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Neutrino detectors optimized for 
muons reconstruction

νμ→νμ 

and the 
“Golden Channel” νe→νμ
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Why magnetize?

• Containment: A magnetic field can 
keep muons from exiting the sides of 
your detector

• Momentum measurement: If the muon 
does exit your detector, the curvature 
of the track tells you the momentum 
even when you couldn’t otherwise get 
it from the range of the particle

• Charge sign: There are physics 
measurements in knowing the charge 
sign of the muons in your detector. 
Crucial for the “golden channel” at a 
neutrino factory:
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The MINOS Detectors

•1 kton
•3.8 x 4.8 x 15 m
•282 steel, 153 scintillator planes
•M64 PMT
•Fast QIE electronics

•5.4 kton
•8 x 8 x 30 m
•484 steel/scintillator planes
•M16 PMT, x8 multiplexing
•VA electronics

MINOS uses two 
functionally equivalent 
detectors:
• 2.54 thick magnetized 

steel plates
• 4.1 x 1 cm co-extruded 

scintillator strips
• optical fiber readout to 

multi-anode PMT’s
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“strong back”. 
Removed after 
plane is hung in 
place

scintillator 
modules 

layered on steel 
plane

5



MINOS Detector

ste
el 

pla
te

6



MINOS scintillator system

Single strip muon hit 
efficiency
Single sided: 
ε=1-exp(-4) = 98%

Double sided: 
ε=1-exp(-8) = 99.97%
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Magnetic field in MINOS

•15.2 kA-turn total current
•80 A supply
•10 gauge copper wire, water 

cooled
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MINOS Event

9



p[GeV/c] = 0.2998B[T]ρ[m] lρ ρ

s

B

ρ =
l2

8s
+

s

2

p ! 0.3
Bl2

8s

∣∣∣∣
δp

p

∣∣∣∣ =
∣∣∣∣
δs

s

∣∣∣∣ k =
1
ρ

Track momentum using curvature

A particle with momentum p, traveling 
through a constant transverse 
magnetic field B will travel on a circle 
of radius ρ

Measurement of sagitta and chord gives you 
momentum. Detector resolution on sagitta is the 
same as the momentum resolution:

μ

More common to talk about the track curvature

which has roughly Gaussian errors.
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Curvature errors for multiple position samples

• The uncertainty in curvature for a 
track which travels a distance L in a 
magnetic field B whose position is 
sampled N times at uniform 
intervals with a position uncertainty 
ε has been worked out by 
Gluckstern [NIM 24 (1963) 
381-389]:

• Gluckstern has also worked out the 
contribution to the uncertainty in 
the curvature from multiple-
scattering:

• K is the RMS projected multiple 
scattering angle per unit thickness x

• CN is a constant from lookup table. 
CN=1.43 for large N.
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Remember : L ∝ p, N ∝ p, and x ∝ p

How well do we measure track curvature?

determines how well the track curvature, and hence sign is known
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- High field
- Small ε
- Large L (low Z to keep dE/dx low and range high)
- Large X0 (low Z)
- “Just” right momentum (see plot at left)

units: [T], [GeV], [m]
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MINOS Track curvature
A. Weber, “The MINOS Experience”, Golden’07, Valencia, Spain June 2007.
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MINOS anti-neutrino spectrum
A. Weber, “The MINOS Experience”, Golden’07, Valencia, Spain June 2007.
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MINOS charge sign selection efficiency
A. Weber, “The MINOS Experience”, Golden’07, Valencia, Spain June 2007.

Not optimized for a neutrino factory analysis
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1 40 kton module:

MINOS

“MIND” detector concept for a neutrino factory
(Magnetized Iron Neutrino Detector)

• 50 - 100 kton MINOS-like detector

Anselmo Cervera Villanueva, Golden’07
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Backgrounds to the golden channel

Anselmo Cervera Villanueva, Golden’07
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Backgrounds in MIND detector

Qt = pμsinθμh measures separation between muon and hadron shower

arXiv:0712.4129v1
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Magnetized “TASD”?

• 25 kton “NOVA-like” detector

• 15m x 15m x 100m constructed 
entirely from “MINERvA”-like solid 
scintillator

• 0.5 T magnetic field
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How to magnetize a large volume?

• Creation of large magnetic fields in 
a large volume are conceivable if 
one can sustain a large DC current 
in transmission lines lining the 
cavern walls

• Assuming solenoid:

n =
B

µ0I
=

1 T
(4π × 10−7 T

m·A )(100 kA)

= 8
turns

m

U =
1
2

B2

µ0
V

=
1
2

( 1
2 [T])2

4π × 10−7 T
m·A

(20 m · 20 m · 20 m)

= 1 GJ = 300 kW · hr
Compare to CMS: 2.7 GJ
Cost: Scaling from previous magnets ranges from $20M to $60M
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FERMILAB-CONF-05-393-TD

Superconducting transmission line 
developed for VHLC magnets at 

FNAL. Held 100 kA DC operating at 
Lq HE temperatures.
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Concepts for large, magnetized, LqAr detectors
Andre Rubbia, Golden’07

Iron yoke

Coil
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!E × !B

Challenges to magnetized LqAr (my opinion)

• Need to minimize            or electron 
drifts become extremely 
complicated

• Many LqAr detector concepts use 
photomultiplier tubes to detect 
scintillation light to form trigger and 
T0. To function, the PMT’s must be 
well shielded from magnetic field.

• Long wires, high voltage, strong 
magnetic fields: need to control 
oscillations very well

5 cm distortion over ~1 m drift in a gas Ar TPC 
(MIPP) due to ExB effects
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Summary

✦Basics of neutrino event topology
• Muons: Long, penetrating tracks

• EM showers: Short, compact

• Hadron showers: Short, diffuse

✦Detectors optimized for electron neutrinos
• Water Cherenkov: Excellent performance for 1-ring events

• NOvA (“TASD”): Segmented solution for higher neutrino energies

• LqAr: Active R&D program. Great promise for the future

✦Detectors optimized for muon neutrinos
• MINOS: Optimized for muon neutrino detection in few GeV range

• MIND: Pushing MINOS technology to high mass

• TASD w/ B field: The possibilities with magnetized caverns

• LqAr w/ B field: Pushing the envelope!
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