EXTRACTING OSCILLATION PARAMETERS FROM NEUTRINO DATA

Andrea Donini Instituto de Física Teórica, Madrid UAM/CSIC

Outline of the course

Introduction

Lecture I: Solar Neutrinos ($\theta_{12}, \Delta m^2_{12}$)

Lecture II: Atmospheric Neutrinos (θ_{23} , Δm^2_{23})

Lecture III: Bounds on θ_{13} and δ ; sterile neutrinos

Lecture IV: Future facilities

FUTURE FACILITIES AND THE QUEST FOR δ

Outline

- Correlations and degeneracies
- Super-Beams
- Neutrino Factory
- Beta-Beams

Outline

- Correlations and degeneracies
- Super-Beams
- Neutrino Factory
- Beta-Beams

I am not covering reactors, although they can be important (see Lecture3).

The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix is the leptonic analogous of the CKM matrix

 $\begin{array}{ll} \text{``Atmospheric''} & \text{``Solar''} \\ \text{oscillation} & \text{oscillation} \\ U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_{1}} & 0 \\ 0 & 0 & e^{i\alpha_{2}} \end{pmatrix} \\ \theta_{23} = 39^{\circ} - 48^{\circ} & \theta_{13} < 11^{\circ} & \theta_{12} = 32^{\circ} - 35^{\circ} & \begin{array}{c} \text{Majorana} \\ \text{phases} \end{array}$

Gonzalez-García and Maltoni '07

Solar parameters:

$$\Delta m_{21}^2 = 7.67 \substack{+0.22\\-0.21} \binom{+0.67}{-0.61} \times 10^{-5} \text{ eV}^2$$
$$\theta_{12} = 34.5 \pm 1.4 \binom{+4.8}{-4.0}$$

Atmospheric parameters:

$$\Delta m_{31}^2 = \begin{cases} -2.37 \pm 0.15 \ \begin{pmatrix} +0.43 \\ -0.46 \end{pmatrix} \times 10^{-3} \text{ eV}^2 & \text{(inverted hierarchy)} \,, \\ +2.46 \pm 0.15 \ \begin{pmatrix} +0.47 \\ -0.42 \end{pmatrix} \times 10^{-3} \text{ eV}^2 & \text{(normal hierarchy)} \,, \end{cases}$$

$$\theta_{23} = 42.3 \, {}^{+5.1}_{-3.3} \left({}^{+11.3}_{-7.7}
ight) ,$$
 Gonzalez-García and Maltoni '08

Solar parameters:

$$\Delta m_{21}^2 = 7.67 \substack{+0.22\\-0.21} \begin{pmatrix}+0.67\\-0.61\end{pmatrix} \times 10^{-5} \text{ eV}^2$$
$$\theta_{12} = 34.5 \pm 1.4 \begin{pmatrix}+4.8\\-4.0\end{pmatrix}$$

Atmospheric parameters:

$$\Delta m_{31}^2 = \begin{cases} -2.37 \pm 0.15 \ \begin{pmatrix} +0.43 \\ -0.46 \end{pmatrix} \times 10^{-3} \ \mathrm{eV}^2 & \text{(inverted hierarchy)} \,, \\ +2.46 \pm 0.15 \ \begin{pmatrix} +0.47 \\ -0.42 \end{pmatrix} \times 10^{-3} \ \mathrm{eV}^2 & \text{(normal hierarchy)} \,, \end{cases}$$

 $\theta_{23} = 42.3 \, {}^{+5.1}_{-3.3} \left({}^{+11.3}_{-7.7} \right) ,$ Gonzalez-García and Maltoni '08

Unknown parameters (maybe less, by the time of NF):

Solar parameters:

$$\Delta m_{21}^2 = 7.67 \substack{+0.22\\-0.21} \begin{pmatrix}+0.67\\-0.61\end{pmatrix} \times 10^{-5} \text{ eV}^2$$
$$\theta_{12} = 34.5 \pm 1.4 \begin{pmatrix}+4.8\\-4.0\end{pmatrix}$$

Atmospheric parameters:

$$\Delta m_{31}^2 = \begin{cases} -2.37 \pm 0.15 \ \begin{pmatrix} +0.43 \\ -0.46 \end{pmatrix} \times 10^{-3} \ \mathrm{eV}^2 & \text{(inverted hierarchy)} \,, \\ +2.46 \pm 0.15 \ \begin{pmatrix} +0.47 \\ -0.42 \end{pmatrix} \times 10^{-3} \ \mathrm{eV}^2 & \text{(normal hierarchy)} \,, \end{cases}$$

 $\theta_{23} = 42.3 + 5.1 + 11.3 - 7.7$, Gonzalez-García and Maltoni '08

Unknown parameters (maybe less, by the time of NF):

Solar parameters:

$$\Delta m_{21}^2 = 7.67 \substack{+0.22\\-0.21} \begin{pmatrix}+0.67\\-0.61\end{pmatrix} \times 10^{-5} \text{ eV}^2$$
$$\theta_{12} = 34.5 \pm 1.4 \begin{pmatrix}+4.8\\-4.0\end{pmatrix}$$

Atmospheric parameters:

$$\Delta m_{31}^2 = \begin{cases} -2.37 \pm 0.15 \ \begin{pmatrix} +0.43 \\ -0.46 \end{pmatrix} \times 10^{-3} \ \mathrm{eV}^2 & \text{(inverted hierarchy)} \,, \\ +2.46 \pm 0.15 \ \begin{pmatrix} +0.47 \\ -0.42 \end{pmatrix} \times 10^{-3} \ \mathrm{eV}^2 & \text{(normal hierarchy)} \,, \end{cases}$$

$$\theta_{23} = 42.3 + 5.1 + 11.3 - 7.7$$
, Gonzalez-García and Maltoni '08

Unknown parameters (maybe less, by the time of NF):

Sign of Δm^2_{13}

Dirac CP-violating phase δ

Solar parameters:

$$\Delta m_{21}^2 = 7.67 \substack{+0.22\\-0.21} \begin{pmatrix}+0.67\\-0.61\end{pmatrix} \times 10^{-5} \text{ eV}^2$$
$$\theta_{12} = 34.5 \pm 1.4 \begin{pmatrix}+4.8\\-4.0\end{pmatrix}$$

Atmospheric parameters:

$$\Delta m_{31}^2 = \begin{cases} -2.37 \pm 0.15 \ \binom{+0.43}{-0.46} \times 10^{-3} \ \text{eV}^2 & \text{(inverted hierarchy)}, \\ +2.46 \pm 0.15 \ \binom{+0.47}{-0.42} \times 10^{-3} \ \text{eV}^2 & \text{(normal hierarchy)}, \end{cases}$$

 $\theta_{23} = 42.3 + 5.1 + 11.3 - 7.7$, Gonzalez-García and Maltoni '08

Unknown parameters (maybe less, by the time of NF):

Sign of Δm^2_{13}

Solar parameters:

$$\Delta m_{21}^2 = 7.67 \substack{+0.22\\-0.21} \begin{pmatrix}+0.67\\-0.61\end{pmatrix} \times 10^{-5} \text{ eV}^2$$
$$\theta_{12} = 34.5 \pm 1.4 \begin{pmatrix}+4.8\\-4.0\end{pmatrix}$$

Atmospheric parameters:

$$\Delta m_{31}^2 = \begin{cases} -2.37 \pm 0.15 \ \begin{pmatrix} +0.43 \\ -0.46 \end{pmatrix} \times 10^{-3} \ \text{eV}^2 & \text{(inverted hierarchy)}, \\ +2.46 \pm 0.15 \ \begin{pmatrix} +0.47 \\ -0.42 \end{pmatrix} \times 10^{-3} \ \text{eV}^2 & \text{(normal hierarchy)}, \end{cases}$$

 $\theta_{23} = 42.3 + 5.1 + 11.3 - 7.7$, Gonzalez-García and Maltoni '08

Unknown parameters (maybe less, by the time of NF):

CORRELATIONS AND DEGENERACIES

$$P_{e\mu}^{\pm} = X_{\mu}^{\pm} \sin^2 2\theta_{13} + \left(Y_c^{\pm} \cos\delta \mp Y_s^{\pm} \sin\delta\right) \sin 2\theta_{13} + Z_{\mu}$$

$$P_{e\mu}^{\pm} = X_{\mu}^{\pm} \sin^2 2\theta_{13} + \left(Y_c^{\pm} \cos\delta \mp Y_s^{\pm} \sin\delta\right) \sin 2\theta_{13} + Z_{\mu}$$

$$X_{\pm} = \left[\sin^2 \theta_{23}\right] \left(\frac{\Delta_{23}}{\tilde{B}_{\mp}}\right)^2 \sin^2 \left(\frac{\tilde{B}_{\mp}L}{2}\right)$$

$$Y_{\pm}^{c} = \sin 2\theta_{23} \sin 2\theta_{12} \frac{\Delta_{12}}{A} \frac{\Delta_{23}}{\tilde{B}_{\mp}} \sin \left(\frac{AL}{2}\right) \sin \left(\frac{\tilde{B}_{\mp}}{2}L\right) \left[\cos \left(\frac{\Delta_{23}L}{2}\right)\right]$$
$$Y_{\pm}^{s} = \sin 2\theta_{23} \sin 2\theta_{12} \frac{\Delta_{12}}{A} \frac{\Delta_{23}}{\tilde{B}_{\mp}} \sin \left(\frac{AL}{2}\right) \sin \left(\frac{\tilde{B}_{\mp}}{2}L\right) \left[\sin \left(\frac{\Delta_{23}L}{2}\right)\right]$$

$$Z = \left[\cos^2 \theta_{23}\right] \sin^2 2\theta_{12} \left(\frac{\Delta_{12}}{A}\right)^2 \sin^2 \left(\frac{AL}{2}\right)$$

where $\Delta_{ij} = \Delta m_{ij}^2/2E$, $B_{\mp} = |A \mp \Delta_{23}|$ and A is the matter parameter.

$$P_{e\mu}^{\pm} = X_{\mu}^{\pm} \sin^2 2\theta_{13} + \left(Y_c^{\pm} \cos\delta \mp Y_s^{\pm} \sin\delta\right) \sin 2\theta_{13} + Z_{\mu}$$

The (θ_{13}, δ) correlation

The signal is:

 $N_{\mu} \ (\bar{\theta}_{13}, \bar{\delta}) = \left\{ \epsilon_{\mu} \otimes \sigma_{\nu_{\mu}} \otimes P_{\mathsf{e}\mu}^{+}(\bar{\theta}_{13}, \bar{\delta}) \otimes \Phi_{\nu_{\mu}} \right\}_{E}^{E + \Delta E}$

$$N^i_{\pm}(\bar{\theta}_{13},\bar{\delta}) = N^i_{\pm}(\theta_{13},\delta)$$

By changing (θ_{13}, δ) accordingly, curves are drawn in the (θ_{13}, δ) plane.

The (θ_{13}, δ) correlation (2)

The signal is:

 $N_{\mu} (\bar{\theta}_{13}, \bar{\delta}) = \left\{ \epsilon_{\mu} \otimes \sigma_{\nu_{\mu}} \otimes P_{e\mu}^{+}(\bar{\theta}_{13}, \bar{\delta}) \otimes \Phi_{\nu_{\mu}} \right\}_{E}^{E + \Delta E}$

$$N^i_{\pm}(\bar{\theta}_{13}, \bar{\delta}, \bar{s}_{atm}, \bar{s}_{oct}) = N^i_{\pm}(\theta_{13}, \delta, s_{atm}, s_{oct})$$

where

$$\begin{cases} s_{atm} = sign(\Delta m_{atm}^2) = \pm 1 \\ s_{oct} = sign(\tan 2\theta_{23}) = \pm 1 \end{cases}$$

J. Burguet-Castell et al. hep-ph/0103258

- Black square = input "true" value
- There is a curve of solutions: θ_{13} - δ correlation
- If we add antineutrinos the two curves intersect in 2 regions:
 - The true solution and an intrinsic degeneracy

J. Burguet-Castell et al. hep-ph/0103258

- Black square = input "true" value
- There is a curve of solutions: θ_{13} - δ correlation
- If we add antineutrinos the two curves intersect in 2 regions:
 - The true solution and an intrinsic degeneracy

J. Burguet-Castell et al. hep-ph/0103258

- Two unknown discrete parameters: s_{atm}, s_{oct}
- There are 4 different sets of curves for different choices of Satem, Soct
- 2 Intersections each

Eightfold degeneracy: Intrinsic sign octant mixed

- Two unknown discrete parameters: s_{atm}, s_{oct}
- There are 4 different sets of curves for different choices of s_{atm}, s_{oct}
- 2 Intersections each

Eightfold degeneracy: Intrinsic sign octant mixed

- Two unknown discrete parameters: s_{atm}, s_{oct}
- There are 4 different sets of curves for different choices of s_{atm}, s_{oct}
- 2 Intersections each

Eightfold degeneracy: Intrinsic sign octant mixed

- Two unknown discrete parameters: s_{atm}, s_{oct}
- There are 4 different sets of curves for different choices of Satem, Satem, Soct
- 2 Intersections each

Eightfold degeneracy: Intrinsic sign octant mixed

- Two unknown discrete parameters: s_{atm}, s_{oct}
- There are 4 different sets of curves for different choices of Satem, a, <a href
- 2 Intersections each

Eightfold degeneracy: Intrinsic sign octant mixed

- The goal: measure at the same time the four parameters that we do not yet know: θ_{13} , δ , the sign of Δm^2_{23} and the θ_{23} -octant
- To achieve our goal, we must then solve the problem of degeneracies.

SUPERBEAMS

Sensitivity bounds by T2K and NOvA

EXP	$ heta_{13}$	$\sin^2(2\theta_{13})$	$\sin^2 \theta_{13}$
Global Fit	10.8°	0.135	0.035
SBEAMS			
T2K-I	2.2°	0.006	0.0015
(JHF)	$ ightarrow 3.3^{\circ}$	ightarrow 0.013	$\rightarrow 0.0030$
ΝΟνΑ	2°	0.005	0.0010
(NUMI-OA)	$ ightarrow 3.5^{\circ}$	ightarrow 0.015	$\rightarrow 0.0040$

$$P_{\mu e} = s_{23}^2 \sin^2(2\theta_{13}) \sin^2\left[\frac{\Delta_{atm}L}{2}\right] + \mathcal{O}\left[\left(\frac{\Delta_{sol}}{\Delta_{atm}}\right) \sin(2\theta_{13}) \cos\delta\right] + \mathcal{O}\left[\left(\frac{\Delta_{sol}}{\Delta_{atm}}\right) \sin(2\theta_{13}) \sin\delta\right]$$

Sensitivity loss due to $(\theta_{13} - \delta)$ -correlations
After the wave of conventional beams and first generation superbeams, and of high-power reactors experiments, we will know something more on the PMNS matrix:

▷ mass differences Δm_{atm}^2 , Δm_{sol}^2 at some %;

After the wave of conventional beams and first generation superbeams, and of high-power reactors experiments, we will know something more on the PMNS matrix:

- ▷ mass differences Δm_{atm}^2 , Δm_{sol}^2 at some %;
- \triangleright mixing angles θ_{12}, θ_{23} at some %;

After the wave of conventional beams and first generation superbeams, and of high-power reactors experiments, we will know something more on the PMNS matrix:

- ▷ mass differences Δm_{atm}^2 , Δm_{sol}^2 at some %;
- ▷ mixing angles θ_{12}, θ_{23} at some %;
- ▷ the value of θ_{13} , if large.

After the wave of conventional beams and first generation superbeams, and of high-power reactors experiments, we will know something more on the PMNS matrix:

- ▷ mass differences Δm_{atm}^2 , Δm_{sol}^2 at some %;
- ▷ mixing angles θ_{12}, θ_{23} at some %;
- ▷ the value of θ_{13} , if large.

Precision measurements of LEPTONIC MIXING will start with the next-to-next generation experiments, using SuperBeams or BetaBeams with 1 Mton Water Čerenkov or/and the Neutrino Factory.

An intermediate phase?

After T2K and NO ν A, we will face a forking path:

- ★ $\nu_{\mu} \rightarrow \nu_{e}$ oscillation has been observed! A good option: increase detector mass, same source: T2-HK or SPL+UNO (really a good option?)
 - No signal has been observed: θ₁₃ ≤ 3° − 4° ! Go to new sources: Neutrino Factory or the Beta-Beam.

Appearance Signal at a SB

$$\begin{array}{c|c} \pi^+ \end{array} \rightarrow \begin{cases} \mu^+ \rightarrow \bar{\nu}_{\mu}, \nu_e \rightarrow e^- & Background \\ \hline \nu_{\mu} \rightarrow \nu_e \rightarrow e^- & Signal \end{cases}$$

The oscillation probability is

 $P_{\mu e}^{\pm} \simeq X_{\pm} \sin^2(2\theta_{13})$ $+Y_{\pm} \cos\left(\delta \pm \frac{\Delta_{atm}L}{2}\right) \cos\theta_{13} \sin(2\theta_{13})$ $+Z + \dots$

Hyper-Kamiokande

The CERN-Memphys project

Detector options

Degeneracy in (θ_{13}, δ) at the SPL

2 years for π^+ and 8 years for π^-

L = 130 Km, $\bar{E}_{\nu\mu} = 0.27$ GeV, $\bar{E}_{\bar{\nu}\mu} = 0.25$ GeV

Input parameters: $\bar{\theta}_{13} = 7^{\circ}, \bar{\delta} = 45^{\circ}$

Degeneracy in (θ_{13}, δ) at the SPL

2 years for π^+ and 8 years for π^-

L = 130 Km, $\bar{E}_{\nu\mu} = 0.27$ GeV, $\bar{E}_{\bar{\nu}\mu} = 0.25$ GeV

Input parameters: $\bar{\theta}_{13} = 7^{\circ}, \bar{\delta} = 45^{\circ}$

The same at T2-HK

K. Hagiwara, hep-ph/0410229

The same at T2-HK

K. Hagiwara, hep-ph/0410229

The problem: the sign of Δm^2_{23} is not measured

Solving parameter degeneracies with atmospheric data

- The HK detector of T2K-II will also record ATM events. We assume 9 yr of data. When these events are combined with the LBL ones:
 - the octant degeneracy is completely solved regardless of the true octant;
 - the hierarchy degeneracy is solved if true octant is the dark one.

Resolving parameter degeneracies

- sensitivity to the octant (blue lines):
 - given by **sub-GeV** events for $\theta_{13} \approx 0$;
 - given by **multi-GeV** events for $\theta_{13} \gtrsim 0.04$;
 - only mildly dependent on δ_{CP};
- sensitivity to the hierarchy (red lines):
 - dominated by **multi-GeV** for $\theta_{23} > 45^{\circ}$;
 - sub-GeV events relevant if $\theta_{23} < 45^{\circ}$;
 - strongly depends on δ_{CP} in the latter case;
- sensitivity to octant+hierarchy (gray regions):
 - mostly given by "sum" of blue and red lines;
 - $-\delta_{CP}$ interference terms may be relevant.

NEUTRINO FACTORY

The Neutrino Factory

The Neutrino Factory

 $\pi^+ \to \mu^+ \nu_\mu$

jueves 19 de junio de 2008

The Neutrino Factory

beam **Proton Driver Proton Driver** Storage primary beam on production target Ring Hg Target Capture Target, Capture, Decay Drift Bunching μ^+ **Buncher** \mathbf{X}^{μ^+} Phase Rotation reduce E of bunch Bunch Rotation Cooling FFAG Cooling 10-20 GeV Acceleration reduce transverse emittance Linac 0.2 - 1.5 GeV Acceleration (LINAC/FFAG) 130 MeV 20-40 GeV FFAG beam **Decay Ring** -10 GeV store for ~500 turns; long straight section Dogbone Acceleration 1.5 - 5.0 GeV Zisman, IDS'07, CERN

The Neutrino Factory

Proton Driver primary beam on production target

Target, Capture, Decay Bunching Phase Rotation reduce E of bunch

Cooling reduce transverse emittance

Acceleration (LINAC/FFAG) 130 MeV 20-40 GeV

Decay Ring store for ~500 turns; long straight section

A. Cervera et al, hep-ph/0002108

To look for the signal, at the Neutrino Factory we need μ charge identification

A. Cervera et al, hep-ph/0002108

To look for the signal, at the Neutrino Factory we need μ charge identification

A. Cervera et al, hep-ph/0002108

To look for the signal, at the Neutrino Factory we need µ charge identification

Magnetized Iron Detector

40-50 Kton Mass

Good Muon Charge Identification

Magnetized Iron Detector

40-50 Kton Mass

Good Muon Charge Identification

Magnetized Iron Detector

Good Muon Charge Identification

40-50 Kton Mass

Solving degeneracies

Solving degeneracies

- Combining channels: Silver and Platinum
- Combining baselines: the Magic baseline
- Combining energies: improving the detector

The Silver Channel

$$P_{e\tau}^{\pm} = X_{\tau}^{\pm} \sin^2 2\theta_{13} - \left(Y_c^{\pm} \cos\delta \mp Y_s^{\pm} \sin\delta\right) \sin 2\theta_{13} + Z_{\tau}$$

$$X_{\tau}^{\pm} = \frac{c_{23}^2}{s_{23}^2} X_{\mu}^{\pm} \qquad Z_{\tau} = \frac{s_{23}^2}{c_{23}^2} Z_{\mu}$$

Donini, Meloni and Migliozzi '02

The Silver Channel

$$P_{e\tau}^{\pm} = X_{\tau}^{\pm} \sin^2 2\theta_{13} - \left(Y_c^{\pm} \cos\delta \mp Y_s^{\pm} \sin\delta\right) \sin 2\theta_{13} + Z_{\tau}$$

$$X_{\tau}^{\pm} = \frac{c_{23}^2}{s_{23}^2} X_{\mu}^{\pm} \qquad Z_{\tau} = \frac{s_{23}^2}{c_{23}^2} Z_{\mu}$$

Donini, Meloni and Migliozzi '02

Same sensitivities as the Golden Channel

How the silver channel solve the intrinsic degeneracy

The Silver Channel

 $\longrightarrow \begin{cases} e^+ \\ v_e \rightarrow v_{\tau} \rightarrow \tau^- \rightarrow \mu^- \\ \overline{v}_{\mu} \rightarrow \overline{v}_{\mu} \rightarrow \mu^+ \end{cases}$

The Silver Channel

The Signal

To look for the signal, we need μ charge identification and τ decay vertex identification

To look for the signal, we need μ charge identification and τ decay vertex identification

To look for the signal, we need μ charge identification and τ decay vertex identification

Emulsion Cloud Chamber

Emulsion Cloud Chamber

 $P_{\mu e}^{\pm} = X_{\mu}^{\mp} \sin^2 2\theta_{13} + \left(Y_c^{\mp} \cos\delta \pm Y_s^{\mp} \sin\delta\right) \sin 2\theta_{13} + Z_{\mu}$

Bueno, Campanelli and Rubbia '00

Same sensitivities as the Golden Channel

To look for the signal, we need e charge identification

To look for the signal, we need e charge identification

To look for the signal, we need e charge identification

Liquid Argon TPC

Channels Combination

The main limitation of silver and platinum channels is statistics

Huber, Lindner, Rolinec and Winter '06

At this baseline, no dependence on δ

At this baseline, no dependence on δ Also, no sensitivity at all....

At this baseline, no dependence on δ Also, no sensitivity at all....

Good to measure θ_{13} and the sign of Δm^2_{13}

At this baseline, no dependence on δ Also, no sensitivity at all....

Good to measure θ_{13} and the sign of Δm^2_{13}

Combined with another baseline, acts as a degeneracy-solver

Enlightened MINDs

The crucial improvement is to lower the threshold for muon identification

Enlightened MINDs

The crucial improvement is to lower the threshold for muon identification For the standard NF setup, the first oscillation peak is around 7 GeV: a good efficiency below this value acts as a degeneracy-solver

From the ISS Detector Group Final Report

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - (\sin^{2} 2\theta_{23} - s_{23}^{2} \sin^{2} 2\theta_{13} \cos^{2} 2\theta_{23}) \sin^{2}\left(\frac{\Delta_{atm}L}{2}\right)$$
$$-\left(\frac{\Delta_{sol}L}{2}\right) \left[s_{12}^{2} \sin^{2} 2\theta_{23} + \tilde{J}s_{23}^{2} \cos \delta\right] \sin(\Delta_{atm}L)$$
$$-\left(\frac{\Delta_{sol}L}{2}\right)^{2} \left[c_{23}^{4} \sin^{2} 2\theta_{12} + s_{12}^{2} \sin^{2} 2\theta_{23} \cos(\Delta_{atm}L)\right]$$

Where

$$\widetilde{J} = \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \qquad \Delta_{sol} = \frac{\Delta m_{12}^2}{2E}$$
$$\sin 2\theta_{13} < 0.4 \qquad \Delta_{atm} = \frac{\Delta m_{23}^2}{2E} \qquad \left(\frac{\Delta_{sol}L}{2}\right) \approx 0.05$$

5yr v_{μ} + 5yr \overline{v}_{μ} exposure with a 40Kt iron calorimeter for the NF

- Possible Setups:
 - L = 3000Km E = 20, 50 GeV
 - L = 7000Km E = 50 GeV
- 5 GeV bins considered
- Efficiency:
 - ε_µ = 0.5 for neutrinos
- "Cervera et al. hep-ph/0002108"
- ε_µ = 0.33 for antineutrinos
- Systematics = 2%

See e.g. Bueno et al. hep-ph/0005007 for an Icarus analysis

Input: $\theta_{23} = 40^{\circ}$, $\theta_{13} = 6^{\circ}$, $\delta = 0^{\circ}$

Input: $\theta_{23} = 40^{\circ}$, $\theta_{13} = 6^{\circ}$, $\delta = 0^{\circ}$

Input: $\theta_{23} = 40^{\circ}$, $\theta_{13} = 4^{\circ}$, $\delta = 0^{\circ}$

Input: $\theta_{23} = 40^{\circ}$, $\theta_{13} = 3^{\circ}$, $\delta = 0^{\circ}$

Input: $\theta_{23} = 40^{\circ}$, $\theta_{13} = 2^{\circ}$, $\delta = 0^{\circ}$

The NuFact Sensitivity

The NuFact Sensitivity

Burguet-Castell, Casper, Couce, Gómez-Cadenas and Hernández '05

The NuFact Sensitivity

Discovery reach in $sin^2 2\theta_{13}$

From the ISS Physics Group Final Report

BETABEAMS

The CERN-Memphys project

Detector options

4. with 8Li/8B

Resonant enhancement depending on the hierarchy

Sensitivity to the mass hierarchy down to $\sin^2 2\theta_{13} = 10^{-3}$ for $\gamma = 350$

4. with 8Li/8B

Add a second baseline and look for δ

Add a second baseline and look for δ

First and second peak at the same baseline

22.5 Kton Mass

An extrapolation of Minerva

Suited for low energy muons

22.5 Kton Mass

An extrapolation of Minerva

Suited for low energy muons

CONCLUSIONS

Definition of the CP-fraction

Sensitivity to $Sin^2 2\theta_{13}$

Sensitivity to $Sin^2 2\theta_{13}$

Sensitivity to the hierarchy

Sensitivity to the hierarchy

- The goal: measure at the same time the four parameters that we do not yet know: θ_{13} , δ , the sign of Δm^2_{23} and the θ_{23} -octant
- A plethora of possibilities (and we are still thinking....). It is crucial to take a decision to see which are the results of D-Chooz, T2K and NOvA.
- If θ_{13} is large, then it is time for precision phyics AND to look for new physics

$\mu \rightarrow e\gamma$ in supersymmetric models with heavy right-handed neutrinos

Figure 7: BR($\mu \to e \gamma$) as a function of $|\theta_1|$, for $\arg \theta_1 = \{0, -\pi/4, -\pi\}$ (dots, times, diamonds, respectively) and $\theta_{13} = 0^\circ$, 5° (blue/darker, green/lighter lines). BAU is enabled by the choice $\theta_2 = 0.05 e^{0.2i}$ ($\theta_3 = 0$). In all cases black dots represent points associated with a disfavoured BAU scenario and a dashed(dotted) horizontal line denotes the present experimental bound (future sensitivity).

E. Arganda et al. hep-ph/0607263

- It is also crucial that accelerator studies continue to understand the feasability of the more extreme setups, such as the Neutrino Factories or the (high-γ) BetaBeams
- The european neutrino community must take a decision by 2012, according to what we have signed in the FP7 of the EU