D^{\dagger} = M^{2}$$

 $U^{(M)}M^{2}(U^{(M)})^{\dagger} = U^{(D)}DM^{2}D^{\dagger}(U^{(D)})^{\dagger} = U^{(D)}M^{2}(U^{(D)})^{\dagger}$

Part III

Phenomenology of Three-Neutrino Mixing

Phenomenology of Three-Neutrino Oscillations

- Phenomenology of Three-Neutrino Oscillations
 - Experimental Evidences of Neutrino Oscillations
 - Three-Neutrino Mixing
 - Allowed Three-Neutrino Schemes
 - Mixing Matrix
 - Standard Parameterization of Mixing Matrix
 - Bilarge Mixing
 - Global Fit of Oscillation Data: Bilarge Mixing
- Absolute Scale of Neutrino Masses
- Tritium Beta-Decay
- Cosmological Bound on Neutrino Masses

Neutrinoless Double-Reta Decay
 C. Giunti – Neutrino Oscillation Physics – 9-13 June 2008, Benasque, Spain – 125

Experimental Evidences of Neutrino Oscillations

Reactor

 $\bar{\nu}_e$ disappearance

(KamLAND)

Homestake

 $\begin{array}{c} \text{Solar} \\ \nu_{e} \rightarrow \nu_{\mu}, \nu_{\tau} \end{array} \begin{pmatrix} \text{Kamiokande} \\ \text{GALLEX/GNO} \\ \text{SAGE} \\ \text{Super-Kamiokande} \end{pmatrix} \begin{cases} 2\sigma \\ \stackrel{2\sigma}{\longrightarrow} \end{cases} \begin{cases} \Delta m_{\text{SOL}}^{2} = 7.92 \left(1 \pm 0.09\right) \times 10^{-5} \text{ eV}^{2} \\ \sin^{2} \vartheta_{\text{SOL}} = 0.314 \left(1^{+0.18}_{-0.15}\right) \\ \text{[Fogli et al, PPNP 57 (2006) 742, hep-ph/0506083]} \end{cases}$

Atmospheric
 $\nu_{\mu} \rightarrow \nu_{\tau}$ Kamiokande
IMB
Super-Kamiokande
MACRO
Soudan-2 2σ $\Delta m_{ATM}^2 = 2.6 \left(1^{+0.14}_{-0.15}\right) \times 10^{-3} \, eV^2$
 $\sin^2 \vartheta_{ATM} = 0.45 \left(1^{+0.35}_{-0.20}\right)$
[Fogli et al, hep-ph/0608060] (K2K & MINOS) ν_{μ} disappearance

Two scales of Δm^2 : $\Delta m^2_{\rm ATM} \simeq 30 \,\Delta m^2_{\rm SOL}$

Large mixings: $\vartheta_{\text{ATM}} \simeq 45^{\circ}$, $\vartheta_{\text{SOL}} \simeq 34^{\circ}$

Three-Neutrino Mixing

$$u_{lpha L} = \sum_{k=1}^{3} U_{lpha k} \,
u_{kL} \qquad (lpha = e, \mu, \tau)$$

three flavor fields: ν_e , ν_μ , ν_τ

three massive fields: ν_1 , ν_2 , ν_3

$$\Delta m_{\rm SOI}^2 = \Delta m_{21}^2 \simeq 8.0 \times 10^{-5} \, {\rm eV}^2$$

 $\Delta m^2_{
m ATM} \simeq |\Delta m^2_{
m 31}| \simeq |\Delta m^2_{
m 32}| \simeq 2.5 imes 10^{-3} \, {
m eV^2}$

Allowed Three-Neutrino Schemes

absolute scale is not determined by neutrino oscillation data

Mixing Matrix

TWO-NEUTRINO SOLAR and ATMOSPHERIC ν OSCILLATIONS ARE OK! $\sin^2 \vartheta_{\text{SOL}} = \frac{|U_{e2}|^2}{1 - |U_{e3}|^2} \simeq |U_{e2}|^2 \quad \sin^2 \vartheta_{\text{ATM}} = |U_{\mu3}|^2 \quad \begin{bmatrix} \text{Bilenky, C.G, PLB 444 (1998) 379} \\ \text{[Guo, Xing, PRD 67 (2003) 053002]} \end{bmatrix}$

Standard Parameterization of Mixing Matrix

$$\begin{pmatrix} \nu_{eL} \\ \nu_{\mu L} \\ \nu_{\tau L} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1L} \\ \nu_{2L} \\ \nu_{3L} \end{pmatrix}$$
$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_2} & 0 \\ 0 & 0 & e^{i\lambda_3} \end{pmatrix}$$
$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23}-c_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_2} & 0 \\ 0 & 0 & e^{i\lambda_3} \end{pmatrix}$$
$$CHOOZ + SK + MINOS \Longrightarrow \sin^2 \vartheta_{CHOOZ} = 0.008 + 0.023 \oplus 2\sigma$$

[Fogli et al, hep-ph/0608060]

Bilarge Mixing

$$\begin{split} |U_{e3}|^2 \ll 1 \\ U \simeq \begin{pmatrix} c_{\vartheta_S} & s_{\vartheta_S} & 0 \\ -s_{\vartheta_S}c_{\vartheta_A} & c_{\vartheta_S}c_{\vartheta_A} & s_{\vartheta_A} \\ s_{\vartheta_S}s_{\vartheta_A} & -c_{\vartheta_S}s_{\vartheta_A} & c_{\vartheta_A} \end{pmatrix} \Longrightarrow \begin{cases} \nu_e = c_{\vartheta_S}\nu_1 + s_{\vartheta_S}\nu_2 \\ \nu_a^{(S)} = -s_{\vartheta_S}\nu_1 + c_{\vartheta_S}\nu_2 \\ = c_{\vartheta_A}\nu_\mu - s_{\vartheta_A}\nu_\tau \end{cases} \\ \sin^2 2\vartheta_A \simeq 1 \Longrightarrow \vartheta_A \simeq \frac{\pi}{4} \Longrightarrow U \simeq \begin{pmatrix} c_{\vartheta_S} & s_{\vartheta_S} & 0 \\ -s_{\vartheta_S}/\sqrt{2} & c_{\vartheta_S}/\sqrt{2} & 1/\sqrt{2} \\ s_{\vartheta_S}/\sqrt{2} & -c_{\vartheta_S}/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \\ Solar \nu_e \to \nu_a^{(S)} \simeq \frac{1}{\sqrt{2}} (\nu_\mu - \nu_\tau) \\ \frac{\Phi_{CC}^{SNO}}{\Phi_{\nu_e}^{SNO}} \simeq \frac{1}{3} \Longrightarrow \Phi_{\nu_e} \simeq \Phi_{\nu_\mu} \simeq \Phi_{\nu_\tau} \text{ for } E \gtrsim 6 \text{ MeV} \\ \sin^2 \vartheta_S \simeq \frac{1}{3} \Longrightarrow U \simeq \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \\ 1/\sqrt{6} & -1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix} \\ \text{Tri-Bimaximal Mixing} \end{split}$$

[Harrison, Perkins, Scott, hep-ph/0202074]

Global Fit of Oscillation Data: Bilarge Mixing

$$\begin{split} |U|_{\rm bf} \simeq \begin{pmatrix} 0.82 & 0.56 & 0.09 \\ 0.37 - 0.47 & 0.58 - 0.65 & 0.67 \\ 0.32 - 0.43 & 0.52 - 0.59 & 0.74 \end{pmatrix} \\ U|_{2\sigma} \simeq \begin{pmatrix} 0.78 - 0.86 & 0.51 - 0.61 & 0.00 - 0.18 \\ 0.21 - 0.57 & 0.41 - 0.74 & 0.59 - 0.78 \\ 0.19 - 0.56 & 0.39 - 0.72 & 0.62 - 0.80 \end{pmatrix} \end{split}$$

future: measure $\vartheta_{13} \neq 0 \implies \mathsf{CP}$ violation, matter effects, mass hierarchy

Absolute Scale of Neutrino Masses

Quasi-Degenerate for $m_1\simeq m_2\simeq m_3\simeq m_
u\gg \sqrt{\Delta m_{\rm ATM}^2}\simeq 5 imes 10^{-2}\,{\rm eV}$

Tritium Beta-Decay

Neutrino Mixing
$$\implies \mathcal{K}(T) = \left[(Q - T) \sum_{k} |U_{ek}|^{2} \sqrt{(Q - T)^{2} - m_{k}^{2}} \right]^{1/2}$$

analysis of data is
different from the
no-mixing case:
 $2N - 1$ parameters
 $\left(\sum_{k} |U_{ek}|^{2} = 1 \right)$
if experiment is not sensitive to masses $(m_{k} \ll Q - T)$
effective mass:
 $m_{\beta}^{2} = \sum_{k} |U_{ek}|^{2} m_{k}^{2}$
 $\mathcal{K}^{2} = (Q - T)^{2} \sum_{k} |U_{ek}|^{2} \sqrt{1 - \frac{m_{k}^{2}}{(Q - T)^{2}}} \simeq (Q - T)^{2} \sum_{k} |U_{ek}|^{2} \left[1 - \frac{1}{2} \frac{m_{k}^{2}}{(Q - T)^{2}} \right]$

$m_{\beta}^2 = |U_{e1}|^2 m_1^2 + |U_{e2}|^2 m_2^2 + |U_{e3}|^2 m_3^2$

Quasi-Degenerate: $m_1 \simeq m_2 \simeq m_3 \simeq m_\nu \implies m_\beta^2 \simeq m_\nu^2 \sum_k |U_{ek}|^2 = m_\nu^2$ FUTURE: IF $m_\beta \lesssim 4 \times 10^{-2} \text{ eV} \implies$ NORMAL HIERARCHY

Cosmological Bound on Neutrino Masses

- Phenomenology of Three-Neutrino Oscillations
- Absolute Scale of Neutrino Masses
- Tritium Beta-Decay
- Cosmological Bound on Neutrino Masses
 - WMAP (Wilkinson Microwave Anisotropy Probe)
 - Galaxy Redshift Surveys
 - Lyman-alpha Forest
 - Relic Neutrinos
 - Power Spectrum of Density Fluctuations
- Neutrinoless Double-Beta Decay

WMAP (Wilkinson Microwave Anisotropy Probe)

[WMAP, http://map.gsfc.nasa.gov]

Galaxy Redshift Surveys

[Springel, Frenk, White, astro-ph/0604561]

Lyman-alpha Forest

Rest-frame Lyman α , β , γ wavelengths: $\lambda_{\alpha}^{0} = 1215.67 \text{ Å}$, $\lambda_{\beta}^{0} = 1025.72 \text{ Å}$, $\lambda_{\gamma}^{0} = 972.54 \text{ Å}$ Lyman- α forest: The region in which only Ly α photons can be absorbed: $[(1 + z_q)\lambda_{\beta}^{0}, (1 + z_q)\lambda_{\alpha}^{0}]$

Relic Neutrinos

neutrinos are in equilibrium in primeval plasma through weak interaction reactions $\nu \bar{\nu} \stackrel{\leftarrow}{\hookrightarrow} e^+ e^- \stackrel{(-)}{\nu} e \stackrel{(-)}{\hookrightarrow} e^- \stackrel{(-)}{\nu} N \stackrel{\leftarrow}{\hookrightarrow} \stackrel{(-)}{\nu} N \quad \nu_e n \stackrel{\leftarrow}{\hookrightarrow} p e^- \quad \bar{\nu}_e p \stackrel{\leftarrow}{\hookrightarrow} n e^+ \quad n \stackrel{\leftarrow}{\hookrightarrow} p e^- \bar{\nu}_e$

weak interactions freeze out $\Gamma_{\text{weak}} = N\sigma v \sim G_{\text{F}}^2 T^5 \sim T^2/M_P \sim \sqrt{G_N T^4} \sim \sqrt{G_N \rho} \sim H \implies \frac{T_{\text{dec}} \sim 1 \text{ MeV}}{neutrino \text{ decoupling}}$ Relic Neutrinos: $T_{\nu} = \left(\frac{4}{2}\right)^{\frac{1}{3}} T_{\gamma} \simeq 1.945 \text{ K} \implies k T_{\nu} \simeq 1.676 \times 10^{-4} \text{ eV}$

Relic Neutrinos:
$$T_{\nu} = \left(\frac{4}{11}\right)$$
 $T_{\gamma} \simeq 1.945 \text{ K} \implies k T_{\nu} \simeq 1.676 \times 10^{-4} \text{ eV}$

number density: $n_f = \frac{3}{4} \frac{\zeta(3)}{\pi^2} g_f T_f^3 \implies n_{\nu_k, \bar{\nu}_k} \simeq 0.1827 \ T_{\nu}^3 \simeq 112 \, \mathrm{cm}^{-3}$

density contribution: $\Omega_{k} = \frac{n_{\nu_{k},\bar{\nu}_{k}} m_{k}}{\rho_{c}} \simeq \frac{1}{h^{2}} \frac{m_{k}}{94.14 \text{ eV}} \Longrightarrow \qquad \Omega_{\nu} h^{2} = \frac{\sum_{k} m_{k}}{94.14 \text{ eV}}$ [Gershtein, Zeldovich, JETP Lett. 4 (1966) 120] [Cowsik, McClelland, PRL 29 (1972) 669] $h \approx 0.7 \qquad \Omega_{\nu} \leq 0.3 \qquad \Longrightarrow \qquad \sum_{k} m_{\nu} \leq 14 \text{ eV}$

$$h \sim 0.7, \quad \Omega_{\nu} \lesssim 0.3 \qquad \Longrightarrow \qquad \sum_{k} m_{k} \lesssim 14 \, \mathrm{eV}$$

Power Spectrum of Density Fluctuations

WMAP, AJ SS 148 (2003) 175, astro-ph/0302209

CMB (WMAP, ...) + LSS (2dFGRS) + HST + SNIa $\implies \Lambda \text{CDM}$ $T_0 = 13.7 \pm 0.1 \text{ Gyr}$ $h = 0.71^{+0.04}_{-0.03}$ $\Omega_0 = 1.02 \pm 0.02$ $\Omega_B h^2 = 0.0224 \pm 0.0009$ $\Omega_M h^2 = 0.135^{+0.008}_{-0.009}$

 $\Omega_{
u} h^2 < 0.0076 \quad (95\% \text{ conf.}) \implies \sum_{k=1}^3 m_k < 0.71 \,\mathrm{eV}$

WMAP, astro-ph/0603449

$$\sum_{k=1} m_k < \begin{cases} 0.91 \text{ eV WMAP+SDSS} \\ 0.87 \text{ eV WMAP+2dFGRS} \\ 0.68 \text{ eV CMB+LSS+SNIa} \end{cases}$$
(95% conf.)

Goobar, Hannestad, Mortsell, Tu, JCAP 0606 (2006) 019, astro-ph/0602155

Flat ACDM

3	0.70 eV	CMB+LSS+SNIa	
$\sum m_k < \langle$	0.48 eV	CMB+LSS+SNIa+BAO	(95% conf.)
k=1	0.27 eV	$CMB+LSS+SNIa+BAO+Ly\alpha$	

Seljak, Slosar, McDonald, astro-ph/0604335 Flat Λ CDM CMB+LSS+SNIa+BAO+Ly α $\sum_{k=1}^{3} m_k < 0.17 \text{ eV}$ (95% conf.)

Fogli, Lisi, Marrone, Melchiorri, Palazzo, Serra, Silk, Slosar, hep-ph/0608060

Flat ACDM				
$\sum_{k=1}^{3} m_k < \begin{cases} 0.75 \text{ eV} \\ 0.58 \text{ eV} \\ 0.17 \text{ eV} \end{cases}$	CMB+LSS+SNIa CMB+LSS+SNIa+BAO CMB+LSS+SNIa+BAO+Ly α	(95% conf.)		

Neutrinoless Double-Beta Decay

Experimental Bounds

FUTURE EXPERIMENTSNEMO 3, CUORICINO, COBRA, XMASS, CAMEO, CANDLES $|m_{\beta\beta}| \sim \text{few } 10^{-1} \text{ eV}$ EXO, MOON, Super-NEMO, CUORE, Majorana, GEM, GERDA $|m_{\beta\beta}| \sim \text{few } 10^{-2} \text{ eV}$

Bounds from Neutrino Oscillations

$$m_{\beta\beta} = |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_{21}} m_2 + |U_{e3}|^2 e^{i\alpha_{31}} m_3$$

CP conservation

 $lpha_{21} = 0\,,\;\pi \qquad lpha_{31} = 0\,,\;\pi$

CP Conservation: Normal Scheme

CP Conservation: Inverted Scheme

 $m_{\beta\beta} = |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_{21}} m_2 + |U_{e3}|^2 e^{i\alpha_{31}} m_3$

FUTURE: IF $|m_{\beta\beta}| \lesssim 10^{-2} \text{ eV} \implies$ NORMAL HIERARCHY

Experimental Positive Indication

 $\begin{array}{l} \label{eq:Klapdor et al., MPLA 16 (2001) 2409; FP 32 (2002) 1181; NIMA 522 (2004) 371; PLB 586 (2004) 198] \\ T_{1/2}^{0\nu \ bf} = 1.19 \times 10^{25} \ y \quad T_{1/2}^{0\nu} = (0.69 - 4.18) \times 10^{25} \ y \left(3\sigma\right) \quad 4.2\sigma \ \text{evidence} \end{array}$

the indication must be checked by other experiments

 $1.35 \lesssim |\mathcal{M}_{0
u}| \lesssim 4.12 \quad \Longrightarrow \quad 0.22 \, eV \lesssim |m_{etaeta}| \lesssim 1.6 \, eV$

if confirmed, very exciting (Majorana ν and large mass scale)

Indication of $\beta \beta_{0\nu}$ Decay: $0.22 \,\mathrm{eV} \lesssim |m_{\beta\beta}| \lesssim 1.6 \,\mathrm{eV}$ (~ 3σ range)

tension among oscillation data, CMB+LSS+BAO(+Ly α) and $\beta\beta_{0\nu}$ signal

Conclusions

 $\begin{array}{ll} \nu_e \rightarrow \nu_{\mu}, \nu_{\tau} & \text{with} & \Delta m_{\text{SOL}}^2 \simeq 8.3 \times 10^{-5} \, \text{eV}^2 & (\text{solar } \nu, \, \text{KamLAND}) \\ \nu_{\mu} \rightarrow \nu_{\tau} & \text{with} & \Delta m_{\text{ATM}}^2 \simeq 2.4 \times 10^{-3} \, \text{eV}^2 & (\text{atm. } \nu, \, \text{K2K}, \, \text{MINOS}) \\ & \downarrow \\ & \text{Bilarge } 3\nu \text{-Mixing} & \text{with} & |U_{e3}|^2 \ll 1 & (\text{CHOOZ}) \\ & \beta & \text{Decay, Cosmology, } \beta \beta_{0\nu} & \text{Decay} \Longrightarrow m_{\nu} \lesssim 1 \, \text{eV} \end{array}$

FUTURE

Theory: Why lepton mixing \neq quark mixing? (Due to Majorana nature of ν 's?) Why only $|U_{e3}|^2 \ll 1$? Improve uncertainties in calculation of $\mathcal{M}_{0\nu}$! Exp.: Measure $|U_{e3}| > 0 \Rightarrow$ CP viol., matter effects, mass hierarchy Check $\beta\beta_{0\nu}$ signal at Quasi-Degenerate mass scale Improve β Decay, Cosmology, $\beta\beta_{0\nu}$ Decay measurements