Accelerator Physics Transverse motion

Elena Wildner

Acknowldements to
Simon Baird,
Rende Steerenberg,
Mats Lindroos,
for course material

Accelerator co-ordinates

Rotating Cartesian Co-ordinate System

Two particles in a dipole field

\checkmark What happens with two particles that travel in a dipole field with different initial angles, but with equal initial position and equal momentum?

- - - - Particle B

\checkmark Assume that Bp is the same for both particles.
\checkmark Lets unfold these circles......

The 2 trajectories unfolded

\checkmark The horizontal displacement of particle B with respect to particle A.

\checkmark Particle B oscillates around particle A.
\checkmark This type of oscillation forms the basis of all transverse motion in an accelerator.
\checkmark It is called 'Betatron Oscillation'

Dipole magnet

\checkmark A dipole with a uniform dipolar field deviates a particle by an angle θ.
\checkmark The deviation angle θ depends on the length L and the magnetic field B.
\checkmark The angle θ can be calculated:

$$
\sin \left(\frac{\theta}{2}\right)=\frac{L}{2 \rho}=\frac{1}{2} \frac{L B}{(B \rho)}
$$

\checkmark If θ is small:

$$
\sin \left(\frac{\theta}{2}\right)=\frac{\theta}{2}
$$

\checkmark So we can write:

$$
\theta=\frac{L B}{(B \rho)}
$$

‘Stable’ or ‘unstable’ motion?

\checkmark Since the horizontal trajectories close we can say that the horizontal motion in our simplified accelerator with only a horizontal dipole field is 'stable'
\checkmark What can we say about the vertical motion in the same simplified accelerator? Is it 'stable' or 'unstable' and why?
\checkmark What can we do to make this motion stable?
\checkmark We need some element that 'focuses' the particles back to the reference trajectory.
\checkmark This extra focusing can be done using:

Quadrupole magnets

Quadrupole Magnet

\checkmark A Quadrupole has 4 poles, 2 north and 2 south
\checkmark They are symmetrically arranged around the centre of the magnet
\checkmark There is no magnetic field along the central axis.

S

Resistive Quadrupole magnet

Quadrupole fields

Magnetic \quad y On the x-axis (horizontal) the field

- is vertical and given by:

\checkmark On the y-axis (vertical) the field is horizontal and given by:

\checkmark The 'normalised gradient', k is defined as:

Types of quadrupoles

\checkmark Rotating this magnet by 90° will give a:

Defocusing Quadrupole (QD)

Focusing and Stable motion

\checkmark Using a combination of focusing (QF) and defocusing (QD) quadrupoles solves our problem of 'unstable' vertical motion.
\checkmark It will keep the beams focused in both planes when the position in the accelerator, type and strength of the quadrupoles are well chosen.
\checkmark By now our accelerator is composed of:
\checkmark Dipoles, constrain the beam to some closed path (orbit).
\checkmark Focusing and Defocusing Quadrupoles, provide horizontal and vertical focusing in order to constrain the beam in transverse directions.
\checkmark A combination of focusing and defocusing sections that is very often used is the so called: FODO lattice.
\checkmark This is a configuration of magnets where focusing and defocusing magnets alternate and are separated by nonfocusing drift spaces.
\checkmark The 'FODO' cell is defined as follows:

The mechanical equivalent

\checkmark The gutter below illustrates how the particles in our accelerator behave due to the quadrupolar fields.

\checkmark How can we represent the focusing gradient of a quadrupole in this mechanical equivalent?

The particle CharaCterized

\checkmark A particle during its transverse motion in our accelerator is characterized by:
\checkmark Position or displacement from the central orbit.
\checkmark Angle with respect to the central orbit.

\checkmark This is a motion with a constant restoring coefficient, similar to the pendulum

Hill's equation

These transverse oscillations are called Betatron
Oscillations, and they exist in both horizontal and vertical planes.
The number of such oscillations/turn is \mathbf{Q}_{x} or \mathbf{Q}_{y}. (Betatron Tune)
(Hill's Equation) describes this motion

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0
$$

If the restoring coefficient (K) is constant in " s " then this is just SHM

Remember "s" is just longitudinal displacement around the ring
\checkmark In a real accelerator K varies strongly with 's'.
\checkmark Therefore we need to solve Hill's equation for K varying as a function of ' s '

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0
$$

\checkmark The phase advance and the amplitude modulation of the oscillation are determined by the variation of K around (along) the machine.
\checkmark The overall oscillation amplitude will depend on the initial conditions.

Solution of Hill's equation (1)

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0
$$

$\checkmark 2^{\text {nd }}$ order differential equation.
\checkmark Guess a solution:

$$
x=\sqrt{\varepsilon . \beta(s)} \cos \left(\phi(s)+\phi_{0}\right)
$$

$\checkmark \varepsilon$ and ϕ_{0} are constants, which depend on the initial conditions.
$\beta(s)=$ the amplitude modulation due to the changing focusing strength.
$\phi(s)=$ the phase advance, which also depends on focusing strength.

Solution of Hill's equation (2)

\checkmark Define some parameters
\checkmark... and let $\phi=\left(\phi(\mathrm{s})+\phi_{0}\right)$
$x=\sqrt{\varepsilon} . \omega(\mathrm{s}) \cos \phi$
Remember ϕ is still a function of s

\checkmark In order/to solve Hill's equation we differentiate our guess, which results in:

$$
x^{\prime}=\sqrt{\varepsilon} \frac{d \omega}{d s} \cos \phi-\sqrt{\varepsilon} \omega \phi^{\prime} \sin \phi
$$

\checkmark......and differentiating a second time gives: $x^{\prime \prime}=\sqrt{\varepsilon} \omega^{\prime \prime} \cos \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime \prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime \prime} \cos \phi$
\checkmark Now we need to substitute these results in the original equation.

Solution of Hill's equation (3)

\checkmark So we need to substitute $x=\sqrt{\varepsilon . \beta(s)} \cos \left(\phi(s)+\phi_{0}\right)$ and its second derivative
$x^{\prime \prime}=\sqrt{\varepsilon} \omega^{\prime \prime} \cos \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime \prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime 2} \cos \phi$
into our initial differential equation

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0
$$

\checkmark This gives:

$$
\begin{gathered}
\sqrt{\varepsilon} \omega^{\prime \prime} \cos \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime \prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime 2} \cos \phi \\
+K(s) \sqrt{\varepsilon} \omega \cos \phi=0
\end{gathered}
$$

Sine and Cosine are orthogonal and will never be o at the same time

Solution of Hill's equation (4)

$$
\begin{gathered}
\sqrt{\varepsilon} \omega^{\prime \prime} \cos \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime 2} \cos \phi \\
+K(s) \sqrt{\varepsilon} \omega^{\prime} \cos \phi=0
\end{gathered}
$$

\checkmark Using the 'Sin' terms

$$
2 \omega^{\prime} \phi^{\prime}+\omega \phi^{\prime \prime}=0 \longrightarrow 2 \omega \omega^{\prime} \phi^{\prime}+\omega^{2} \phi^{\prime \prime}=0
$$

\checkmark We defined $\beta=\omega^{2}$, which after differentiating gives $\beta^{\prime}=2 \omega \omega^{\prime}$
\checkmark Combining $2 \omega \omega^{\prime} \phi^{\prime}+\omega^{2} \phi^{\prime}=0$ and $\beta^{\prime}=2 \omega \omega^{\prime}$ gives:

$$
\beta^{\prime} \phi^{\prime}+\beta \phi^{\prime \prime}=\left(\beta \phi^{\prime}\right)^{\prime}=0
$$

$$
\frac{d \beta}{d s}=\frac{d \beta}{d \omega} \frac{d \omega}{d s}
$$

\checkmark Which is the case as: $\beta \phi^{\prime}=$ const. $=1$ since $\phi^{\prime}=\frac{d \phi}{d s}=\frac{1}{\beta}$
\checkmark So our guess seems to be correct
\checkmark Since our solution was correct we have the following for x :

$$
x=\sqrt{\varepsilon . \beta} \cos \phi
$$

\checkmark For x^{\prime} we have now: $x^{\frac{d \omega}{d s}=\frac{\beta}{2 \omega}=-\frac{\alpha}{\sqrt{\beta}} \frac{d \omega}{d s} \cos \phi-\sqrt{\varepsilon} \omega \phi^{\prime} \sin \phi} \quad \omega=\sqrt{\beta}$
\checkmark Thus the expression for x^{\prime} finally becomes:

$$
x^{\prime}=-\alpha \sqrt{\varepsilon / \beta} \cos \phi-\sqrt{\varepsilon / \beta} \sin \phi
$$

Phase Space Ellipse

\checkmark So now we have an expression for x and x^{\prime}

$$
x=\sqrt{\varepsilon \cdot \beta} \cos \phi \quad \text { and } x^{\prime}=-\alpha \sqrt{\varepsilon / \beta} \cos \phi-\sqrt{\varepsilon / \beta} \sin \phi
$$

\checkmark If we plot x versus x we get an ellipse, which is called the phase space ellipse.

$$
\phi=3 \pi / 2
$$

Phase Space Ellipse (2)

\checkmark As we move around the machine the shape of the ellipse will change as β changes under the influence of the quadrupoles
\checkmark However the area of the ellipse ($\pi \varepsilon$) does not change

ε is called the transverse emittance and is determined by the initial beam conditions.
\checkmark The units are meter-radians, but in practice we use more often $\mathrm{mm} \cdot \mathrm{mrad}$.

Phase Space Ellipse (3)

\checkmark The projection of the ellipse on the x-axis gives the Physical transverse beam size.
\checkmark The variation of $\beta(s)$ around the machine will tell us how the transverse beam size will vary.

Emittance \downarrow Acceptance

\checkmark To be rigorous we should define the emittance slightly differently.
\checkmark Observe all the particles at a single position on one turn and measure both their position and angle.
\checkmark This will give a large number of points in our phase space plot, each point representing a particle with its co-ordinates x, x^{\prime}.

\checkmark The emittance is the area of the ellipse, which contains a defined percentage, of the particles.
\checkmark The acceptance is the maximum area of the ellipse, which the emittance can attain without losing particles.

Matrix Formalism

\checkmark Lets represent the particles transverse position and angle by a column matrix.

$$
\binom{x}{x^{\prime}}
$$

\checkmark As the particle moves around the machine the values for x and x^{\prime} will vary under influence of the dipoles, quadrupoles and drift spaces.
\checkmark These modifications due to the different types of magnets can be expressed by a Transport Matrix M
\checkmark If we know x_{1} and x_{1}^{\prime} at some point s_{1} then we can calculate its position and angle after the next magnet at position S_{2} using:

$$
\binom{x\left(s_{2}\right)}{x\left(s_{2}\right)^{\prime}}=M\binom{x\left(s_{1}\right)}{x\left(s_{1}\right)^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x\left(s_{1}\right)}{x\left(s_{1}\right)^{\prime}}
$$

How to apply the formalism

\checkmark If we want to know how a particle behaves in our machine as it moves around using the matrix formalism, we need to:
\checkmark Split our machine into separate element as dipoles, focusing and defocusing quadrupoles, and drift spaces.
\checkmark Find the matrices for all of these components
\checkmark Multiply them all together
\checkmark Calculate what happens to an individual particle as it makes one or more turns around the machine

Matrix for a drift space

\checkmark A drift space contains no magnetic field.
\checkmark A drift space has length L.

Matrix for a quadrupole

\checkmark A quadrupole of length L.

Remember $\mathrm{B}_{\mathrm{y}} \propto \mathrm{x}$ and the deflection due to the magnetic field is: $L B$

$$
\frac{L B_{y}}{(B \rho)}=-\frac{L K}{(B \rho)} \cdot x
$$

$$
\binom{x_{2}}{x_{2}^{\prime}}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{L K}{(B \rho)} & 1
\end{array}\right)\binom{x_{1}}{x_{1}^{\prime}}
$$

Matrix for a quadrupole (2)

\checkmark We found:

$$
\binom{x_{2}}{x_{2}^{\prime}}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{L K}{(B \rho)} & 1
\end{array}\right)\binom{x_{1}}{x_{1}^{\prime}}
$$

\checkmark Define the focal length of the quadrupole as $f=\frac{(B \rho)}{K L}$

$$
\binom{x_{2}}{x_{2}^{\prime}}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)\binom{x_{1}}{x_{1}^{\prime}}
$$

A quick recap.......
\checkmark We solved Hill's equation, which led us to the definition of transverse emittance and allowed us to describe particle motion in phase space in terms of β, α, etc...
\checkmark We constructed the Transport Matrices corresponding to drift spaces and quadrupoles.
\checkmark Now we must combine these matrices with the solution of Hill's equation to evaluate β, α, etc...

Matrices \downarrow Hill's equation

\checkmark We can multiply the matrices of our drift spaces and quadrupoles together to form a transport matrix that describes a larger section of our accelerator.
\checkmark These matrices will move our particle from one point ($x\left(s_{1}\right), x^{\prime}\left(s_{1}\right)$) on our phase space plot to another ($x\left(s_{2}\right), x^{\prime}\left(s_{2}\right)$), as shown in the matrix equation below.

$$
\binom{x\left(s_{2}\right)}{x^{\prime}\left(s_{2}\right)}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{x\left(s_{1}\right)}{x^{\prime}\left(s_{1}\right)}
$$

\checkmark The elements of this matrix are fixed by the elements through which the particles pass from point s_{1} to point s_{2}.
\checkmark However, we can also express (x, x^{\prime}) as solutions of Hill's equation.

$$
x=\sqrt{\varepsilon . \beta} \cos \phi \quad \text { and } \quad x^{\prime}=-\alpha \sqrt{\varepsilon / \beta} \cos \phi-\sqrt{\varepsilon / \beta} \sin \phi
$$

\checkmark Assume that our transport matrix describes a complete turn around the machine.
\checkmark Therefore: $\beta\left(s_{2}\right)=\beta\left(s_{1}\right)$
\checkmark Let μ be the change in betatron phase over one complete turn.
\checkmark Then we get for $x\left(s_{2}\right)$:

$$
x\left(s_{2}\right)=\sqrt{\varepsilon \cdot \beta} \cos (\mu+\phi)=a \sqrt{\varepsilon \cdot \beta} \cos \phi-b \alpha \sqrt{\varepsilon / \beta} \cos \phi-b \sqrt{\varepsilon / \beta} \sin \phi
$$

Matrices \downarrow Hill's equation (3)

\checkmark So, for the position x at $s 2$ we have...

$$
\sqrt{ } \varepsilon \cdot \beta \cos (\mu+\phi)=a \sqrt{ } \varepsilon \cdot \beta \cos \phi-b \alpha \sqrt{ } \varepsilon / \beta \cos \phi-b \sqrt{ } \varepsilon / \beta \sin \phi
$$

$\cos \phi \cos \mu-\sin \phi \sin \mu$
\checkmark Equating the 'sin' terms gives:

$$
-\sqrt{\varepsilon . \beta} \sin \mu \sin \phi=-b \sqrt{\varepsilon / \beta} \sin \phi
$$

\checkmark Which leads to: $b=\beta \sin \mu$
\checkmark Equating the 'cos' terms gives:

$$
\sqrt{\varepsilon \cdot \beta} \cos \mu \cos \phi=a \sqrt{\varepsilon \cdot \beta} \cos \phi-\alpha \sqrt{\varepsilon \cdot \beta} \sin \mu \cos \phi
$$

\checkmark Which leads to: $a=\cos u+\alpha \sin \mu$
\checkmark We can repeat this for c and d.

Matrices \downarrow Twiss parameters

\checkmark Remember previously we defined: $\quad \rightarrow \begin{aligned} & \alpha=-\beta^{\prime} / 2=-\omega \omega^{\prime} \\ & \beta=\omega^{2} \\ & \checkmark \text { These are called TWISS parameters } \\ & \gamma=\frac{1+\alpha^{2}}{\beta}\end{aligned}$
\checkmark Remember also that m is the total betatron phase advance over one complete turn is.

$$
Q=\frac{\mu}{2 \pi}
$$

Number of betatron
oscillations per turn
\checkmark Our transport matrix becomes now:

$$
\left(\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \\
-\gamma \sin \mu & \cos \mu-\alpha \sin \mu
\end{array}\right)
$$

Lattice parameters

$$
\left(\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \\
-\gamma \sin \mu & \cos \mu-\alpha \sin \mu
\end{array}\right)
$$

\checkmark This matrix describes one complete turn around our machine and will vary depending on the starting point (s).
\checkmark If we start at any point and multiply all of the matrices representing each element all around the machine we can calculate a, β, γ and μ for that specific point, which then will give us $\beta(s)$ and \underline{Q}
\checkmark If we repeat this many times for many different initial positions (s) we can calculate our Lattice Parameters for all points around the machine.

Lattice Calculations and codes

\checkmark Obviously m (or Q) is not dependent on the initial position ' s ', but we can calculate the change in betatron phase, dm , from one element to the next.
\checkmark Computer codes like "MAD" or "Transport" vary lengths, positions and strengths of the individual elements to obtain the desired beam dimensions or envelope ' $\beta(s)$ ' and the desired ' Q '.
\checkmark Often a machine is made of many individual and identical sections (FODO cells). In that case we only calculate a single cell and not the whole machine, as the the functions β (s) and $\mathrm{d} \mu$ will repeat themselves for each identical section.
\checkmark The insertion section have to be calculated separately.

The $\Omega(S)$ and Q relation.

$\checkmark Q=\frac{\mu}{2 \pi}$, where $\mu=\Delta \phi$ over a complete turn
\checkmark But we also know: $\frac{d \phi(s)}{d s}=\frac{1}{\beta(s)}$
\checkmark This leads to:

\checkmark Increasing the focusing strength decreases the size of the beam envelope (β) and increases Q and vice versa.

Tune corrections

\checkmark What happens if we change the focusing strength slightly?
\checkmark The Twiss matrix for our 'FODO' cell is given by:
$\left(\begin{array}{cc}\cos \mu+\alpha \sin \mu & \beta \sin \mu \\ -\gamma \sin \mu & \cos \mu-\alpha \sin \mu\end{array}\right)$
\checkmark Add a small QF quadrupole, with strength dK and length ds.
\checkmark This will modify the 'FODO' lattice, and add a horizontal focusing term:

$d k=\frac{d K}{(\mathrm{~B} \rho)}$

$$
f=\frac{(B \rho)}{d K d s}
$$

\checkmark The new Twiss matrix representing the modified lattice is:
$\left(\begin{array}{cc}1 & 0 \\ -d k d s & 1\end{array}\right)\left(\begin{array}{cc}\cos \mu+\alpha \sin \mu & \beta \sin \mu \\ -\gamma \sin \mu & \cos \mu-\alpha \sin \mu\end{array}\right)$

Tune corrections (2)

\checkmark This gives $\left(\begin{array}{cc}\cos \mu+\alpha \sin \mu & \beta \sin \mu \\ -d k d s(\cos \mu+\sin \mu)-\gamma \sin \mu & -d k d s \beta \sin \mu+\cos \mu-\alpha \sin \mu\end{array}\right)$
\checkmark This extra quadrupole will modify the phase advance μ for the FODO cell.
New phase advance $-\mu_{1}=\mu+\mathrm{d} \mu$
\checkmark If $d \mu$ is small then we can ignore changes in β
\checkmark So the new Twiss matrix is just:

$$
\left(\begin{array}{cc}
\cos \mu_{1}+\alpha \sin \mu_{1} & \beta \sin \mu_{1} \\
-\gamma \sin \mu_{1} & \cos \mu_{1}-\alpha \sin \mu_{1}
\end{array}\right)
$$

Tune corrections (3)

\checkmark These two matrices represent the same FODO cell therefore:

$$
\left(\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \\
-d k d s(\cos \mu+\sin \mu)-\gamma \sin \mu & -d k d s \beta \sin \mu+\cos \mu-\alpha \sin \mu
\end{array}\right)
$$

\checkmark Which equals:

$$
\left(\begin{array}{cc}
\cos \mu_{1}+\alpha \sin \mu_{1} & \beta \sin \mu_{1} \\
-\gamma \sin \mu_{1} & \cos \mu_{1}-\alpha \sin \mu_{1}
\end{array}\right)
$$

\checkmark Combining and compare the first and the fourth terms of these two matrices gives:

$$
2 \cos \mu_{1}=2 \cos \mu-\mathrm{dk} \text { ds } \beta \sin \mu
$$

Only valid for change in δ

In the horizontal plane this is a QF
$d \mu=\frac{1}{2} d k d s \beta \quad$,but: $\quad \mathrm{dQ}=\mathrm{d} \mu / 2 \pi$

$$
d Q h=+\frac{1}{4 \pi} d k . d s . \beta h
$$

If we follow the same reasoning for both transverse planes for both QF and QD quadrupoles

Tune corrections (5)

Let $\mathbf{d k}_{\mathbf{F}}=\mathbf{d k}$ for $\mathbf{Q F}$ and $\mathbf{d k}_{\mathbf{D}}=\mathbf{d k}$ for $\mathbf{Q D}$
$\beta_{\mathrm{hF}}, \beta_{\mathrm{vF}}=\beta$ at $\mathbf{Q F}$ and $\beta_{\mathrm{hD}}, \beta_{\mathrm{vD}}=\beta$ at $\mathbf{Q D}$
Then:

This matrix relates the change in the tune to the change in strength of the quadrupoles.
We can invert this matrix to calculate change in quadrupole field needed for a given change in tune

