

Lectures contents

Lecture 1
 Lecture 2
 Lecture 3

- Introduction to neutrino astronomy
- connections with cosmic rays and gammaastronomy
- calculation of neutrino fluxes from gamma fluxes
- candidate sources: galactic sources
- UHECR and Auger
- Extra-galactic sources: AGNs and GRBs
- Calculation of rates
- Detection Technique
- Main Parameters of Detectors
- Existing detectors
- Event topologies and reconstructions
- Example of analyses
- Point-source analysis and current results
- Atmospheric neutrino analysis
- Current physics results
- SN collapse

The Birth of Neutrino Astronomy

Neutrinos from thermonuclear reactions in the Sun

$$
4 p \rightarrow{ }^{4} \mathrm{He}+2 e^{+}+2 \nu_{e}
$$

$\sim 6 \times 10^{10} v \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Ev 0.1-20 Mel
~ 10 s hursts of 10 Mel vs from stellar collanse
Nobel Prize in Physics 2002

$$
\begin{aligned}
& e^{-}+p \rightarrow n+v_{e} \\
& e^{-}+e^{+} \rightarrow \bar{v}+v
\end{aligned}
$$

Neutronization Thermalization:

SN1987A

CRs and Neutrinos

Neulrino Huxes

CasA SNR in X-rays,

Messengers of the universe

absorption
γ-rays: $\quad \gamma+\gamma_{2.7 k}$
proton: $\quad \mathrm{p}+\gamma_{2.7 \mathrm{k}} \rightarrow \pi^{0}+\mathrm{X}$
neutrinos: $v+v_{1.95 \mathrm{~K}} \rightarrow Z+X$

$$
\begin{aligned}
& \text { cut-off } \\
> & 10^{14} \mathrm{eV} \\
> & 5.10^{19} \mathrm{eV} \\
> & 4.10^{22} \mathrm{eV}
\end{aligned}
$$

mean free path

10 Mpc	$1 \mathrm{pc}=3.26 \mathrm{ly}=3.110^{13} \mathrm{~km}$
50 Mpc	$I \mathrm{Mpc} \sim 3.1 \times 10^{24} \mathrm{~cm}$
$(40 \mathrm{Gpc})$	

Astronomy

 accelerator

- Neutrons: decay $\gamma \mathrm{ct}=\mathrm{E} / \mathrm{m}$ ct $\approx 10 \mathrm{kpc}$ for $\mathrm{E} \sim \mathrm{EeV}$
-Photons: currently provide most information on the Universe but they are reprocessed in sources and interact during propagation with extra-galactic backgounds.
For $\mathrm{E}>500 \mathrm{GeV}$ they do not survive the journey from the Galactic Centre
- Protons: directions scrambled by the galactic and intergalactic magnetic fields

Cosmic Rays

$1 \mathrm{TeV}=1.6 \mathrm{erg}$
$1 \mathrm{EeV}=0.16$ Joule

The knee

- Acceleration cutoff $\mathrm{E}_{\max } \sim \mathrm{ZBL} \sim \mathrm{Z} \times 100 \mathrm{TeV}(\mathrm{SNR})$, change in acceleration mechanisms
- A-dependent knee (cannonball model) not preferred respect to Z (Kascade)
- Rigidity dependent cutoff due to confinement of CRs in the galaxy
- Change in interaction properties (eg. onset of a channel where energy goes into unseen

Fig. 14. Unfolded energy spectra for $\mathrm{H}, \mathrm{He}, \mathrm{C}$ (left panel) and Si, Fe (right panel) based on QGSJet simulations. The shaded bands are an estimate of the systematic uncertainties due to the used parameterizations and the applied unfolding method (Gold algorithm).

primary energy $E[\mathrm{GeV}]$

primary energy $E[\mathrm{GeV}]$

Fig. 15. Unfolded energy spectra for $\mathrm{H}, \mathrm{He}, \mathrm{C}$ (left panel) and Si, Fe (right panel) based on SIBYLL simulations. The shaded bands are estimates of the systematic uncertainties due to the used parameterizations and the applied unfolding method (Gold algorithm).

Observed knee for p at about 4000 TeV Z dependent knee favored by data Depends on interaction models

Supernova remnants and shock acceleration
 mas a sunenovaremnantinitrays

In $1^{\text {st }}$ order Fermi particles are efficiently accelerated since energy increases on both directions across shock - हe conserve m,E,p across the shock front
-. S. Energy gain crossing shock in either direction
A shock is a transition layer where the velocity field of the fluid suddenly decreases
Continuity equation (conservation of mass across shock): $\quad \rho_{1} \mathrm{v}_{1}=\rho_{2} \mathrm{v}_{2}$
For ionized gas $\mathrm{R}=$ compression ratio $=\rho_{2} / \rho_{1}=\mathrm{v}_{1} / \mathrm{v}_{2}=4$
4 gas theory

Increase of energy for particle crossing the shock front in both directions: $\Delta E / E \sim U / c$ Shock rest frame $1^{\text {nd }}$ order in the velocity of the shock

Shock front at rest: upstream gas flows into shock with velocity $\mathrm{v}_{1}=\mathrm{U}$ and leaves the shock with smaller velocity $\mathrm{v}_{2}=\mathrm{U} / 4$

Supernova remnants and shock acceleration

Upstream material rest frame

Let's consider the particles upstream with the front. Here the particle distribution is isotropic. The shock advances through the medium at velocity U , but the gas behind the shock travels at velocity $3 / 4 \mathrm{U}$ relative to the upstream gas. When a high energy particle crosses the shock front, it obtains a small increase in the energy of the order of $\Delta \mathrm{E} / \mathrm{E} \sim \mathrm{U} / \mathrm{c}$

Downstream material frame
Let us consider the opposite process of a particle diffusing from
behind the shock (downstream) to the upstream region. The
velocity distribution of particles is isotropic downstream the
shock and when they cross the shock front they encounter gas
moving towards the shock front with the velocity $3 / 4 \mathrm{U}$.
The particle undergoes exactly the same process
of receiving a small increase in the energy on
crossing the shock from downstream to upstream. So every
time the particle crosses the shock it receives an increase of
energy and the increment is the same in both directions

Spectrum from $1^{\text {st }}$ Fermi acceleration

Total flux of particles that cross the shock

- $\left(E-E_{0}\right) / E_{0} \sim U / c=>\beta=E / E_{0}=1+U / c$

$$
\Phi_{+}=\frac{1}{4 \pi} \int \mathrm{~d} \Omega \Phi_{\mathrm{i}} \cos \theta=\frac{\rho \mathrm{c}}{4}
$$

$\rho=$ density of particles.
Flux of particles that cannot cross again

- For $U \ll c$ (non relativistic shock) $\ln \beta=\ln (1+U / c) \sim U / c$
- Average particles lost across the shock ~ U/c the shock $\rho v_{1}=\rho U$
So the fraction of particles lost is $(\rho U) /$ (1/4pc) ~ U/c
- Probability remains in acceleration region and will cross the shock again: $P \sim 1-U / c=>\ln (1+P) \sim-U / c$ ($\mathrm{U} \ll \mathrm{c}$)
- $\ln P / \ln \beta \sim-1$
integral spectral index
- After k collisions:

$$
\left.\begin{array}{l}
\frac{E}{E_{0}}=\beta^{k} \Rightarrow k \ln \beta=\ln \frac{E}{E_{0}} \\
\frac{N}{N_{0}}=P^{k} \Rightarrow k \ln P=\ln \frac{N}{N_{0}}
\end{array}\right\} \Rightarrow k=\frac{\ln \frac{E}{E_{0}}}{\ln \beta}=\frac{\ln \frac{N}{N_{0}}}{\ln P} \Rightarrow
$$

$$
\ln \frac{N}{N_{0}}=\frac{\ln P}{\ln \beta} \times \ln \frac{E}{E_{0}}=\ln \left(\frac{E}{E_{0}}\right)^{\ln P / \ln \beta} \Rightarrow \frac{N}{N_{0}}=\left(\frac{E}{E_{0}}\right)^{\ln P / \ln \beta}
$$

differentiating $d N \propto E^{\ln P / \ln \beta-1} d E \Rightarrow \frac{d N}{d E} \propto E^{-2}$

RX J1713.7-39.46

IC model: B-field cannot exceed $10 \mu G$ and... does not provide good spectral fit

Electrons emit synchrotron radiation. Relativistic electrons make Inverse Compton scattering on ambient photons that are seen then at higher energies.

$$
\mathrm{e}^{ \pm}+\gamma_{\text {basse énergie }} \longrightarrow \mathrm{e}^{ \pm}+\gamma_{\mathrm{TeV}}
$$

- Particles up to >100 TeV

- If hadrons
primary energy >200 $\mathbf{~ T e V}$
- If leptons primary energy >100 TeV (KN)

For high B-fields synch losses dominate over IC losses. Large $\mathrm{E}_{\mathrm{e}, \max }$ (> 100 TeV) can be achieved only for $\mathrm{B} \leq 10 \mu \mathrm{G}$

$\mathrm{E}_{\mathrm{e}}^{\max }=2,3 \cdot 10^{4} \frac{\mathrm{v}_{1}}{\mathrm{c}}\left(\frac{\mathrm{B}}{1 \mathrm{G}}\right)^{-\frac{1}{2}} \mathrm{GeV}$| V. $\mathrm{V}_{1}=$ velocity of particle |
| :--- |
| upstream shock |

$\mathrm{B} \sim 10 \mu \mathrm{G}$ et $\mathrm{v}_{1} \sim 10^{\mathrm{s}} \mathrm{cm} \cdot \mathrm{s}^{-1} \quad 2,2.10^{5} \mathrm{GeV}$

Hadrons in SNRs?

SED of RX J1713.7-3946

Berezhko, Volks ICRC2007
B-field required for fit is $126 \mu \mathrm{G}$ for pion production. In models with magnetic field amplification the energy at which SNR accelerate can be as high as Z x $10^{3} \mathrm{TeV}$ at early stages of SNR evolutions.

High resolution X-ray observations of SNR rims: brightness profiles connected to intensity of B-fields $\sim 100 \mu \mathrm{G}$

The generic source of neutrinos

NEUTRINO BEAMS: HEAVEN \& EARTH

Berezinsky et al, 1985
Gaisser, Stanev, 1985

Connection with gamma Same order of magnitude for neutrino flux and gamma flux if no attenuation of gammas

Reminder on reaction thresholds

CM frame

$$
\begin{aligned}
& t+p \rightarrow M_{1}+M_{2}+\ldots+M_{f} \\
& \sqrt{s}=\sum_{f} M_{f}=\sqrt{E_{\text {tot }}^{2}-\vec{p}_{\text {tot }}^{2}}
\end{aligned} \quad \text { E }_{\mathrm{Cm}}=\sqrt{ } \mathrm{S}
$$

energy of projectile available to
produce particles at rest in final state:

$$
\begin{aligned}
& \text { Lab frame (} \mathrm{m}_{\mathrm{t}} \text { at rest) } \\
& \begin{array}{l}
E_{\text {tot }}=m_{t}+m_{p}+E_{k, p} \\
\vec{p}_{\text {tot }}=\vec{p}_{p}
\end{array} \begin{array}{c}
\text { True in any } \\
\begin{array}{c}
\text { ref frame }
\end{array} \\
\begin{array}{l}
\left.\sum_{t} M_{f}\right)^{2}=E_{\text {tot }}^{2}-\vec{p}_{t o t}^{2}=\left(m_{t}+m_{p}+E_{k, p}\right)^{2}-\vec{p}_{p}^{2}=\left(m_{t}+m_{p}\right)^{2}+E_{k, p}^{2}+2\left(m_{t}+m_{p}\right) E_{k, p}-\vec{p}_{p}^{2}= \\
=\left(m_{t}+m_{p}\right)^{2}+\vec{p}_{p}^{2}-2 m_{p} E_{k, p}+2\left(m_{t}+m_{p}\right) E_{k, p}-\vec{p}_{p}^{2}=\left(m_{t}+m_{p}\right)^{2}-2 m_{p} E_{k, p}+2\left(m_{t}+m_{p}\right) E_{k, p}= \\
E_{\text {tot }}=E_{k}+m=\sqrt{\vec{p}^{2}+m^{2}}
\end{array} \\
=\left(m_{t}+m_{p}\right)^{2}+2 m_{t} E_{k, p} \Rightarrow E_{k, p}=\frac{\left(m_{t}+m_{p}\right)^{2}-\left(\sum_{f} M_{f}\right)^{2}}{2 m_{t}}
\end{array}
\end{aligned}
$$

The photon \Leftrightarrow neutrino connection

pp interactions

$$
p+A \rightarrow \pi^{0}+\pi^{+}+\pi^{-}
$$ pions share p energy

2 photons with: $E_{\gamma} \approx E_{\pi} / 2 \approx E_{p} / 6 \quad \begin{aligned} & \mu \nu_{\mu} \\ & e+2 \nu_{\mu}+\nu_{e}\end{aligned}$
For each gamma 2 muon neutrinos with: $E_{v} \approx E_{\pi} / 4 \approx E_{p} / 12$
ν / γ after oscillations
 Hence energy in photons and gammas is the same:

After oscillations: $v_{\mu} / \gamma \sim 0.5$

$$
\begin{gathered}
\int_{E_{\gamma}^{\min }}^{E_{\gamma}^{\max }} E_{\gamma} \frac{d N_{\gamma}}{d E_{\gamma}} d E_{\gamma}=K \int_{E_{\gamma}^{\min }}^{L_{\nu}} E_{v} \frac{d N_{v}}{d E_{\nu}} d E_{\nu}, \quad \mathrm{K} \sim 0.5 \\
E_{p}^{\max }=6 E_{\gamma}^{\max }, \quad E_{\nu}^{\max }=\frac{1}{12} E_{p}^{\max }, \\
p+p \rightarrow p+p+\pi^{0} \\
E_{p}^{\min }=\Gamma \frac{\left(2 m_{p}+m_{\varkappa}\right)^{2}-2 m_{p}^{2}}{2 m_{p}} \simeq \Gamma \times 1.23 \mathrm{GeV} \quad p+p \rightarrow p+n+\pi^{+}
\end{gathered}
$$

particle multiplicity in pp

Minimum proton energy fixed by threshold for π production ($\Gamma=E / m$ is the Lorentz factor of the p jet respect to the observer)

The photon \Leftrightarrow neutrino connection

p γ interactions

1) $p+\gamma \rightarrow \Delta^{+} \rightarrow p \pi^{0}$

$$
B R=2 / 3
$$

2) $p+\gamma \rightarrow \Delta^{+} \rightarrow n \pi^{+}$

E of gammas in lab (p at rest) $B R=1 / 3$

$$
E_{k, p}=\frac{\left(\sum_{f} M_{f}\right)^{2}-\left(m_{t}+m_{p}\right)^{2}}{2 m_{t}}=\frac{\left(m_{N}+m_{\pi}\right)^{2}-m_{p}^{2}}{2 m_{p}} \sim 150 \mathrm{MeV}
$$

$$
E_{\gamma}=\gamma_{p} \varepsilon_{\gamma}=150 \mathrm{MeV}
$$

$$
E_{p, t h r}=\gamma_{p} m_{p}=150 \mathrm{MeV} \times m_{p} / \varepsilon_{\gamma}=\left(\frac{1 \mathrm{MeV}}{\varepsilon_{\gamma}}\right) \times 150 \mathrm{GeV} \quad \text { Energy of gammas p rest frame Energy of gammas in } \mathrm{CM}
$$

$$
E_{\gamma}=\frac{E_{p}\left\langle x_{p \rightarrow \pi}\right\rangle}{2}=10 \% E_{p}
$$

$$
E_{\vee}=\frac{E_{p}\left\langle x_{p \rightarrow \pi}\right\rangle}{4}=5 \% E_{p}
$$

$$
\left\langle x_{p \rightarrow \pi}\right\rangle \approx 0.2
$$

$$
\int_{E_{\gamma \text { min }}}^{E_{y \text { max }}} E_{\gamma} \frac{d N_{\gamma}}{d E_{\gamma}} d E_{\gamma}=K \int_{E_{v \text { min }}}^{E_{v \max }} E_{v} \frac{d N_{v}}{d E_{v}} d E_{v}
$$

K = 2 after oscillations are accounted for

Halzen and Hooper, astro-ph/0502449

Current scenario

Giunti

- The relation between flavor states and mass ones containes a 3×3 matrix V = U A, A relevant only if neutrino is Majorana and $\mathrm{U}=$ MNSP matrix
B. Pontecorvo, Sov. Phys. JETP 7, 172 (1958) [Zh. Eksp. Teor. Fiz. 34, 247 (1957)] Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28870 (1962)

$$
A=\left(\begin{array}{ccc}
e^{i \alpha} & 0 & 0 \\
0 & e^{i \beta} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

solar $\mathrm{U}_{\mathrm{e} 1}, \mathrm{U}_{\mathrm{e} 2} \leftrightarrow \theta_{12}$ CHOOZ $\mathrm{U}_{\mathrm{e} 3} \leftrightarrow \theta_{13}$
atmospheric $\mathrm{U}_{\mathrm{e} 3} \leftrightarrow \theta_{13} \mathrm{U}_{\mu 3}, \mathrm{U}_{\tau 3} \leftrightarrow \theta_{23}$

$$
s_{i j} \equiv \sin \theta_{i j}, c_{i j} \equiv \cos \theta_{i j}
$$

Neutrino scenario depends on 3 angles $\left(\theta_{12}, \theta_{23}\right.$ and $\left.\theta_{13}\right)$, 2 square mass difierences $\left(\Delta m_{12}^{2}\right.$ and $\left.\Delta m_{23}^{2}\right)$ and a CP
 violation phase δ

Astrophysical neutrino oscillations

$P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\sum_{i}\left|U_{\alpha, i}\right|^{2}\left|U_{\beta, i}\right|^{2}+2 \sum_{i<j} U_{\alpha, i} U_{\beta, i} U_{\alpha, j} U_{\beta, j} \cos \left(\frac{\Delta \mathrm{~m}_{i j}^{2} L}{2 \mathrm{E}}\right)$,

$2 \times 10^{-3} \mathrm{eV}^{2}$ atmospheric

$7 \times 10^{-5} \mathrm{eV}^{2}$ solar

$$
\Delta m_{31}^{2} \sim \Delta m_{32}^{2} \gg \Delta m_{21}^{2}
$$

$$
\vartheta_{13}=0
$$

For astrophysical source @1 kpc emitting vs of 10 TeV : $\operatorname{COS} \varphi$ averages to zero since the extension of sources

$$
\varphi \sim 3 \cdot 10^{8}\left(\frac{\Delta m^{2}}{8 \cdot 10^{-5} \mathrm{eV}^{2}}\right)\left(\frac{\mathrm{L}}{1 \mathrm{kpc}}\right)\left(\frac{10 \mathrm{TeV}}{E_{\nu}}\right)
$$

about 1 pc and distance 1 kpc so L known with precision $1 / 1000$ not $1 / 10^{8}$

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\sum_{i}\left|U_{\alpha, i}\right|^{2}\left|U_{\beta, i}\right|^{2}
$$

$P\left(v_{e} \rightarrow v_{e}\right)=\sum_{i}\left|U_{e i}\right|^{2}\left|U_{e i}\right|^{2}=\left|U_{e \mid}\right|^{4}+\left|U_{e 2}\right|^{4}+\left|U_{e 3}\right|^{4}=0.82^{4}+0.57^{4}+0=0.56$

$v_{\alpha} \backslash v_{\beta}$	v_{e}	v_{μ}	v_{τ}
v_{e}	60%	20%	20%
v_{μ}	20%	40%	40%
v_{τ}	20%	40%	40%

$P\left(v_{e} \rightarrow v_{\mu}\right)=\sum_{i}\left|U_{e i}\right|^{2}\left|U_{\mu i}\right|^{2}=\left|U_{e 1}\right|^{2}\left|U_{\mu 1}\right|^{2}+\left|U_{e 2}\right|^{2}\left|U_{\mu 2}\right|^{2}+\left|U_{e 3}\right|^{2}\left|U_{\mu 1}\right|^{2}=0.82^{2} \cdot 0.4^{2}+0.57^{2} \cdot 0.58^{2}+0=0.22$
$P\left(v_{e} \rightarrow v_{\tau}\right)=\sum_{i}\left|U_{e i}\right|^{2}\left|U_{\tau i}\right|^{2}=\left|U_{e 1}\right|^{2}\left|U_{\tau 1}\right|^{2}+\left|U_{e 2}\right|^{2}\left|U_{\tau 2}\right|^{2}+\left|U_{e 3}\right|^{2}\left|U_{\tau 1}\right|^{2}=0.82^{2} \cdot 0.4^{2}+0.57^{2} \cdot 0.58^{2}+0=0.22$

TeV Sky 2008

GALACTIC :

- Young Shell type Supernova Remnants
- Older and/or Interacting SNRs
- Composite SNRs
- Pulsar Wind Nebulae (PWN)
- Binary Systems (LS 5039, LSI +61 303)
- Variable PWN in binary
- Open Stellar Clusters
- Galactic Center
- Galactic diffuse emission
- Unidentified sources ...

EXTRAGALACTIC:

>70 Sources

- Blazars
- Radiogalaxies (FRII: M87+?)
- Flat Spectrum Radio Quasars (3C 273, recent)
- Extragalactique Background Light (EBL)
- Multiwave-length campains
- Starburst Galaxies (UL)
- GRBs (UL)
-...
www.tevcat.uchicago.edu

Detection technique of IACT

Airshower images

γ primary

"hadron" primary

Standard Candle: Crab

Neutrino fluxes from SNRs

a SNR at $\mathrm{d}=1 \mathrm{kpc}$ transfers $\mathrm{W}=10^{50} \mathrm{erg}$ to cosmic rays interacting with molecular clouds with density $\mathrm{n}=1 \mathrm{~cm}^{-3}$

$$
E \frac{d N_{\gamma}}{d E}(>1 \mathrm{TeV})=
$$

$$
=10^{-11} \sim 10^{-12} \frac{\text { photons }}{\mathrm{cm}^{2} \mathrm{~s}} \frac{W}{10^{50} \mathrm{erg}} \frac{n}{1 \mathrm{~cm}^{3}}\left(\frac{d}{1 \mathrm{kpc}}\right)^{-2} \mathrm{~km}^{3} \text { detector } \begin{aligned}
& 5 \mathrm{yr}
\end{aligned}
$$

$$
\frac{\mathrm{d} N_{\nu}}{\mathrm{d} t}=\int \mathrm{d} E_{\nu} A_{\nu}^{\mathrm{df}} \frac{\mathrm{~d} N_{\nu}}{\mathrm{d} E_{\nu}} \quad \frac{d \mathrm{~N},}{d E_{v}}=A_{v} \cdot E_{v}^{-\alpha_{\nu}} \cdot \exp \left(-\frac{E_{v}}{E_{\max }}\right)
$$

cut-off in gamma may be due to absorption not only acceleration mechanism
Kappes et al, astro-ph/0607286
pp - interactions

