# Lecture 2: properties of NT

- Extra-galactic CRs and Proton Astronomy
- Extra-galactic sources: AGNs and GRBs
- Experimental Upper limits for point-sources and diffuse fluxes
- Detection Technique
- Main Parameters of Detectors
- Performances of detectors

## **Cosmic Rays**

1 TeV = 1.6 erg1 EeV = 0.16 Joule









## **Extragalactic CRs**



observed energy density of extragalactic CR: ~ 3 x 10<sup>-19</sup> erg/cm<sup>3</sup>

~  $6 \times 10^{44} \text{ erg/yr/Mpc}^3 \text{ for } 13.6 \text{ Gyrs}$ 

Gamma-Ray Bursts:  $2 \times 10^{51} \text{ erg x } 300/\text{yr/Gpc}^3 = 6 \times 10^{53} \text{ erg/yr/Gpc}^3$  $\sim 6 \times 10^{44} \text{ ergs/yr/Mpc}^3$ 

GRBs provide environment and energy to explain the extragalactic cosmic rays! P. Auger and HiReS observations provide hints toward AGNs



## Proton Astronomy: Pierre Auger

#### **Fluorescence Detector (FD)**

24 fluorescence telescopes in 4 buildings Longitudinal development of the shower Calorimetric measurement of the energy Calibration of the energy scale Only moonless nights: 12% duty cycle !

Surface Detector (SD)

1600 water tanks with 1.5 km spacing Front of shower at ground

Direction and "energy" of the shower

## Total area 300 km<sup>2</sup>







![](_page_9_Figure_0.jpeg)

![](_page_10_Figure_0.jpeg)

Auger does not confirm the  $4.5\sigma$  excess seen by AGASA from the Galactic Centre for 1-2.5 eV 20 of 27 with E>57 EeV correlate with an incomplete catalogue of 292 AGN (< 75 Mpc) within 3.2°. Isotropy of this observed configuration has probability of  $10^{-5}$ 

![](_page_11_Figure_0.jpeg)

![](_page_12_Figure_0.jpeg)

![](_page_13_Figure_0.jpeg)

### GRB080319B with SWIFT

![](_page_14_Picture_1.jpeg)

# **Gamma-Ray Bursts**

2 classes: long GRBs (associated to type Ic SN) are softer than short

![](_page_15_Figure_2.jpeg)

![](_page_16_Figure_0.jpeg)

Energies ~10<sup>53</sup>-10<sup>54</sup> erg released in ~ 10 s in the collapse of a massive star into a BH (long bursts) and formation of 2 jets, or compact binary stars merge forming a BH (short bursts). Compactness problem: variability of  $\Delta$ t~10ms imply a source dimension of the order of c $\Delta$ t~3000km and optical depth for pair production of ~10<sup>13</sup> cm (only thermal spectra possible). But photons of energies ~1MeV are emitted in non thermal spectra. The solution to these problem is assuming a beam of Lorentz  $\Gamma$ ~100-1000 since then sources are larger by a factor  $\Gamma$ <sup>2</sup>.

### Neutrino emissions in Fireball Model

Relativistically expanding fireball of  $e^{\pm}$ ,  $\gamma$  initially optically thick until  $\Gamma$  high enough and  $\tau_{\gamma\gamma} < 1$ Kinetic energy dissipated via shocks: internal shocks between shells with varying  $\Gamma$  and external shocks on ISM. The dissipated energy can be used to accelerate particles or create B-fields and accout for rapid variabilities, external shocks can account for afterglows.

![](_page_17_Figure_2.jpeg)

![](_page_18_Figure_0.jpeg)

# Diffuse limits

![](_page_19_Figure_1.jpeg)

# **Concept of Neutrino detector**

Natural mean is low cost but takes time to know it well! Main systematic error source

muon

## detector

nuclear reaction

• blue light produced in nuclear reaction

optical sensors capture (and map) the light

neutrino travels through the earth

# **Cherenkov light**

Radiation emitted by a charged particle traveling in a dielectric medium with velocity v > c/n. Emission due to asymmetric polarization of medium in front and at rear of particle giving rise to an oscillating electric dipole. Some of the particle energy is converted in light and a coherent wave front movig at velocity v and at an angle given by

![](_page_21_Figure_2.jpeg)

![](_page_21_Picture_3.jpeg)

![](_page_21_Picture_4.jpeg)

Cherenkov Radiation in a Research Reactor

In water and ice and for ultrarelativistic muons  $\beta = 1$ , about 41-42 deg

# **Energy Loss in Cherenkov**

$$\frac{d^2 N}{dx d\lambda} = \frac{4\pi^2 z^2 e^2}{hc\lambda^2} \left(1 - \frac{1}{n^2 \beta^2}\right) = \frac{2\pi z^2}{\lambda^2} \alpha \sin^2 \Theta_c$$
$$\alpha = \frac{2\pi e^2}{hc} = 1/137$$

Number of photons/L and radiation length depends on charge and velocity of particle

Using light detectors (photomultipliers) sensitive in 400-700 nm for an ideally 100% efficient detector in the visible

$$\frac{dN_{\gamma}}{dx} = \int_{\lambda_1}^{\lambda_2} d\lambda \frac{d^2 N_{\gamma}}{dx d\lambda} = 2\pi z^2 \alpha \sin^2 \Theta_C \int_{\lambda_1}^{\lambda_2} \frac{d\lambda}{\lambda^2} = 2\pi z^2 \alpha \sin^2 \Theta_C \left(\frac{1}{\lambda_1^2} - \frac{1}{\lambda_2^2}\right) = 490 \ z^2 \sin \Theta_C \quad photons \ / \ cm$$

$$\frac{d^2 N}{dx dE} = \frac{d^2 N}{dx d\lambda} \frac{d\lambda}{dE} = \frac{\lambda^2}{2\pi \hbar c} \frac{d^2 N}{dx d\lambda}$$
$$E = hv = \frac{hc}{\lambda} = \frac{2\pi \hbar c}{\lambda}$$
$$\frac{d^2 N}{dE dx} = \frac{\alpha z^2}{\hbar c} \sin^2 \theta_c = \frac{\alpha^2 z^2}{r_e m_e c^2} \left(1 - \frac{1}{\beta^2 n^2(E)}\right)$$
$$\approx 370 \sin^2 \theta_c(E) \text{ eV}^{-1} \text{cm}^{-1} \qquad (z = 1) ,$$

Energy loss is about 10<sup>4</sup> less than 2 MeV/cm in water from ionization but directional effect

![](_page_23_Figure_0.jpeg)

![](_page_24_Figure_0.jpeg)

# Absorption in the Earth

![](_page_25_Figure_1.jpeg)

![](_page_25_Picture_2.jpeg)

Tau neutrinos never absorbed but loose energy

![](_page_25_Figure_4.jpeg)

![](_page_25_Figure_5.jpeg)

# Detectors optimal at high energies

Effective area for neutrinos  $(E, \theta, \Phi)$ 

![](_page_26_Figure_2.jpeg)

#### Point Spread function

PSF: angle betwen nu and reco mu

![](_page_26_Figure_5.jpeg)

IC22, IC80 analysis not optimized yet (reconstruction and cuts optimized for IC9) IC9 measured: 233 in 137d, expected 227 Atmospheric neutrinos expected rates per yr: IC22 2/d IC40 20/d IC80 200/d

![](_page_27_Figure_0.jpeg)

# **Detectors properties**

### **Current configuration IC40**

![](_page_28_Figure_2.jpeg)

## Cherenkov Neutrino Telescope Projects

![](_page_29_Figure_1.jpeg)

# Full Sky Coverage with upgoing neutrinos

### To cover better galactic sources we need Med detectors

![](_page_30_Figure_2.jpeg)

## ANTARES 43° N Galactic Centre 2/3 of day

## IceCube/AMANDA at South Pole

![](_page_30_Figure_5.jpeg)

TeV sources from tevcat.uchicago.edu > 70 TeV sources

# IceCube

#### United states

## http://icecube.wisc.edu

- Univ Alaska, Anchorage
- UC Berkeley
- UC Irvine
- Clark-Atlanta University
- U Delaware / Bartol Research Inst
- University of Kansas
- Lawrence Berkeley National Lab
- University of Maryland
- Pennsylvania State University
- University of Wisconsin-Madison
- University of Wisconsin-RiverFalls
- Southern University, Baton Rouge

#### Europe

- University Utrecht
  Uppsala University
- Stockholm University
- University of Oxford
- Universität Mainz
- Humboldt Univ., Berlin
- DESY, Zeuthen
- Universität Dortmund
- Universität Wuppertal
- MPI Heidelberg
- RWTH Aachen

![](_page_31_Picture_26.jpeg)

![](_page_32_Picture_0.jpeg)

![](_page_33_Picture_0.jpeg)

# **IceCube Neutrino Observatory**

50 m

#### IceCube

up to 80 strings with 60 Digital Optical Modules 4800 DOMs 17 meters between them 125 meters between strings 1 Giga Ton Detector No single point failure in a string! **DOM failure rate about 1%** 

#### **Now: 2400 DOMs on 40** strings!

#### **IceTop Air shower array**

80 Pairs of Ice Cherenkov Tanks 10 m apart each with 2 DOMs Now: 80 tanks => 160 DOMs!

![](_page_34_Picture_6.jpeg)

![](_page_35_Picture_0.jpeg)

# Digital Optical Module (DOM)

![](_page_36_Picture_1.jpeg)

PMT: 10 inch Hamamatsu Power consumption: 3 W Digitize at 300 MHz for 400 ns with custom chip 40 MHz for 6.4 µs with fast ADC Dynamic range 200pe/15 nsec

Send all data to surface over copper 2 sensors/twisted pair. Flasherboard with 12 LEDs Local HV

Clock stability:  $10^{-10} \approx 0.1$  nsec / sec Synchronized to GPS time every  $\approx 10$  sec Time calibration resolution = 2 nsec

![](_page_36_Figure_5.jpeg)

# ANTARES

• The largest underwater NT in the Northern Hemisphere and the first undersea NT, an invaluable step towards KM3 in the Mediterranean Sea

![](_page_37_Figure_2.jpeg)

![](_page_38_Picture_0.jpeg)

- Consortium of 40 Institutions from 10 European countries in European Strategy Forum on Reasearch Infrustructures roadmap
- Propose a facility for Deep Sea Science
- CDR ready
- Site decision still open

![](_page_38_Picture_5.jpeg)

# Entering the km<sup>3</sup> era

Accumulated Exposure at 100 TeV

![](_page_39_Figure_2.jpeg)

this yr IceCube/ AMANDA integrated exposure about 1 km<sup>2</sup> yr at 100 TeV

![](_page_40_Picture_0.jpeg)

# **Technological challenges**

#### ANTARES

![](_page_40_Picture_3.jpeg)

IceCube is a reality because installation time less than 1/2 than for AMANDA. We can deploy 18 strings per season!

![](_page_40_Figure_5.jpeg)

## **Properties of ice/sea water radiators**

Dark and transparent environment for Cherenkov light detection Sea water:  $\lambda_{att} \sim 50 \text{ m} \ \lambda_{abs} \sim 50\text{-}60 \text{ m} \ \lambda_{scatt} > 200 \text{ m}$  (Blue 450 nm) Polar ice:  $\lambda_{abs} \sim 100\text{-}200 \text{ m} \ \lambda_{scat} \sim 25 \text{ m}$ 

$$I = I_0 \frac{A}{4\pi R^2} e^{-R/\lambda_{\text{att}}^{\text{eff}}} \qquad \qquad \frac{1}{\lambda_{att}} = \frac{1}{\lambda_{abs}} + \frac{1}{\lambda_{abs}}$$

Ned to account for angular distrubution of scattered photons

$$\lambda_{\rm sct}^{\rm eff} \simeq \frac{\lambda_{\rm sct}}{1 - \langle \cos \theta \rangle} \qquad \langle \cos \theta \rangle \simeq 1$$

Scattering affects the angular resolution.

![](_page_41_Figure_6.jpeg)

![](_page_41_Figure_7.jpeg)

![](_page_41_Figure_8.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_43_Figure_0.jpeg)

IC22 2007: muon rates 670 Hz, IC40 about 1.4 kHz

Target rate on satellite bandwidth : 30-40 Gb/d

![](_page_44_Figure_0.jpeg)

![](_page_45_Figure_0.jpeg)

# Calibrations in sea water

Lines move: acoustic triangulation and tiltmitercompasses reconstruct line shape

![](_page_46_Figure_2.jpeg)

### **Measured position resolution** < 10 cm

![](_page_46_Figure_4.jpeg)

![](_page_46_Figure_5.jpeg)

Autonomous Transponders

25

20

14

### IceCube - IceTop coincident events

### 26 stations (52 tanks)

Muon direction given by position of station and Center Of Gravity of InIce Signals.

Comparison of InIce reconstruction to "known" muon direction. Moon shadow is another method to demonstrate absolute pointing of the telescope

![](_page_47_Figure_5.jpeg)

![](_page_47_Figure_6.jpeg)

![](_page_48_Figure_0.jpeg)

## What science with these fluxes?

### Astrophysics

• Extragalactic sources: AGN & GRBs • Galactic sources: SNRs, pulsar wind nebulae, magnetars, micro-quasars, unidentified sources, galactic plane •GZK neutrinos (CRs interacting with CMWB) •SN collapse •Large scale anisotropies with muons Physics beyond the SM and Dark Matter •Dark Matter: WIMPs, Monopoles •cross sections at EeV energy •test of Lorentz invariance and equivalence principle, cross sections at UHE Standard particle physics and Hadronic interactions • pion, K and charm physics at TeV energies in the Lab Neutrino oscillations •Climatology with muons