NuFACT08 Summer School Muon Capture, Phase-Energy Rotation and Cooling

David Neuffer f Fermilab

Outline

- Lecture I –Introduction– Optics and Capture
 - General introduction
 - ν -Factory; μ^+ - μ^- Collider
 - Optics review
 - Muon capture for cooling
 - v-Factory and $\mu^+-\mu^-$ Collider
 - variations
- Lecture II Cooling
 - Ionization cooling concepts
 - Cooling for a neutrino factory
 - Muon collider —cooling
 - Experiments
 - Ion cooling

Neutrino Factory – Study 2A

Overview of $\mu^+ - \mu^-$ Collider

$\mu^+ - \mu^-$ Collider

Project X Collider Parameters 8 GeV SC Linac Same as C of m Energy TeV Main Injector to 60 GeV 1.54 Neutrino Factory $10^{34} \text{ cm}^2 \text{sec}^{-1}$ Luminosity 4 Hg Target 20 T Capture Solenoid Beam-beam Tune Shift 0.10.10. Phase Rotation to 12 bunches 10^{12} Muons/bunch 2 2 Linear Transverse Cooling Partial Ring <bending field> 5.2 5.2 Т Simulations 6 D Cooling Ring circumference 3 8.1 km Merge 12 to One Bunch 6 D Cooling Beta at IP = σ_z 3 10 mm % rms momentum spread 0.10.12 Transverse Cooling in 50 T Muon Beam Power 7.5 MW g Required depth for ν rad (¹) 13 135Linac m Magnet Muon survival $(^2)$ 0.07 0.07 RLA(s) Study Repetition Rate 12 Hz 6 Pulsed Synchrotron(s) ? Preliminary Proton Driver power MW ≈ 4 ≈ 1.8 Ring Designs Collider Ring 1.5 / 4 Te Trans Emittance 2525 pi mm mrad Long Emittance 72.000 72.000 pi mm mrad Collider

High-energy muon accelerator

 σ_{IR}

6.0 to 2.0 µ

Primary limitation: µ-Lifetime

- Muons decay in time:
 - $\gamma \tau_0 = \gamma 2.2 \ \mu s$
- Or in a distance:
 - $\beta \gamma \ c \tau_0 = \beta \gamma \ 660 \ m$
- Need acceleration, and cooling, much faster than decay:

$$V_{rf}' \Box \frac{m_{\mu}c^2}{e\,c\tau_0} \simeq 0.16\,MV/m$$

- Need > $\sim 10 MV/m$
 - Must bunch, cool, and accelerate

$$\frac{dN}{ds} = -\frac{1}{\beta \gamma c \tau_0} N$$

$$N = N_0 e^{-\frac{z}{\beta \gamma c \tau_0}}$$

$$E = E_0 + eV'_{rf}s$$

$$\frac{N}{N_0} = \left[\frac{E_0}{E}\right]^{\frac{m_\mu c^2}{c\tau_0 eV'_{rf}}}$$

Maxwell's equations:

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon}$$
$$\nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$$
$$\nabla \times \frac{\vec{B}}{\mu} - \frac{\partial \varepsilon \vec{E}}{\partial t} = \vec{J}$$

• Equation of motion:

$$\frac{d(m\gamma\vec{v})}{dt} = q\vec{E} + q(\vec{v}\times\vec{B})$$

- Transport/focusing uses magnetic fields
 - Dipoles, quads, solenoids, ...
 - Horns, Li lens, ...
- Acceleration uses electric fields
 - rf cavities
 - Induction modules

Magnetic motion-Bending

$$\frac{d(m\gamma\vec{v})}{dt} = q(\vec{v}\times\vec{B})$$

Bending radius:

$$R = \frac{m\gamma v}{qB} = \frac{B\rho}{B}$$

$$B\rho (T-m) = \frac{P (GeV/c)}{0.3}$$

- Force is perpendicular to motion
- γ , β =v/c, P remain constant
- If **v**, **B** are perpendicular, motion is circular
- mγv/q = BR =P/q is called the magnetic rigidity or Bρ
- 1 GeV/c particle has Bρ=10⁹/c= 3.33 T-m
- Bending angle in magnet with field B, length L is θ =BL/ B ρ

Betatron Functions-focusing

Assume focusing is linear around the orbit:

$$\frac{d^2x}{ds^2} + k_x(s) x = 0$$

~Harmonic oscillator (k(s))

 $\phi_x(s) = \int \frac{ds}{\beta(s)}$

Solution:

$$x = A_{\chi} \beta_x(s) e^{i\phi(s)}$$

where:

$$\left(\sqrt{\beta_x(s)}\right)'' + k_x(s)\sqrt{\beta_x(s)} - \frac{1}{\left(\sqrt{\beta_x(s)}\right)^3} = 0$$

- Focussing forces:
 - Quads: $k_x(s) = \pm B'(s)/B\rho$

$$k_y(s) = -k_x(s)$$

• Solenoids:
$$k(s) = (B/2B\rho)^2$$

- With x-y rotation
- Need starting amplitude and derivative to specify motion
 - $\beta_{x}(0), \beta_{x}'(0)$
- In periodic structure these are set by requiring that $\beta_x(s)$ be periodic.

$$A = \sqrt{\varepsilon_{amplitude}}$$

At equilibrium $\beta_x = (1/k)^{\frac{1}{2}}$

 $\cos\phi + \alpha \sin\phi$ ₿ sin ø $M = -\frac{1+\alpha^2}{2}\sin\phi$

 $-\cos\phi + \alpha\sin\phi$

Exercise: show that these equations are consistent

- Magnetic field
 - Cylindrical symmetry

$$\vec{B} = -\frac{r}{2} \frac{\partial B_z(z)}{\partial z} \vec{e}_r + B_z(z) \vec{e}_z$$

- Change to R- ϕ notation $x + iy = R e^{i\phi}$
- Solution is rotation in φ, focussing in R:

- Quadrupole:
 - Focuses x or y
 - Proportional to 1/P

$$\mathbf{x''} = -\frac{\mathbf{B'}}{\mathbf{B}\boldsymbol{\rho}}\mathbf{x}$$

- Solenoid
 - Focuses both x and y
 - Focuses both μ^+ and μ^-
 - Proportional to 1/P²
- Solenoid better for low-energy
 - For Bρ < ~B_o a (~1 T-m ?)

$$\mathbf{x''} = -\left(\frac{B}{2B\rho}\right)^2 \mathbf{x}$$

- Beam optics typically described in terms of betatron functions
- Use "rms" Emittance (beam phase space area)

$$\sigma_{x}^{2} = \beta_{\perp,x} \varepsilon_{x,geom.} = \frac{\beta_{\perp,x}(s)\varepsilon_{x,N}}{\beta\gamma}$$

• Emittance also defined as:

$$\varepsilon_{x,geom}^{2} = \langle x^{2} \rangle \langle x'^{2} \rangle - \langle x x' \rangle^{2} \qquad (m_{o}c)^{2} \varepsilon_{x,N}^{2} = \langle x^{2} \rangle \langle p_{x}^{2} \rangle - \langle x p_{x} \rangle^{2}$$

- References are often unclear on whether normalized or geometric emittance is used; also
 - Fermilab convention: ε_{f} = $6\pi\varepsilon_{rms}$
 - CERN convention: $\varepsilon_{CERN} = 4\pi \varepsilon_{rms}$

Adiabatic damping and normalized emittance

factive function

- Under acceleration:
 - $\delta x \delta p_x$ remain constant (normalized emittance)
 - $\delta x \ \delta x' = \delta x \ \delta p_x/p$ is proportional to (1/p)
 - geometric emittance decreases (beam size decreases)

$$\boldsymbol{\sigma}_{\mathrm{x}} = \sqrt{\frac{\boldsymbol{\beta}_{\perp,\mathrm{x}}\boldsymbol{\varepsilon}_{\mathrm{N,x}}}{\boldsymbol{\beta}\boldsymbol{\gamma}}}$$

- Similarly,
 - δct δE remain constant
 - $\delta z \ \delta p/p$ decreases as 1/p (acceptances set by $\delta p/p$)
- Acceptances improve as beam is accelerated
 - Use higher-frequency rf, weaker transverse focusing

Longitudinal motion

• Choose variables for longitudinal motion: $(\delta z, \delta P_z) \rightarrow (\delta \Phi, \delta E)$

$$\frac{d\Delta E}{ds} = eV'(\cos(\phi + \phi_s) - \cos\phi_s) \cong -eV'\sin\phi_s\phi$$

$$\frac{d\phi}{ds} = \left(\frac{1}{\beta_0} - \frac{1}{\beta}\right) \frac{2\pi}{\lambda_0} \cong \frac{1}{\beta^3 \gamma^3} \frac{2\pi}{\lambda_0} \frac{\Delta E}{mc^2}$$

$$E_{z}(\phi) = V_{rf}' \cos(\frac{2\pi}{\lambda_{rf}}(z - z_{o})) = V_{rf}' \cos(\phi - \phi_{o}))$$

$$\left[\alpha_{p}=\frac{1}{\gamma^{2}} \text{ in linac }\right] \quad \left[\alpha_{p}=\frac{1}{\gamma^{2}}\cdot\frac{1}{\gamma_{t}^{2}}\right] \text{ in ring}$$

$$\frac{d^2\phi}{ds^2} \cong -\frac{\alpha_p}{\beta^3\gamma} \frac{2\pi}{\lambda_0} \frac{eV'\sin\phi_s}{mc^2}\phi$$

• Distance for oscillation

• Rf Bucket energy width

$$\lambda_{\rm osc} = 2\pi \sqrt{\frac{\beta^3 \gamma \lambda_0 mc^2}{2\pi \alpha_p eV' \sin \phi_s}}$$

• Adiabatic (if L > ~ $\lambda_{\rm osc}$)

$$\Delta E = \pm \sqrt{\frac{eV'\lambda_0 mc^2 \beta^3 \gamma}{\pi \alpha_p}} \sqrt{2\phi_s \sin \phi_s - \phi_s \cos \phi_s}$$

Target for π production

- Typical beam: 10 GeV protons up to 4 MW
 - 1m long bunches up to 4×10^{13} /bunch, 60Hz
- Options:
 - Solid targets
 - C (graphite targets) (NUMI)
 - Solid metal (p-source) rotating Cu-Ni target
 - Liquid Metal targets 10Tesla - SNS - type (confined flow) - MERIT test - Hg jet in free space 20Tesla November 2007 – experiment Best for 4MW ?? Hg jets Fiberoptic Strain Gauge Target Container **Cooling Channels** ATJ Graphite Target 1.0cm diam - 12cm length Protor Beam Target holding fixtures Mercurv Stainless Steel Jet Target Container 24 GeV - 1.7e+12 protons (AGS Beam)

0 Tesla

- Protons on target produce large number of π's
 - Broad energy range (0 to 10+GeV)
 - More at lower energies
 - Transverse momentum (up to ~0.3GeV/c)

- Capture beam from target
- Options:
 - Li lens
 - Magnetic horn
 - Magnetic Solenoid

Magnetic Horn after target

- Baseline capture for superbeams/NUMI
- Magnetic field from I on wall $B_{\theta}(\mathbf{r}) = 0 \text{ inside conductor} \\
 B_{\theta}(\mathbf{r}) = \mu_{o} \frac{\mathbf{I}_{\text{total}}}{2\pi \mathbf{r}} \quad \Delta \theta_{\text{focus}} = \frac{\mathbf{B}_{\theta} \mathbf{L}_{\text{path}}}{3.33 P_{\pi/\mu}}$
- Lenses can be tuned to obtain narrow band or broad-band acceptance
- Pulsed current, thin conductors
 - Breakage over many pulses
 - Beam lost on material
- focuses + or particles

- Target is immersed in high field solenoid
- Particles are trapped in Larmor orbits
 - Produced with $p = p_{\parallel}, p_{\perp}$
 - Spiral with radius r = $p_{\perp}/(0.3~B_{sol})$ =B ρ_{\perp}/B
 - Particles with $p_{\perp} < 0.3 \ B_{sol}R_{sol}/2$ are trapped
 - $p_{\perp,max} < 0.225 \text{ GeV/c}$ for B=20T, $R_{sol} = 0.075 \text{ m}$
 - Focuses both + and particles

\mathbf{F}^{μ} Target to Cooling channel match

fact

Kilpatric limit

10 GHz

Lower because not pill box

I GHz

100 MHz

SCRF

- Transverse match: 20T to ~2T solenoid
 - $P_t = 0.225 \rightarrow 0.07 \text{GeV/c}$
 - R= 25cm: $\sigma_x \approx 0.1m$; $\theta_x \approx 0.1$
- Longitudinal match:
 - rf ~200 MHz (λ=1.5m) V' >10 MV/m
 - Optimum cooling is:
 - $P = 200 MeV/c, \delta P/P \sim 10\%$
 - Want both signs (μ+, μ⁻)

500

200

100

50

20

10

5

2

I MHz

IAPAN

10 MHz

m//m

Gradient,

$\pi \rightarrow \mu \nu$ decay in transport

- π -lifetime is 2.60×10⁻⁸ γ s
 - L = 7.8 βγ m
- For $\pi \rightarrow \mu + \nu$, <P_{T,rms}> is 23.4 MeV/c, E_µ=0.6 to 1.0E_π
- Capture relatively low-energy π →
 μ
 - 100 300 MeV/c
- Beam is initially short in length
 - Bunch on target is 1 to 3 ns rms length
- As Beam drifts down beam transport, energy-position (time) correlation develops:

 $c au_{arrival}$

Phase-energy rotation

- To maximize number of ~monoenergetic µ's, neutrino factory designs use phase-energy rotation
- Requires:
 - "short" initial p-bunch
 - Drift space
 - Acceleration (induction linac or rf)
 - at least $\pm 100 \text{ MV}$
- Goal:
 - Accelerate "low-energy tail"
 - Decelerate "high-energy head:
 - Obtain long bunch
 - with smaller energy spread

$$\delta L = \delta \frac{L}{\beta(p_{\mu})}$$

- Single bunch capture
 - Low-frequency rf (~30MHz)
 - Best for collider (?) (but ~ only μ^+ or $~\mu^-)$
- Induction Linac
 - Nondistortion capture possible
 - Very expensive technology, low gradient
 - Captures only μ^+ or μ^-
- "High Frequency" buncher and phase rotation
 - Captures into string of bunches (~200MHz)
 - Captures both μ^+ and μ^-

- Low-frequency rf; capture into single long bunch
 - 25MHz 3MV/m
 - +25% 50MHz
 - 10m from target to 50m
- But:
 - Low-frequency rf is very expensive
 - Continuation into cooling and acceleration a problem (200MHz?)

Only captures one sign ...

fact Auon Collaboration

- Base Line Neutrino factory Solution:
 - Uses only f > 200MHz rf
 - Captures both signs (μ +, μ -)

- Want rf phase to be zero for reference energies as beam travels down buncher
- Spacing must be N λ_{rf} $\Rightarrow \lambda_{rf}$ increases (rf frequency decreases)
- Match to $\lambda_{rf} = \sim 1.5m$ at end:
- Gradually increase rf gradient (linear or quadratic ramp)

$$\delta L = \delta \frac{L}{\beta(p_{\mu})}$$

Example: λ_{rf} : 0.90 \rightarrow 1.5m For s =90 to 150m

- Adiabatic buncher (z=90→150m)
- Set T_0 , $\delta(1/\beta)$:
 - 125 MeV/c, 0.01
- In buncher:

 $\lambda_{\rm rf}(z) = z \, \delta(\gamma_{\beta})$

• Match to $\lambda_{rf} = 1.5m$ at end:

$$L_{tot}\left(\frac{1}{\beta_1} - \frac{1}{\beta_0}\right) = L_{tot}\delta\left(\frac{1}{\beta}\right) = \lambda_{rf} = 1.5m$$

- zero-phase with $1/\beta$ at integer intervals of $\delta(1/\beta)$: $\frac{1}{\beta_n} = \frac{1}{\beta_0} + n \delta\left(\frac{1}{\beta}\right)$
- Adiabatically increase rf gradient:

 $\lambda_{rf}: 0.90 \rightarrow 1.5m$

 $E_{rf}(z) = 2 \frac{(z - z_D)}{(L_{cu} - z_D)} + 6 \frac{(z - z_D)^2}{(L_{cu} - z_D)^2} MV / m$ 27

- At end of buncher, change rf to decelerate high-energy bunches, accelerate low energy bunches
- Reference bunch at zero phase, set λ_{rf} less than bunch spacing (increase rf frequency)
- Place low/high energy bunches at accelerating/decelerating phases
- Can use fixed frequency (requires fast rotation) or
- Change frequency along channel to maintain phasing

≵µ́

Study2A June 2004 scenario

€ - - - 040127 - p. 1

ct (m)

- Fairly **long** section ~300m long
- Produces long bunch trains of ~200 MHz bunches
 - ~80m long (~50 bunches)
- Transverse cooling is ~2½ in x and y
 - No cooling or more cooling ?
- Requires rf within magnetic fields
 - in current lattice, rf design
 - 12 MV/m at B = 1.75T

Shorter Bunch train example

- 217m ⇒ **125m**
- 57m drift, 31m buncher, 36m rotator
- Rf voltages up to 15MV/m (×2/3)
- Obtains $\sim 0.25 \ \mu/p_{24}$ in ref. acceptance
 - Slightly better ?
 - ~0.23 μ/p for Study 2B baseline
- 80+ m bunchtrain reduced to < 50m
 - Δn: 18 -> 10

- Front end for v-Factory
 - Target
- Initial $\phi \delta E$ Rotation for neutrino factory discussed
 - High-frequency (multibunch)
- Matches into cooling and acceleration for neutrino factory and collider
- Captures both $\mu^{\scriptscriptstyle +}$ and $\mu^{\scriptscriptstyle -}$ bunches

References

- "Cost-effective design for a neutrino factory", J. Berg et al., PRSTAB 9, 011001(2006)
- "Recent progress in neutrino factory ...", M. Alsharo'a et al., PRSTAB 6, 081001 (2003)
- "Beams for European Neutrino Experiments (BENE) CERN-2006-005
- S. Ozaki et al., Feasibility Study 2, BNL-52623(2001).
- N. Holtkamp and D. Finley, eds., Study 1, Fermilab-Pub-00/108-E (2000).
- The Study of a European neutrino factory complex, CERN/PS/2002-080.
- R. Palmer- NuFACT07 Summer School lecture notes

Summary slide

© Scott Adams, Inc./Dist. by UFS, Inc.

Extra Slides

- Current-carrying conducting cylinder
- Focusing Field:

$$\mathbf{B}_{\theta}(\mathbf{r}) = \boldsymbol{\mu}_{0} \mathbf{I}_{\text{total}} \frac{\mathbf{r}}{2\pi \mathbf{R}_{0}^{2}}$$

Beryllium End Window Ceramic Insulator Ring Lithium Conductor Cylindrical Volume Water Cooling Return Tube Septum Assembly Steel Body

- Fermilab values:
 - $R_0 = 1 \text{ cm}, I = 0.5 \text{ MA}, L = 15 \text{ cm}, B(R_0) = 10 \text{ T}$
 - $B(R_0) = 10T$ Focusing angle: 0.45 GeV/c $\Theta = (0.3B(r) L)/P$
- Focuses 9GeV/c p~ with $p_{\perp} < 0.45~GeV/c$
- Problems
 - Pulsed at <1Hz, need liquid for 10⁺ H
 - Absorbs particles (π,p-bar)
 - Forward capture
 - Captures only one sign

$\mu^+ - \mu^-$ Collider Parameters

<u>Parameter</u>	<u>4TeV(2000)</u>	4TeV low emittance	Detector m+ m Collider
Collision Energy(2 E_{μ})	4000	4000 GeV	<u>Am</u> ing
Energy per beam(E_{μ})	2000	2000 GeV	A La Superconducting inse
Luminosity(L= $f_0 n_s n_b N_{\mu}^2/4\pi\sigma^2$)	10 ³⁵	10 ³⁵ cm ⁻² s ⁻¹	The start of the
Source Parameters	3.8 MW	1.0 MW p-beam	Pion capture things
Proton energy(E _p)	16	8 GeV	Are with Areas superconducting magnets
Protons/pulse(N _p)	4×2.5×10 ¹³	2×2×10 ¹³	High-energy mann accelerator
Pulse rate(f_0)	15	20 Hz	
Collider Parameters			
Mean radius(R)	1200	1000 m	
μ /bunch(N _{$\mu\pm$})	1.25×10 ¹²	2×10 ¹¹	
Number of bunches(n _B)	4	2	
Storage turns(2n _s)	1500	2000	
Norm. emittance(ε _N)	0.6×10 ⁻²	2.5×10 ⁴ cm-rad	
Geom emittance($\varepsilon_t = \varepsilon_N / \gamma \beta$)	3×10⁻	1.3×10 ⁻ ⁸ cm-rad	
IR Beam size $\sigma = (\epsilon \beta_0)^{\frac{1}{2}}$	3.1	0.36 µm	

Study 2: Induction Linacs

Cools transversely (to $\varepsilon_t = \sim 0.002 \text{ m}$

- Induction Linac can provide long pulse for φ-E rotation
- Arbitrary voltage waveform possible

- Limited to < ~1MV/m
 - need > ~200MV, > 200m
- Very expensive, large power requirements
- Only captures one sign

Another example: ~88 MHz

