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Accelerator co-ordinates

Rotating Cartesian Co-ordinate System

2

Vertical
Horizontal

Longitudinal

It travels on the 
central orbit
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Two particles in a dipole field

3

Particle A

Particle B

Lets unfold these circles……

What happens with two particles that travel in a dipole field 
with different initial angles, but with equal initial position and 
equal momentum ?

Assume that Bρ is the same for both particles.
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The 2 trajectories unfolded

Particle B oscillates around particle A.
This type of oscillation forms the basis of all transverse 
motion in an accelerator.
It is called ‘Betatron Oscillation’

The horizontal displacement of particle B with respect to 
particle A.

Particle B
Particle A

2π0

di
sp

la
ce

m
en

t



E.Wildner NUFACT08 School 5

Benasque

Dipole magnet
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The angle θ can be calculated:

If θ is small:

A dipole with a uniform dipolar field deviates a particle by an 
angle θ.
The deviation angle θ depends on the length L and the 
magnetic field B.
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‘Stable’ or ‘unstable’ motion ?

What can we say about the vertical motion  in the same 
simplified accelerator ? Is it ‘stable’ or ‘unstable’ and why ?

Since the horizontal trajectories close we can say that the 
horizontal motion in our simplified accelerator with only a 
horizontal dipole field is ‘stable’

What can we do to make this motion stable ?

We need some element that ‘focuses’ the particles back to 
the reference trajectory.

This extra focusing can be done using:

Quadrupole magnets
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Quadrupole Magnet

A Quadrupole has 4 poles, 2 north 
and 2 south

There is no magnetic field
along the central axis.          

They are symmetrically 
arranged around the 
centre of the magnet

Magnetic 
field

Hyperbolic contour
x · y = constant
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Resistive Quadrupole magnet
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Quadrupole fields

Magnetic 
field

The ‘normalised gradient’, k is defined as:
( ) )( 2−m
B
K
ρ

On the x-axis (horizontal) the field 
is vertical and given by:

By ∝ x
On the y-axis (vertical) the 
field is horizontal and given 
by:

Bx ∝ y

The field gradient, K is defined 
as:

( )
dx
Byd ( )1−Tm
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Types of quadrupoles

It focuses the beam horizontally
and defocuses the beam vertically.

Force on 
particles

This is a:
Focusing Quadrupole (QF)

Rotating this magnet by 90º will give a:

Defocusing Quadrupole (QD)
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Focusing and Stable motion

Using a combination of focusing (QF) and defocusing (QD) 
quadrupoles solves our problem of ‘unstable’ vertical motion.
It will keep the beams focused in both planes when the 
position in the accelerator, type and strength of the 
quadrupoles are well chosen.
By now our accelerator is composed of:

Dipoles, constrain the beam to some closed path (orbit).
Focusing and Defocusing Quadrupoles, provide horizontal and 
vertical focusing in order to constrain the beam in transverse 
directions.

A combination of focusing and defocusing sections that is 
very often used is the so called: FODO lattice.
This is a configuration of magnets where focusing and 
defocusing magnets alternate and are separated by non-
focusing drift spaces.
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FODO cell

The ’FODO’ cell is defined as follows:

‘FODO’ cell

QF QD QF

Or like this……
Centre of
first QF

Centre of 
second QF

L1 L2
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The mechanical equivalent

The gutter below illustrates how the particles in our 
accelerator behave due to the quadrupolar fields.

Whenever a particle beam diverges  
away from the central orbit the 
quadrupoles focus them back 
towards the central orbit.

How can we represent the 
focusing gradient of a 
quadrupole in this 
mechanical equivalent ?
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The particle characterized

A particle during its transverse motion in our accelerator is 
characterized by:

Position or displacement from the central orbit.
Angle with respect to the central orbit.

x = displacement
x’ = angle = dx/ds

This is a motion with a constant restoring coefficient, 
similar to the pendulum

ds

x’

x

dx

x s
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These transverse oscillations are called Betatron 
Oscillations, and they exist in both horizontal and vertical 
planes. 
The number of such oscillations/turn is Qx or Qy. (Betatron 
Tune)

0)(
2

2

=+ xsK
ds

xd
(Hill’s Equation) describes this motion

If the restoring coefficient (K) is constant in “s” then this 
is just SHM

Remember “s” is just longitudinal displacement around 
the ring

Hill’s equation
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Hill’s equation (2)

In a real accelerator K varies strongly with ‘s’.
Therefore we need to solve Hill’s equation for K 
varying as a function of ‘s’

0)(
2

2

=+ xsK
ds

xd

The phase advance and the amplitude modulation
of the oscillation are determined by the variation 
of K around (along) the machine.

The overall oscillation amplitude will depend on the initial
conditions.
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Solution of Hill’s equation (1)

ε and φ0 are constants, which depend on the initial 
conditions.
β(s) = the amplitude modulation due to the changing 
focusing strength.
φ(s) = the phase advance, which also depends on 
focusing strength.

2nd order differential equation.
Guess a solution:

0)(
2

2

=+ xsK
ds

xd

( )0)(cos)(. φφβε += ssx
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Solution of Hill’s equation (2)

Define some parameters

β
αγ

ωβ

βα

2

2
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+
=

=

−=

In order to solve Hill’s equation we differentiate 
our guess, which results in:

φωε cos(s).=x

φωφεφωε sin'cos' −=
ds
dx

……and differentiating a second time gives:
φωφεφωφεφφωεφφωεφωε cos'sin''sin''sin''cos'''' 2−−−−=x

…and let ( )0)( φφφ += s

Remember φ is still 
a function of s

Now we need to substitute these results in the 
original equation.
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Solution of Hill’s equation (3)

So we need to substitute ( )0)(cos)(. φφβε += ssx

φωφεφωφεφφωεφφωεφωε cos'sin''sin''sin''cos'''' 2−−−−=x
and its second derivative

into our initial differential equation 0)(
2

2

=+ xsK
ds

xd

This gives:

0cos)(
cos'sin''sin''sin''cos'' 2

=+

−−−−

φωε

φωφεφωφεφφωεφφωεφωε

sK

Sine and Cosine are orthogonal and will never be 0 at the same time
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0cos)(
cos'sin''sin''sin''cos'' 2

=+

−−−−

φωε

φωφεφωφεφφωεφφωεφωε

sK

Using the ‘Sin’ terms 0''''2 =+ωφφω 0''''2 2 =+ φωφωω

, which after differentiating gives2ωβ = '2' ωωβ =We defined

Combining 0''''2 2 =+ φωφωω and '2' ωωβ = gives:

0'''''' ==+ ⎟
⎠
⎞⎜

⎝
⎛βφβφφβ ds

d
d
d

ds
d ω

ω
ββ

=

1.' == constβφ since
β

φφ 1' ==
ds
dWhich is the case as:

So our guess seems to be correct

Solution of Hill’s equation (4)
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φωφεφωε sin'cos' −=
ds
dxFor x’ we have now:  

φβεφβεα sin/cos/' −−=x

Thus the expression for x’ finally becomes:

βω =

Solution of Hill’s equation (5)

Since our solution was correct we have the following 
for x:

φβε cos.=x

β
α

ω
βω −==
2

'
ds
d
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Phase Space Ellipse

If we plot x’ versus x we get an ellipse, which is called the 
phase space ellipse.

So now we have an expression for x and x’

and φβεφβεα sin/cos/' −−=xφβε cos.=x

x’

x

βε /γε .

γε /

βεα /

βε .

φ = 0 = 2π

φ = 3π/2

γεα /
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Phase Space Ellipse (2)

As we move around the machine the shape of the ellipse will 
change as β changes under the influence of the quadrupoles

x’

xβε .

βε /

x’

x
βε .

βε /

However the area of the ellipse (πε) does 
not change

ε is called the transverse emittance and 
is determined by the initial beam conditions.

Area = π· r1· r2

The units are meter·radians, but in practice 
we use more often mm·mrad.
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Phase Space Ellipse (3)

x’

xβε .

βε /

x’

xβε .

βε /

The projection of the ellipse on the x-axis gives 
the Physical transverse beam size.
The variation of β(s) around the machine will tell 
us how the transverse beam size will vary.
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Emittance & Acceptance

To be rigorous we should define the emittance slightly 
differently.

Observe all the particles at a single position on one turn and measure 
both their position and angle.
This will give a large number of points in our phase space plot, each point 
representing a particle with its co-ordinates x, x’.

The emittance is the area of the ellipse,  which contains a 
defined percentage, of the particles.

beam
x’

x

emittance

acceptance

The acceptance is the maximum area of the ellipse, which the 
emittance can attain without losing particles.
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Matrix Formalism

Lets represent the particles transverse position and angle by 
a column matrix.

⎟
⎠

⎞
⎜
⎝

⎛
'x

x

As the particle moves around the machine the values for x and 
x’ will vary under influence of the dipoles, quadrupoles and 
drift spaces.
These modifications due to the different types of magnets  
can be expressed by a Transport Matrix M
If we know x1 and x1’ at some point s1 then we can calculate its 
position and angle after the next magnet at position S2 using:

⎟
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⎜
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How to apply the formalism

If we want to know how a particle behaves in our 
machine as it moves around using the matrix 
formalism, we need to:

Split our machine into separate element as dipoles, 
focusing and defocusing  quadrupoles, and drift spaces.

Find the matrices for all of these components

Multiply them all together

Calculate what happens to an individual particle as it 
makes one or more turns around the machine
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x2 = x1 + L.x1’

L

x1’

x1

A drift space

Matrix for a drift space

contains no magnetic field.
A drift space has length L. 

'0'

'

12
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Lxxx
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+=

x1’ small
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Matrix for a quadrupole

A quadrupole of length L. 

x2’

x1 x2

x1’

deflection

Remember By ∝ x and the 
deflection due to the magnetic 
field is:

x
B
LK

B
LBy ⋅−=
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⎠
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⎟
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⎝
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Provided L 
is small ⎟
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⎜
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Matrix for a quadrupole (2)

Define the focal length of the quadrupole as f= 
( )
KL
Bρ
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We found :
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A quick recap…….

We solved Hill’s equation, which led us to the 
definition of transverse emittance and allowed us 
to describe particle motion in phase space in 
terms of β, α, etc…

We constructed the Transport Matrices
corresponding to drift spaces and quadrupoles.

Now we must combine these matrices with the 
solution of Hill’s equation to evaluate β, α, etc…



E.Wildner NUFACT08 School 32

Benasque

Matrices & Hill’s equation 

We can multiply the matrices of our drift spaces and 
quadrupoles together to form a transport matrix that 
describes a larger section of our accelerator.
These matrices will move our particle from one point 
(x(s1),x’(s1)) on our phase space plot to another (x(s2),x’(s2)), 
as shown in the matrix equation below.

The elements of this matrix are fixed by the elements 
through which the particles pass from point s1 to point s2.
However, we can also express (x,x’) as solutions of Hill’s 
equation.
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⎠
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⎛
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)(

)('
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sx
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dc
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φβεφβεα sin/cos/' −−=xφβε cos.=x and
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Matrices & Hill’s equation (2) 

Assume that our transport matrix describes a complete turn
around the machine.
Therefore : β(s2) = β(s1)
Let μ be the change in betatron phase over one complete 
turn.
Then we get for x(s2):

⎟
⎠
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⎝

⎛
⋅⎟
⎠
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)cos(. φμβε +=x φβε cos.=x

)sin(/)cos(/' φμβεφμβεα +−+−=x φβεφβεα sin/cos/' −−=x

φβεφβεαφβεφμβε sin/cos/cos.)cos(.)( 2 bbasx −−=+=
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Matrices & Hill’s equation (3) 

Equating the ‘sin’ terms gives: φβεφμβε sin/sinsin. b−=−

Which leads to: μβ sin=b

φβεφβεαφβεφμβε sin/cos/cos.)cos(. bba −−=+
So, for the position x at s2 we have…

μφμφ sinsincoscos −

Equating the ‘cos’ terms gives:
φμβεαφβεφμβε cossin.cos.coscos. −= a

Which leads to: μα sincos += ua

We can repeat this for c and d.
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⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
+

μαμμγ
μβμαμ
sincossin

sinsincos

Matrices & Twiss parameters 

These are called TWISS parameters

Remember previously we defined:

Our transport matrix becomes now:

Remember also that m is the total betatron phase advance 
over one complete turn is.

π
μ
2

=Q
Number of betatron
oscillations per turn

β
αγ

ωβ

ωωβα

2

2

1

'2
'

+
=

=

−=−=
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Lattice parameters 

This matrix describes one complete turn around our machine 
and will vary depending on the starting point (s).
If we start at any point and multiply all of the matrices 
representing each element all around the machine we can 
calculate α, β, γ and μ for that specific point, which then will 
give us β(s) and Q

If we repeat this many times for many different initial 
positions (s) we can calculate our Lattice Parameters for all 
points around the machine.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
+

μαμμγ
μβμαμ
sincossin

sinsincos
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Lattice calculations and codes

Obviously m (or Q) is not dependent on the initial position ‘s’, 
but we can calculate the change in betatron phase, dm, from one 
element to the next.

Computer codes like “MAD” or “Transport” vary lengths, 
positions and strengths of the individual elements to obtain the
desired beam dimensions or envelope ‘β(s)’ and the desired ‘Q’.

Often a machine is made of many individual and identical 
sections (FODO cells). In that case we only calculate a single 
cell and not the whole machine, as the the functions β (s) and 
dμ will repeat themselves for each identical section.

The insertion section have to be calculated separately.
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The (s) and Q relation.

π
μ
2

=Q ,  where μ = ∆φ over a complete turn

But we also know:
( )

( )sds
sd

β
φ 1

=

This leads to: ( )∫=
s

ds
o
s

Q
βπ2

1

Over one complete turn

Increasing the focusing strength decreases the size of the 
beam envelope (β) and increases Q and vice versa.
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Tune corrections

What happens if we change the focusing strength slightly?
The Twiss matrix for our ‘FODO’ cell is given by:

⎟
⎠

⎞
⎜
⎝

⎛
−−

+
μαμμγ

μβμαμ
sincossin

sinsincos

Add a small QF quadrupole, with strength dK and length ds.
This will modify the ‘FODO’ lattice, and add a horizontal 
focusing term:

( )
( )
dKds
Bf

B
dKdk

dsdk
ρ

ρ
==⎟

⎠

⎞
⎜
⎝

⎛
− 1

01

The new Twiss matrix representing the modified lattice is:

⎟
⎠

⎞
⎜
⎝

⎛
− 1

01
dsdk

⎟
⎠

⎞
⎜
⎝

⎛
−−

+
μαμμγ

μβμαμ
sincossin

sinsincos
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Tune corrections (2)

If dμ is small then we can ignore changes in β

So the new Twiss matrix is just:

This gives ( ) ⎟
⎠

⎞
⎜
⎝

⎛
−+−−+−

+
μαμμβμγμμ

μβμαμ
sincossinsinsincos

sinsincos
dsdkdsdk

This extra quadrupole will modify the phase advance μ for the 
FODO cell.

μ1 = μ + dμNew phase advance

Change in phase advance

⎟
⎠

⎞
⎜
⎝

⎛
−−

+
111

111

sincossin
sinsincos

μαμμγ
μβμαμ
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Tune corrections (3)

These two matrices represent the same FODO cell therefore:

Which equals:

⎟
⎠

⎞
⎜
⎝

⎛
−−

+
111

111

sincossin
sinsincos

μαμμγ
μβμαμ

( ) ⎟
⎠

⎞
⎜
⎝

⎛
−+−−+−

+
μαμμβμγμμ

μβμαμ
sincossinsinsincos

sinsincos
dsdkdsdk

Combining and compare the first and the fourth terms of 
these two matrices gives:

2 21cos cos sinμ μ β μ= −dk ds

Only valid for change in  
<<
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2 21cos cos sinμ μ β μ= −dk ds

μμμ dsin2cos2 −
μβμμ sinsin2 dsdkd =

Remember μ1 = μ + dμ
and dμ is small

βμ sdkdd
2
1

= dQ = dμ/2π

If we follow the same reasoning for both transverse 
planes for both QF and QD quadrupoles

hdsdkdQh β
π

..
4
1

+=

In the horizontal 
plane this is a QF

FFDD

FFDD

dsdkhdsdkhdQh

dsdkvdsdkvdQv

..
4
1..

4
1

..
4
1..

4
1

β
π

β
π

β
π

β
π

+−=

−+=

QFQD

Tune corrections (4)

,but:
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Let dkF = dk for QF and   dkD = dk for QD

βhF, βvF = β at QF and βhD, βvD = β at QD

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−

−

=⎟
⎠

⎞
⎜
⎝

⎛
dsdk
dsdk

dQh
dQv

F

D

hFhD

vFvD

β
π

β
π

β
π

β
π

4
1

4
1

4
1

4
1Then: 

This matrix relates the change in the tune to the change in 
strength of the quadrupoles.
We can invert this matrix to calculate change in quadrupole
field needed for a given change in tune

Tune corrections (5)
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