

Neutrino Astrophysics Teresa Montaruli University of Wisconsin - Madison and University of Bari Italy tmontaruli@icecube.wisc.edu

The real voyage is not to travel to new landscapes, but to see with new eyes...

Marcel Proust

Lectures contents

Lecture 1	Lecture 2	Lecture 3
 Introduction to neutrino astronomy 	 Extra-galactic sources: AGNs and GRBs 	 Event topologies and reconstructions
 connections with cosmic rays and gamma- astronomy 	 Calculation of rates 	 Example of analyses
	 Detection Technique 	 Point-source analysis and current results
 calculation of neutrino fluxes from gamma fluxes 	 Main Parameters of Detectors 	 Atmospheric neutrino analysis
 candidate sources: galactic sources 	 Existing detectors 	 Current physics results

• UHECR and Auger

• SN collapse

The Birth of Neutrino Astronomy

Neutrinos from thermonuclear reactions in the Sun

~6 x 10¹⁰ \vee cm⁻² s⁻¹ E_{ν}~ 0.1 – 20 MeV

 \sim 10 s bursts of 10 MeV $_{\rm V}$ s from stellar collapse

Neutronization Thermalization:

CRs and Neutrinos

Messengers of the universe

absorption

 γ -rays: $\gamma + \gamma_{2.7k}$ proton: $p + \gamma_{2.7k} \rightarrow \pi^0 + X$ neutrinos: $\nu + \nu_{1.95K} \rightarrow Z + X$

cut-off

>10¹⁴eV >5.10¹⁹eV >4.10²²eV

p and gamma astronomy have not access to the entire Universe

> Particles are messengers if the point back to sources (neutral or UHE)

mean free path

10 Mpc 50 Mpc (40 Gpc)

 $I Mpc \sim 3.1 \times 10^{24} cm$

•Neutrons: decay γ ct = E/m ct \approx 10 kpc for E \sim EeV

Photons: currently provide most information on the Universe but they are reprocessed in sources and interact during propagation with extra-galactic backgounds.
 For E > 500 GeV they do not survive the journey from the Galactic Centre
 Protons: directions scrambled by the galactic and intergalactic magnetic fields

Cosmic Rays

1 TeV = 1.6 erg1 EeV = 0.16 Joule

The knee

- Acceleration cutoff E_{max} ~ZBL~Z ×100 TeV (SNR), change in acceleration mechanisms
- A-dependent knee (cannonball model) not preferred respect to Z (Kascade)
- Rigidity dependent cutoff due to confinement of CRs in the galaxy
- Change in interaction properties (eg. onset of a channel where energy goes into unseen

Observed knee for p at about 4000 TeV Z dependent knee favored by data Depends on interaction models

Fig. 14. Unfolded energy spectra for H, He, C (left panel) and Si, Fe (right panel) based on QGSJet simulations. The shaded bands are an estimate of the systematic uncertainties due to the used parameterizations and the applied unfolding method (Gold algorithm).

Fig. 15. Unfolded energy spectra for H, He, C (left panel) and Si, Fe (right panel) based on SIBYLL simulations. The shaded bands are estimates of the systematic uncertainties due to the used parameterizations and the applied unfolding method (Gold algorithm).

Supernova remnants and shock acceleration

Cas A supernova remnant in X-ravs

In 1st order Fermi particles are efficiently accelerated since energy increases on both directions across shock • conserve m, E, p across the shock front

• Energy gain crossing shock in either direction

A shock is a transition layer where the velocity field of the fluid suddenly decreases

Continuity equation (conservation of mass across shock): $\rho_1 V_1 = \rho_2 V_2$ For ionized gas R= compression ratio = $\rho_2/\rho_1 = v_1/v_2 = 4$

4 gas theory

Increase of energy for particle crossing the shock front in both directions: $\Delta E/E \sim U/c$

Shock rest frame

$$\begin{array}{c|c} 2 & 1 \\ v_2 = 1/4v_1 \\ \hline \\ downstream \end{array}$$

1nd order in the velocity of the shock

Shock front at rest: upstream gas flows into shock with velocity $v_1 = U$ and leaves the shock with smaller velocity $v_2 = U/4$

Supernova remnants and shock acceleration

Upstream material rest frame

material distribution isotropic

Let's consider the particles upstream with the front. Here the particle distribution is isotropic. The shock advances through the medium at velocity U, but the gas behind the shock travels at velocity 3/4U relative to the upstream gas. When a high energy particle crosses the shock front, it obtains a small increase in the energy of the order of $\Delta E/E \sim U/c$

Downstream material frame

$$\begin{array}{c} 2 \\ v_2 = 0 \end{array} \qquad \begin{array}{c} 1 \\ v_1 = U \\ \hline \end{array} \\ - U \\$$

Let us consider the opposite process of a particle diffusing from behind the shock (downstream) to the upstream region. The velocity distribution of particles is isotropic downstream the shock and when they cross the shock front they encounter gas moving towards the shock front with the velocity 3/4U. The particle undergoes exactly the same process of receiving a small increase in the energy on crossing the shock from downstream to upstream. So every time the particle crosses the shock it receives an increase of energy and the increment is the same in both directions

Increase of energy for particle crossing the shock front in both directions: $\Delta E/E \sim U/c$

Spectrum from 1st Fermi acceleration Total flux of particles that cross the shock $(E-E_0)/E_0 \sim U/c \Rightarrow \beta = E/E_0 = 1+U/c$ $\Phi_+ = \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \cos\theta = \frac{\rho \ c}{4} - \frac{1}{4\pi} \int d\Omega \ \Phi_i \ \delta_i \$

 Probability remains in acceleration region and will cross the shock again: P ~ 1-U/c => ln(1+P)~ -U/c (U<<c)

•
$$\ln P/\ln\beta \sim -1$$

integral spectral index
• After k collisions:

$$\frac{E}{E_0} = \beta^k \Rightarrow k \ln \beta = \ln \frac{E}{E_0} \\ \Rightarrow k = \frac{\ln \frac{E}{E_0}}{\ln \beta} = \frac{\ln \frac{N}{N_0}}{\ln P} \Rightarrow$$

$$\frac{N}{N_0} = P^k \Rightarrow k \ln P = \ln \frac{N}{N_0} \\ \Rightarrow k = \frac{\ln \frac{E}{E_0}}{\ln \beta} = \frac{\ln \frac{N}{N_0}}{\ln \beta} \Rightarrow$$

$$\ln \frac{N}{N_0} = \frac{\ln P}{\ln \beta} \times \ln \frac{E}{E_0} = \ln \left(\frac{E}{E_0}\right)^{\ln P/\ln \beta} \Rightarrow \frac{N}{N_0} = \left(\frac{E}{E_0}\right)^{\ln P/\ln \beta}$$
differentiating $dN \propto E^{\ln P/\ln \beta - 1} dE \Rightarrow \frac{dN}{dE} \propto E^{-2}$

Hadrons in SNRs?

SED of RX J1713.7-3946 Berezhko, Volks ICRC2007 B-field required for fit is 126μ G for pion production. In models with magnetic field amplification the energy at which SNR accelerate can be as high as Z x 10^3 TeV at early stages of SNR evolutions.

High resolution X-ray observations of SNR rims: brightness profiles connected to intensity of B-fields $\sim 100 \mu$ G

The generic source of neutrinos

Connection with gamma Same order of magnitude for neutrino flux and gamma flux if no attenuation of gammas

The photon \Leftrightarrow neutrino connection

Current scenario Giunti

 The relation between flavor states and mass ones containes a 3 x 3 matrix V = U A, A relevant only if neutrino is Majorana and U = MNSP matrix

B. Pontecorvo, Sov. Phys. JETP 7, 172 (1958) [Zh. Eksp. Teor. Fiz. 34, 247 (1957)].
Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28 870 (1962)

$$\begin{aligned} \text{solar } \mathbf{U}_{\text{el}}, \mathbf{U}_{\text{e2}} & \leftrightarrow \theta_{12} \text{ CHOOZ } \mathbf{U}_{\text{e3}} & \leftrightarrow \theta_{13} \\ U &= \begin{pmatrix} \begin{matrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \\ \end{matrix} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix}$$

atmospheric $U_{e3} \leftrightarrow \theta_{13} U_{\mu 3}, U_{\tau 3} \leftrightarrow \theta_{23}$

 $s_{ij} \equiv \sin \theta_{ij}, c_{ij} \equiv \cos \theta_{ij}.$

Neutrino scenario depends on 3 angles (θ_{12}, θ_{23} and θ_{13}), 2 square mass differences $(\Delta m_{12}^2 \text{ and } \Delta m_{23}^2)$ and a CP violation phase δ

 $\begin{bmatrix} 0 & e^{i\beta} & 0 \\ 0 & 1 \end{bmatrix}$

Astrophysical neutrino oscillations

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sum_{i} |U_{\alpha,i}|^{2} |U_{\beta,i}|^{2} + 2 \sum_{i < j} U_{\alpha,i} U_{\beta,i} U_{\alpha,j} U_{\beta,j} \cos\left(\frac{\Delta m_{ij}^{2} L}{2E}\right) \qquad \Delta m_{31}^{2} \sim \Delta m_{32}^{2} \gg \Delta m_{21}^{2}$$

$$p_{13} = 0$$

$$p$$

TeV Sky 2008

GALACTIC :

- Blazars
- Radiogalaxies (FRII: M87+?)
- Flat Spectrum Radio Quasars (3C 273, recent)
- Extragalactique Background Light (EBL)
- Multiwave-length campains
- Starburst Galaxies (UL)
- GRBs (UL)
-

www.tevcat.uchicago.edu

Detection technique of IACT

 $ICrab = 3 \times 10^{-11} \text{ erg/cm}^2\text{s}$ = 1.9 x 10⁻¹¹ TeV/cm²s (100 GeV-10 TeV) I TeV = 1.6 erg

Stereoscopic IACT arrays as perfect <u>γ-ray-telescopes</u>!

> image of source is somewhere on the image axis ...

need several views to get unambiguous shower direction

Air shower images

γ primary

"hadron" primary

Standard Candle: Crab

