Neutrino Detectors for future facilities - III

Mark Messier Indiana University

NUFACT Summer school Benasque, Spain June 16-18, 2008

Neutrino detectors optimized for muons reconstruction νµ→νµ and the "Golden Channel" ν_e→νµ

Why magnetize?

- <u>Containment:</u> A magnetic field can keep muons from exiting the sides of your detector
- Momentum measurement: If the muon does exit your detector, the curvature of the track tells you the momentum even when you couldn't otherwise get it from the range of the particle
- <u>Charge sign:</u> There are physics measurements in knowing the charge sign of the muons in your detector. Crucial for the "golden channel" at a neutrino factory:

$$(\mu^+) \to e^+ \bar{\nu}_{\mu} \nu_e \ \zeta \ \frac{\bar{\nu}_{\mu} \to \bar{\nu}_{\mu}}{\nu_e \to \nu_{\mu}}$$

production

1.6

The MINOS Detectors

MINOS uses two functionally equivalent detectors:

- 2.54 thick magnetized steel plates
- 4.1 x 1 cm co-extruded scintillator strips
- optical fiber readout to multi-anode PMT's

1 kton
3.8 x 4.8 x 15 m
282 steel, 153 scintillator planes
M64 PMT
Fast QIE electronics

scintillator modules layered on steel plane

"strong back". Removed after plane is hung in place

MINOS scintillator system

Fig. 26. Average light output from in-situ Far Detector strips as a function of distance from their center for normally incident MIPs. The data shown are from stopping cosmic-ray muons, for which containment criteria cause lower statistical precision at the ends of the strips.

Magnetic field in MINOS

MINOS Event

Track momentum using curvature

A particle with momentum p, traveling through a constant transverse magnetic field B will travel on a circle of radius *Q*

$$p[\text{GeV}/c] = 0.2998B[\text{T}]\rho[\text{m}]$$

$$\rho = \frac{l^2}{8s} + \frac{s}{2}$$

$$p \simeq 0.3\frac{Bl^2}{8s}$$

Measurement of sagitta and chord gives you momentum. Detector resolution on sagitta is the same as the momentum resolution:

$$\left|\frac{\delta p}{p}\right| = \left|\frac{\delta s}{s}\right|$$

More com urvature

$$k = \frac{1}{\rho}$$

which has roughly Gaussian errors.

Curvature errors for multiple position samples

The uncertainty in curvature for a track which travels a distance *L* in a magnetic field *B* whose position is sampled *N* times at uniform intervals with a position uncertainty ε has been worked out by Gluckstern [NIM 24 (1963) 381-389]:

$$\sigma_{k,R}^{2} = \frac{\epsilon^{2}}{L^{4}} \frac{720}{N+5} \qquad \qquad K$$
Notice relative importance of L and ϵ

- Gluckstern has also worked out the contribution to the uncertainty in the curvature from multiple-scattering: $\sigma_{k,M.S.}^{2} = \frac{KC_{N}}{L}$
- *K* is the RMS projected multiple scattering angle per unit thickness *x* $\frac{\theta_0}{\sqrt{3}x}$ 13.6 MeV $\sqrt{-1}$

$$= \frac{13.6 \text{ MeV}}{\beta cp} z \sqrt{\frac{1}{3xX_0}} \left[1 + 0.038 \ln(x/X_0)\right]$$

- C_N is a constant from lookup table. $C_N=1.43$ for large N.
- *x* is the distance traveled in the medium
- *z* is the charge of the particle

How well do we measure track curvature?

MINOS Track curvature

Signed Track Curvature - Data -MC 10⁵ $\begin{array}{c} \bigotimes \overline{\nu}_{\mu} \ CC \\ \hline \nu_{\mu} \ CC \end{array}$ **NC** 10⁴ 10³ 1.5 -2 -1.5 -1 -0.5 0 0.5 1 Charge/Momentum (GeV⁻¹) -0.5 0.5 2

A. Weber, "The MINOS Experience", Golden'07, Valencia, Spain June 2007.

MINOS anti-neutrino spectrum

A. Weber, "The MINOS Experience", Golden'07, Valencia, Spain June 2007.

MINOS charge sign selection efficiency

A. Weber, "The MINOS Experience", Golden'07, Valencia, Spain June 2007.

"MIND" detector concept for a neutrino factory (Magnetized Iron Neutrino Detector)

Anselmo Cervera Villanueva, Golden'07

Backgrounds to the golden channel

Backgrounds in MIND detector

 $\overline{\nu}_{\mu}$ CC events

 $Q_t = p_\mu sin \theta_{\mu h}$ measures separation between muon and hadron shower

How well do we measure track curvature?

Magnetized "TASD"?

- 25 kton "NOVA-like" detector
- 15m x 15m x 100m constructed entirely from "MINERvA"-like solid scintillator

Figure 24: GEANT4 view of the simulated TASD detector.

• 0.5 T magnetic field

How to magnetize a large volume?

- Creation of large magnetic fields in a large volume are conceivable if one can sustain a large DC current in transmission lines lining the cavern walls
- Assuming solenoid:

$$n = \frac{B}{\mu_0 I} = \frac{1 \text{ T}}{(4\pi \times 10^{-7} \frac{\text{T}}{\text{m} \cdot \text{A}})(100 \text{ kA})}$$

$$= 8 \frac{\text{turns}}{\text{m}}$$

$$U = \frac{1}{2} \frac{B^2}{\mu_0} V$$

$$= \frac{1}{2} \frac{(\frac{1}{2}[\text{T}])^2}{4\pi \times 10^{-7} \frac{\text{T}}{\text{m} \cdot \text{A}}} (20 \text{ m} \cdot 20 \text{ m} \cdot 20 \text{ m})$$

 $= 1 \text{ GJ} = 300 \text{ kW} \cdot \text{hr}$

Compare to CMS: 2.7 GJ Cost: Scaling from previous magnets ranges from \$20M to \$60M

4/10/2000 16 3327

viece cartours Divid

71222256 - 323

500000 +000

VF VECTOR FIELDS

How to magnetize a large volume?

- Creation of large magnetic fields in a large volume are conceivable if one can sustain a large DC current in transmission lines lining the cavern walls
- Assuming solenoid:

$$n = \frac{B}{\mu_0 I} = \frac{1 \text{ T}}{(4\pi \times 10^{-7} \frac{\text{T}}{\text{m} \cdot \text{A}})(100 \text{ kA})}$$

= $8 \frac{\text{turns}}{\text{m}}$
$$U = \frac{1}{2} \frac{B^2}{\mu_0} V$$

Fig.2. Tran
$$= \frac{1}{2} \frac{(\frac{1}{2}[\text{T}])^2}{4\pi \times 10^{-7} \frac{\text{T}}{\text{m} \cdot \text{A}}} (20 \text{ m} \cdot 20 \text{ m} \cdot 20 \text{ m})$$

 $= 1 \text{ GJ} = 300 \text{ kW} \cdot \text{hr}$

Fig.2. Transmission line superconductor assembly as used in the magnet test.

Superconducting transmission line developed for VHLC magnets at FNAL. Held 100 kA DC operating at Lq HE temperatures.

FERMILAB-CONF-05-393-TD

Compare to CMS: 2.7 GJ Cost: Scaling from previous magnets ranges from \$20M to \$60M

Concepts for large, magnetized, LqAr detectors

First operation of a LAr TPC embedded in a B-field

First real events in B-field (B=0.55T):

New J. Phys. 7 (2005) 63 NIM A 555 (2005) 294

150 mm

Correlation between calorimetry and magnetic measurement for contained tracks:

Challenges to magnetized LqAr (my opinion)

- Need to minimize $\vec{E} \times \vec{B}$ or electron § drifts become extremely complicated
- Many LqAr detector concepts use photomultiplier tubes to detect scintillation light to form trigger and T₀. To function, the PMT's must be well shielded from magnetic field.
- Long wires, high voltage, strong magnetic fields: need to control oscillations very well

Summary

Basics of neutrino event topology

- Muons: Long, penetrating tracks
- EM showers: Short, compact
- Hadron showers: Short, diffuse

◆ Detectors optimized for electron neutrinos

- Water Cherenkov: Excellent performance for 1-ring events
- NOvA ("TASD"): Segmented solution for higher neutrino energies
- LqAr: Active R&D program. Great promise for the future

◆Detectors optimized for muon neutrinos

- MINOS: Optimized for muon neutrino detection in few GeV range
- MIND: Pushing MINOS technology to high mass
- TASD w/ B field: The possibilities with magnetized caverns
- LqAr w/ B field: Pushing the envelope!