A ccelerator Physics Longutudinal motion

Elena Wildner

Acknowldements to
Rende Steerenberg,
Mats Lindroos,
for course material

M otion in longitudinal plane

- What fappens when particle momentum increases?
\Rightarrow particles follow longer orbit (fixed \mathcal{B} field)
\Rightarrow particles travelfaster (initially)
\# How does the revolution frequency change with the momentum?

The frequency - momentum relation

Transition

* Lets look at the befraviour of a particle in a constant magnetic field.
- Lowmomentum $(\beta \ll 1, \gamma \Rightarrow 1)$

* The revolution frequency increases as momentum increases
* High momentum $(\boldsymbol{\beta} \approx \mathbf{1}, \boldsymbol{\gamma} \gg \mathbf{1})$

\# The revolution frequency decreases as momentum increases
* For one particular momentum or energy we fiave:

\# This particular energy is called the \square
Transition energu

The frequency slip factor

\# We found

- $\frac{1}{\gamma^{2}}>\alpha_{p} \longrightarrow \mathcal{B e}$ low transition

$\# \frac{1}{\gamma^{2}}=\alpha_{p} \longrightarrow$ Iransition
$\longrightarrow \eta=$ zero
\# $\frac{1}{\gamma^{2}}<\alpha_{\rho} \longrightarrow$ Above transition $\longrightarrow \eta=$ negative
\# Transition is very important in proton macfines.
- A little later we will see why...
\# In the PS macfine: $\gamma_{t r} \approx 6 \mathrm{GeV} / \mathrm{c}$
\# Transition does not exist in le ptons macfines, Why?

Radio Frequency System

- Hadron mactines:
- Accelerate / Decelerate beams
- Beam sfaping
- Beam measurements
- Increase luminosity in fadron colliders
- Leptonmacfines:
- Accelerate beams
- Compensate for energy loss due to synchrotron radiation.
(see lecture on Syncfrotron Radiation)

RF Cavity

- To accelerate cfiarged particles we need alongitudinal electric field.
- Magnetic fields deflect particles, but do not accelerate them.

\# If the voltage is $\mathcal{D C}$ then there is no acceleration!
- The particle will accelerate towards the gap but decelerate after the gap.
\# Ulse an Oscillating Voltage with the right Frequency

A Single particle in a longitudinal electric field

- Lets see what a lowenergy particle does witf this oscillating voltage in the cavity.

* Set the oscillation frequency so that the period is exactly equal to one revolution period of the particle.

A dd a second particle to the first one

- Lets see what a second lowenergy particle, which arrives later in the cavity, does witf respect to our first particle.

\# \mathcal{B} arrives late in the cavity w.r.t. \mathcal{A}
\# B sees a higher voltage than \mathcal{A} and will therefore be accelerated
\# After many turns \mathcal{B} approackes \square
\# \mathcal{B} is still late in the cavity w.r.t. \mathcal{A}
\# B still sees a figher voltage and is still being accelerated

Lets see what happens after manyturns

Synchrotron Oscillations

- Particle \mathcal{B} fas made 1 full oscillation around particle \mathcal{A}.
- The amplitude depends on tre initial pfase.

Exactly like the pendulum

- We call this oscillation:

Synchrotron Oscillation

L ongitudinal Phase Space

- In order to be able to visualize the motion in the longitudinal plane we define the longitudinal phase space (like we did for the transverse phase space)

Phase Space motion (1)

- Particle \mathcal{B} oscillates around particle \mathcal{A}
- This is synchrotron oscillation
- When we plot tris motion in our longitudinal pfase space we get:

Phase Space motion (2)

- Particle Boscillates around particle \mathcal{A}
- This is synchrotron oscillation
- When we plot tris motion in our longitudinal pfase space we get:

Phase Space motion (3)

- Particle \mathcal{B} oscillates around particle \mathcal{A}
- This is synchrotron oscillation
- When we plot tris motion in our longitudinal pfase space we get:

Phase Space motion (4)

- Particle \mathcal{B} oscillates around particle \mathcal{A}
- This is synchrotron oscillation
- When we plot tris motion in our longitudinal pfase space we get:

Quick intermediate summary...

- We have seenthat:
- The RF system forms a potential well in which the particles oscillate (syncfrotron oscillation).
- We candescribe this motion in the longitudinal phase space (energy versus time or phase).
- This works for particles below transition.
- However,
- Due to the shape of the potential well, the oscillation is a non-line ar motion.
- The phase space trajectories are therefore no circles nor ellipses.
- What when our particles are above transition?

Stationary bunch \& bucket

- Bucket area $=\underline{\text { Congitudinal Acceptance }[e V s]}$

U nbunched (coasting) beam

- The emitance of an unbunched beam is j ust $\Delta \mathcal{E T}$ eVs
- $\Delta \mathcal{E}$ is the energy spread [eV]
- T is the revolution time [s]

What happens beyond transition?

- Untilnow we fiave seen fow trings looklike below transition

$$
\eta=\text { positive }
$$

Higher energy \Rightarrow faster orbit \Rightarrow higher $\mathrm{F}_{\mathrm{rev}} \Rightarrow$ next time particle will be earlier. Lower energy \Rightarrow slower orbit \Rightarrow lower $\mathrm{F}_{\text {rev }} \Rightarrow$ next time particle will be later.
\# What will happen above transition?

$$
\eta=\text { negative }
$$

Higher energy \Rightarrow longer orbit \Rightarrow lower $\mathrm{F}_{\text {rev }} \Rightarrow$ next time particle will be later.
Lower energy \Rightarrow shorter orbit \Rightarrow higher $\mathrm{F}_{\mathrm{rev}} \Rightarrow$ next time particle will be earlier.

What are the implication for the RF ?

- For particles below transition we worked on the rising edge of the sine wave.
- For Particles above transition we will work on the falling edge of the sine wave.
- We will see wry......

- Imagine two particles \mathcal{A} and \mathcal{B}, that arrive at the same time in the accelerating cavity (when $\mathcal{V}_{r f}=0 \mathcal{V}$)
- For \mathcal{A} the energy is such that $\mathcal{F}_{\text {rev }}=\mathcal{F}_{\text {rf }}$.
- The energy of \mathcal{B} is higher $\rightarrow \mathcal{F}_{\text {rev } \mathcal{B}}<\mathcal{F}_{\text {rev }}$

L ongitudinal motion beyond transition (2)

- Particle \mathcal{B} arrives after \mathcal{A} and experiences a decelerating voltage.
- The energy of \mathcal{B} is still higher, but less $\rightarrow \mathcal{F}_{\text {rev } \mathcal{B}}<\mathcal{F}_{\text {rev }}$

Longitudinal motion beyond transition (3)

- B fias now the same energy as \mathcal{A}, but arrives still later and experiences therefore a decelerating voltage.
$-\mathcal{F}_{\text {rev } \mathcal{B}}=\mathcal{F}_{\text {rev } \mathcal{A}}$

Longitudinal motion beyond transition (4)

- Particle \mathcal{B} fias now a lower energy as \mathcal{A}, 6ut arrives at the same time
$-\mathcal{F}_{\text {rev } \mathcal{B}}>\mathcal{F}_{\text {rev } A}$

Longitudinal motion beyond transition (5)

- Particle \mathcal{B} fis now a lower energy as \mathcal{A}, 6 ut \mathcal{B} arrives before \mathcal{A} and experiences an accelerating voltage.
$-\mathcal{F}_{\text {rev } \mathcal{B}}>\mathcal{F}_{\text {rev }}$

Longitudinal motion beyond transition (6)

- Particle \mathcal{B} fias now the same energy as \mathcal{A}, but \mathcal{B} still arrives before \mathcal{A} and experiences an accelerating voltage.
$-\mathcal{F}_{\text {rev } \mathcal{B}}>\mathcal{F}_{\text {rev } A}$

L ongitudinal motion beyond transition (7)

- Particle \mathcal{B} fas now a figfer energy as \mathcal{A} and arrives at the same time again...
$-\mathcal{F}_{\text {rev } \mathcal{B}}<\mathcal{F}_{\text {rev } \mathcal{A}}$

The motion in the bucket (1)

The motion in the bucket (2)

The motion in the bucket (3)

The motion in the bucket (4)

The motion in the bucket (5)

The motion in the bucket (6)

The motion in the bucket (7)

The motion in the bucket (8)

The motion in the bucket (9)

Before and A fter Transition

Transition crossing in the PS

- Transition in the PS occurs around 6 GeV/c
- Injection fappens at $2.12 \mathrm{GeV} / \mathrm{c}$
- Ejectioncan be done at $3.5 \mathrm{GeV} / \mathrm{c} u p$ to $26 \mathrm{GeV} / \mathrm{c}$
- Therefore the particles in the PS must ne arly always cross transition.
- Tfe beam must stay buncfied
- Therefore the phase of the RFmust "jump" $6 y \pi a t$ transition

Harmonic number

- Untilnow we have applied an oscillating voltage with a frequency equal to the revolutionfrequency.

$$
\mathbf{F}_{\mathrm{rf}}=\mathbf{F}_{\mathrm{rev}}
$$

\# What will happen when $\mathcal{F}_{\text {rf }}$ is a multiple of $f_{\text {rev }}$???

$$
\mathbf{F}_{\mathrm{rf}}=\mathbf{h} \times \mathbf{F}_{\mathrm{rev}}
$$

Acceleration

- Increase the magnetic field slightly on each turn.
- The particles will follow a shorter orbit. $\left(\mathcal{F}_{\text {rev }}<\mathcal{F}_{\text {synch }}\right)$
- Beyond transition, early arrival in the cavity causes a gain in energy each turn.

synchronous particle is at ϕ_{s} and therefore always sees an
accelerating voltage
$\# \mathcal{V}_{s}=\mathcal{V s i n}_{s}=\mathcal{V}=$ energygain $/$ turn $=d \mathcal{E}$

A cceleration \& RF bucket shape (1)

A cceleration \& RF bucket shape (1)

Dispersion

- Lets revisit transverse motion witf our knew knowle dge of momentum and momentum spread!

Chromaticity

The focusing strength of our quadrupoles depends on the beam momentum, " p "

$$
k=\frac{d B y}{d x} \times \frac{1}{B \rho} \longleftarrow \text { 3.3356.p }
$$

Therefore a spread in momentum causes a spread in focusing strength

But Q depends on the " K " of the quadrupotes

$$
\frac{\Delta Q}{Q} \alpha \frac{\Delta p}{p} \longrightarrow \frac{\Delta Q}{Q}=\xi \frac{\Delta p}{p}
$$

The constant here is called Chromaticity

N ormalised Phase Space

\checkmark By multiplying the y-axis by Ω the phase space is normatised and the ellipse turn into a circle.

Phase Space \& Betatron Tune

\checkmark If we fold out a trajectory of a particle that makes one turn in our machine with a tune of $Q=3.333$, we get:

\checkmark This the same as going 3.333 time around on the circle in phase space.
\checkmark The net result is 0.333 times around on the circle.
\checkmark q is the fractional part of Q
\checkmark Sofere $q=0.333$.

$\mathrm{Q}=3.333$ in more detail

Third order resonant Getatron oscillation

$$
3 Q=10, Q=3.333, q=0.333
$$

$\mathrm{Q}=3.333$ in Phase Space

\checkmark Tfird order resonance on a normalised pfase space plot

M achine imperfections

\checkmark It is not possible to construct a perfect machine.
\checkmark Magnets can have imperfections
\checkmark The alignment in the de machine fias not zero tolerance.
\checkmark Etc...
\checkmark So, we have to askourselves:
\checkmark What will happen to the betatron oscillation due to the different field errors.
\checkmark And therefore consider errors in dipoles, quadrupoles, sextupoles, etc...
\checkmark We will fave a look at the beam befaviour as a function of ' Q '
\checkmark How is it influenced by these resonant conditions?

Dipole (deflection independent of position)

\checkmark For $Q=2.00$: Oscillation induced by the dipole kickgrows on each turn and the particle is lost ($\underline{1}^{\text {st }}$ order resonance $Q=2$).
$\checkmark \mathcal{F o r} \underline{Q}=2.50$: Oscillation is cancelled out every second turn, and therefore the particle motion is stable.

\checkmark For $\underline{Q}=2.50$: Oscillation induced by the quadrupole Kick grows on each turn and the particle is lost

$$
\left(2^{n d} \text { order resomance } 2 Q=5\right)
$$

$\checkmark \mathcal{F o r} Q=2.33$: Oscillation is cancelled out every trird turn, and therefore the particle motion is stable.

Sextupole (deflection \propto position²)

\checkmark For $Q=2.33$: Oscillation induced by the sextupole Kick grows oneachturn and the particle is lost

$$
\left(3^{\text {rd }} \text { order resonance } 3 Q=7\right)
$$

\checkmark For $Q=2.25$: Oscillation is cancelled out every fourtr turn, and therefore the particle motion is stable.

Instabilities (1)

- Untilnow we fave only considered independent particle motion.
- We call this incoferent motion.
- single particle synchrotron/betatron oscillations
- each particle moves independently of all the others
- Now we frave to consider what fappens if all particles move in phase, cofierently, in response to some excitations
S ynchrotron é Ge tatron
oscillations

Instabilities (2)

- We cannot ignore interactions betweentre charged particles
- They interact with eacfother in two ways:

> Space charge
> effects, intra beam scattering

- Direct Coulomb interaction between particles

- Via the vacuum chamber

Why do Instabilities arise?

- Acirculating buncfinduces electromagnetic fields in the vacuum chamber
- These fields act back on the particles in the bunch
- Small perturbation to the bunchmotion, changes the induced EM fields
- If this change amplifies the perturbation then we have an instability

Longitudinal Instabilities

- Acirculating buncricreates an image current in vacuum chamber

- The induced image current is the same size but fas the opposite sign to the bunch current
- The longitudinalimpedance of the vacuum chamber is important!

- If the bunch is displaced form the centre of the vacuum chamber it will drive a differential wall current
- This leads to a magnetic field, which deflects the bunch
- The differentialcurrent and the transverse impedance is important!

Space Charge effects (1)

- Between two charged particles in a beam we fiave different forces:

Coulomb Magnetic repulsion attraction

Space C harge effects (2)

- For many particles in a beam we canrepresent it as following:

Charges \Rightarrow repulsion \quad Parallelcurrents \Rightarrow attractive

Space C harge effects (2)

- At lowenergies, which means $\boldsymbol{\beta} \ll 1$, the force is mainly repulsive \Rightarrow defocusing
- It is zero at tre centre of the beam and a maximum at the edge of the beam

Space C harge effects (3)

- For the uniform beam distribution, this line ar defocusing leads to a tune sfift given by:

- This tune sfift is the same for all particles and vanishes at figf momenta $\left(\boldsymbol{\beta}=1, \bigcup_{0} \gg 1\right)$
- However in reality the beam distribution is not uniform...

Space charge effects (4)

- For the non-uniform beam distribution, this non-linear defocusing means the Q is a function of x (transverse position)
- This leads to a spread of tune shift across the beam
- This tune shift is called the 'LA SLETT tune shift'

- This tune spread cannot be corrected and does get very large at fight intensity and low momentum

Coupling and Resonance

\checkmark Coupling between the forizontal and vertical plane means that we can transfer oscillation energy from one transverse plane to the other.
\checkmark Exactly as for line ar resonances (single particle) there are resonant conditions.

$$
n Q_{h} \pm m Q_{v}=\text { integer }
$$

\checkmark If we meet one of these conditions the transverse oscillation amplitude will again grow in an uncontrolled way.

General tune diagram

P.S. Booster tune diagram

