

NuFact08 Summer School-Ionization Cooling

David Neuffer Fermilab f

- v-Factory and μ⁺-μ⁻ Collider:
- Ionization Cooling
 - Cooling description
 - Heating Longitudinal Cooling
 - Emittance Exchange Partition Numbers
 - Solenoidal focusing
 - Helical Cooler-PIC-REMEX
 - Low-Energy Cooling
- Cooling Scenarios
- Other Applications
 - Nuclear physics, stopped μ's
- Experimental Studies
 - Mice
 - Mucool
 - Muons, Inc....
 - MCTF

- A. N. Skrinsky and V.V. Parkhomchuk, Sov. J. Nucl. Phys. **12**, 3(1981).
- D. Neuffer, Particle Accelerators 14, 75 (1983)
- D. Neuffer, " $\mu^+\mu^-$ Colliders", CERN report 99-12 (1999).
- D. Neuffer, "Introduction to Muon Cooling", NIM A532, p. 26 (2004).
- Y. Derbenev and R. Johnson, Phys. Rev. ST A. B. 8, E041002 (2005);
- Simulation tools
 - R. Fernow, ICOOL http://pubweb.bnl.gov/users/fernow/www/icool/readme.html
 - T. Roberts, G4BeamLine (Muons, Inc.) http://www.muonsinc.com/
- Collaboration Efforts
 - Muon Collaboration: http://www.cap.bnl.gov/mumu/mu_home_page.html
 - Muon Collider Task Force: https://mctf.fnal.gov/
 - MICE Collaboration: http://hep04.phys.iit.edu/cooldemo/
 - UKNF group (RAL)

- Beam from target has
 - $\epsilon_{\perp, rms} \cong$ 2×10⁻² m-rad; $\epsilon_{\parallel, rms} \cong$ 1m
 - Δx=~0.1m×20 MeV/c; Δz=~1m×δE = 100MeV;
- μ -Storage Ring ν -Factory
 - Goal is to collect maximum number of $\,\mu^{\star}\,$ and/or $\,\mu^{-}\,$ that fit within accelerator / storage ring acceptances
 - Transverse cooling by ~10× is sufficient
 - $\epsilon_{\perp,rms} \cong 0.006$ to 0.002m-rad; $\epsilon_{\parallel,rms} \cong 0.06$ m-rad/bunch

• $\mu^+ - \mu^-$ Collider

- Goal is maximal cooling of maximum number of both μ^+ AND $\mu^-;$ high luminosity needed.
- Cooling by > ~100× in each of ϵ_x , ϵ_y , ϵ_z is required
- $\epsilon_{\perp,rms} \cong 0.5$ to 0.025×10^{-4} m-rad; $\epsilon_{\parallel,rms} \cong 0.04$ m-rad

• Multiple Scattering in material increases rms emittance:

$$\Delta \varepsilon_{\perp,\mathrm{N}} = \beta \gamma \frac{\left\langle x^{2} \right\rangle}{2 \varepsilon_{\perp}} \left(\Delta \left\langle \theta_{x}^{2} \right\rangle \right) = \beta \gamma \frac{\beta_{\perp}}{2} \left(\frac{E_{s}^{2}}{\left(\beta cp\right)^{2} L_{R}} \right) \Delta z$$

5

- Low-Z absorbers (¹/₂, Li, Be, ...) to reduce multiple scattering
- High Gradient RF
 - To cool before μ-decay (2.2γ μs)
 - To keep beam bunched
- Strong-Focusing at absorbers
 - To keep multiple scattering
 - less than beam divergence ...
 - \Rightarrow Quad focusing ?
 - \Rightarrow Li lens focusing ?
 - \Rightarrow Solenoid focusing?

 $\frac{d\left\langle \theta_{rms}^{2} \right\rangle}{ds} = \frac{z^{2}E_{s}^{2}}{\beta^{2}c^{2}p_{\mu}^{2}L_{P}}$

• Transverse Cooling – equilibrium emittance

$$\boldsymbol{\varepsilon}_{\mathbf{N},\mathbf{eq}} = \frac{\boldsymbol{\beta}_{\perp} \mathbf{E}_{s}^{2}}{2\boldsymbol{\beta} \mathbf{m}_{\mu} \mathbf{c}^{2} \mathbf{L}_{\mathbf{R}} \frac{d\mathbf{E}_{\mu}}{ds}}$$

equilibrium scattering angle

Material Properties for Ionization Cooling

Material	Symbol	Ζ, Α	Density gm/cm ³	dE/ds (min.) MeV/cm	L _R Cm	L _R dE/ds MeV	$\sigma_{\theta} \cdot \beta \gamma^{\frac{1}{2}}$	g_xβε_N/β⊥ mm-mrad/cm
Hydrogen	H_2	1, 1	Ŏ.071	0.292	865	252.6	0.061	37
Lithium	Li	3, 7	0.534	0.848	155	130.8	0.084	71
Lith. H	LiH	3+, 7+	0.9	1.34	102	137	0.0824	68
Beryllium	Be	4, 9	1.848	2.98	35.3	105.2	0.094	88
Carbon	С	6, 12	2.265	4.032	18.8	75.8	0.110	122
Aluminum	Al	13, 27	2.70	4.37	8.9	38.9	0.154	238
Copper	Cu	29,63.5	8.96	12.90	1.43	18.45	0.224	503
Tungsten	W	74, 184	19.3	22.1	0.35	7.73	0.346	1200

- Want materials with small multiple scattering (large L_R), but relatively large dE/ds, density (ρ)
- Want small β_{\perp} at absorbers => strong focusing
- - equilibrium emittances (/ β_{\perp}) smallest for low-Z materials

Problem

- Plug in some sample values for the cooling equations; solve for ε_t equilibrium and $\varepsilon_t(s)$
 - try dE/ds = 5 MeV/m, p = 300 MeV/c,
 - $\beta_{\perp} = 0.1$ m, Li absorbers

Ionization Cooling difficulties

- Must focus to very small $\beta_{\!\perp}$
 - β_{\perp} : 1m \rightarrow ~1mm
- Intrinsic scattering of beam is large
 - $\theta_{\rm rms}$ > ~0.1 radians
- Intrinsic momentum spread is large
 - $\sigma_{\rm P}/{\rm P}$ > ~0.03
- Cooling must occur within muon lifetime
 - $\tau_{\mu} = 2.2\gamma \ \mu s$ or $L_{\mu} = 660 \ \beta\gamma \ m \ pathlength$
- Does not (directly) cool longitudinally

 Energy cooling occurs if the derivative :

$$\partial (dE/ds)/\partial E = g_L(dp/ds)/p > 0$$

$$g_{L} = -\frac{2}{\gamma^{2}} + 2 \frac{\left(1 - \frac{\mu}{\gamma^{2}}\right)}{\left(\ln\left[\frac{2m_{e}c^{2}\beta^{2}\gamma^{2}}{I(Z)}\right] - \beta^{2}\right)}$$

- $g_L(E)$ is negative for $E < \sim 0.2 \text{ GeV}$ and only weakly positive for $E > \sim 0.2 \text{ GeV}$
- ⇒ lonization cooling does not effectively cool longitudinally

"Emittance exchange" enables longitudinal cooling:

Partition Numbers, δE-δt cooling

With emittance exchange the longitudinal partition number g_L changes:

$$g_L \Rightarrow g_{L,0} + \frac{\eta \rho}{\rho_0}$$

But the transverse cooling partition number decreases:

$$g_x \Rightarrow 1 - \frac{\eta \rho'}{\rho_0}$$

The sum of the cooling partition numbers (at P = P_{μ}) remains constant:

$$\Sigma_{g}(P_{\mu}) = g_{x} + g_{y} + g_{L} = 2 + g_{L,0}$$

$$\Sigma_{g} = 2\beta^{2} + 2\frac{\left(1 - \frac{\beta^{2}}{\gamma^{2}}\right)}{\left(\ln\left[\frac{2m_{e}c^{2}\beta^{2}\gamma^{2}}{I(Z)}\right] - \beta^{2}\right)}$$

$$\Sigma_{g} > 0$$

Energy spread (σ_E) cooling equation:

$$\frac{d\sigma_{\rm E}^2}{ds} = -2\frac{g_{\rm L}\frac{dE}{ds}}{\beta^2 E}\sigma_{\rm E}^2 + 4\pi \left(r_{\rm e}m_{\rm e}c^2\right)^2 n_{\rm e}\gamma^2 \left(1 - \frac{\beta^2}{2}\right)$$

Equilibrium σ_{p} :

Longitudinal Emittance Cooling equation:

$$\frac{d\varepsilon_{\rm L}}{ds} = -\frac{g_{\rm L}}{p_{\mu}}\frac{dp_{\mu}}{ds}\varepsilon_{\rm L} + \frac{\beta_{\rm c\tau}}{2}\frac{d\left<\Delta E_{\rm rms}^{2}\right>}{ds}$$

$$\beta_{c\tau} = \sqrt{\frac{1}{\beta^3 \gamma \text{ eV}' \cos \varphi_s} \frac{\lambda_{RF}}{2\pi} \frac{\alpha_p}{mc^2}}$$

Longitudinal Cooling requires:

Positive g_L (η, "wedge"), Strong bunching (β_{cτ} small)
 Large V_{rf}, small λ_{rf}

Energy loss/recovery Before decay requires:

$$V'_{\rm rf} \gg \frac{\Delta p_{\mu}}{L_{\mu}} >> \frac{(m_{\mu}\beta\gamma)}{L_{0}\beta\gamma} = \frac{105.66 \,{\rm MeV}}{660 \,{\rm m}} = 0.16 \,{\rm MeV}_{\rm m}$$

춖

μ Cooling Regimes

Focusing for Cooling

- Strong focussing needed magnetic quads, solenoids, Li lens ?
- Solenoids have been used in most (recent) studies
 - Focus horizontally and vertically
 - Focus both μ^+ and μ^-

$$r'' = -\left(\frac{B}{2 B \rho}\right)^2 r \qquad \beta_{\perp,equil.} = \frac{2 B \rho}{B}$$

- Strong focussing possible:
 - β_{\perp} = 0.13m for B=10T, p_{μ} = 200 MeV/c
 - β_{\perp} = 0.0027m for B=50T, p_{μ} = 20 MeV/c
- But:
 - Solenoid introduces angular motion
 - L damped by cooling + field flips
 - B within rf cavities ?

춖

Solenoidal focusing for cooling Fernow, Palmer PRSTAB 10, 064001 (2007)

- Lattices are sequences of solenoids and drifts (rf interlaced) (+,-)
 - FOFO, ASOL, RFOFO, SFOFO, DODO, SOSO ...
- Can have nearly constant focusing or focusing to small β^{*}
- Large δp/p acceptance possible
 - Need > $\pm 10\% \delta p/p$
- Low β^* can be much less than:

$$\beta_{\perp,equil.} = \frac{2 B \rho}{B}$$

- >5× smaller
- Recent example: $\beta^* = 1$ cm (!!)
 - At 200 MeV/c, B_{max}=25T
 - Field flip not required

Cooling with $\perp -$ is exchange and solenoids Wang and Kim, NIM A532, 260 (2004)

Example: rms Cooling equations with dispersion and wedges (at $\eta'=\alpha=0$) in x-plane

$$\frac{d\varepsilon_{x}}{ds} = -g_{x}\frac{\frac{dP}{ds}}{P}\varepsilon_{x} + \beta_{\perp}\frac{d\theta_{rms}^{2}}{ds} + \frac{1}{2}\frac{\frac{dP}{ds}}{P}\beta_{\perp}\theta_{\perp}^{\prime}L + \frac{1}{2}H_{x}\frac{d\delta_{rms}^{2}}{ds} \qquad H_{x} = \frac{\eta^{2}}{\beta_{x}}$$
$$\frac{d\varepsilon_{y}}{ds} = -\frac{\frac{dP}{ds}}{P}\varepsilon_{x} + \beta_{\perp}\frac{d\theta_{rms}^{2}}{ds} + \frac{1}{2}\frac{\frac{dP}{ds}}{P}\beta_{\perp}\theta_{\perp}^{\prime}L \qquad \theta_{\perp}^{\prime} = B(2B\rho)$$
$$\frac{d\varepsilon_{z}}{ds} = -g_{L}\frac{\frac{dP}{ds}}{P}\varepsilon_{z} + \frac{1}{2}\beta_{z}\frac{d\delta_{rms}^{2}}{ds} + \frac{1}{2}\frac{\eta^{2}}{\beta_{z}}\frac{d\theta_{rms}^{2}}{ds} \qquad L = x y' - yx'$$

 $\frac{dL}{ds} = -(1 - \frac{\delta g}{2})\frac{\frac{dP}{ds}}{P}L + \frac{1}{2}\frac{\frac{dP}{ds}}{P}\beta_{\perp}\theta'_{L}(\varepsilon_{x} + \varepsilon_{y}) + \frac{\eta^{2}}{\beta_{z}}\frac{d\delta_{rms}^{2}}{ds}$

The additional correlation and heating terms are "small" in "well-designed" systems.

Study 2 Cooling Channel (~ MICE)

sFOFO 2.75m cells

- Cell contains
 - Rf for acceleration/bunching
 - H₂ absorbers
 - Solenoidal magnets

108 m cooling channel consists of: 16 2.75m cells + 40 1.65m cells

Focusing increases along channel: B_{max} increases from 3 T to 5.5 T

v-Factory Study 2A cooling channel

- Lattice is weak-focusing
 - $B_{max} = 2.5T$, solenoidal
 - $\beta_{\perp} \cong 0.8 m$

- Cools transversely
 - ϵ_{\perp} from ~0.018 to ~0.007m
 - in ~70m

Before

-0.4m +0.4m +0.4m Problem: Check with rms cooling equations; How is answer changed if H_2 is used?

RFOFO Ring Cooler performance R. Palmer et al., PR STAB 8, 061003 (2005)

μ⁺-μ⁻ Collider Cooling Scenarios

Palmer et al.

- Start with large beam from target, compress and cool, going to stronger focussing and bunching the beam gets smaller ...
 - δp/p ~10%, σ_θ ~0.1
- Bunching rf frequency increases
- In final cooling stages longitudinal emittance increases while transverse emittance decreases

- Steps 1,2: Bunching, phase rotation, cooling (=v factory)
 - σ_{μ} : 10cm \rightarrow 6cm
- 3,4: 6-D cooling with 200, 400 MHz "Ring Coolers"
 - σ_{μ} : 6cm \rightarrow 2.4cm \rightarrow 1.0cm
- 5: compress to 1 bunch
- 6, 7: 6-D 200, 400 MHz Coolers
 - σ_{μ} : 3cm \rightarrow 1.0cm
- 8: 800 MHz "Ring Cooler"
 - σ_{μ} : 1.0cm \rightarrow 0.3cm
- 9: up to 50T coolers (H₂, solenoids)
 - σ_{μ} : 0.4cm \rightarrow 0.08cm
- Total length of system ~0.8km

- HCC- Helical Cooling Channel
- PIC-Parametric-resonance Ionization Cooling
 - Use resonance beam dynamics to intensify focusing
- REMEX, low-energy emittance exchange
- Very low energy cooling

Helical Wiggler 3-D Cooling (P_µ=250MeV/c)

Series HCCs							
			Segment				
			1st 2nd 3rd 4th				
L	Length	m	50	40	30	40	
λ	Helix period	m	1.0	0.80	0.60	0.40	
а	Reference orbit radius	m	0.16	0.13	0.095	0.064	
к	Helix pitch		1.0	1.0	1.0	1.0	
В	Solenodial component	Т	-6.95	-8.68	-11.6	-17.4	
b _d	Helix dipole coefficient	Т	1.81	2.27	3.02	4.53	
bq	Helix quadrupole coefficient	T/m	-0.35	-0.44	-0.59	-0.88	
b ₁	Helix sextupole coefficient	T/m2	0.031	0.039	0.051	0.077	

Yonehara, et al

Comments on Helical Cooling channel

• Requires fitting magnets + rf into very tight geometry

Low-Energy "cooling"=emittance exchange

- dP_{μ}/ds varies as ~1/ β^3
- "Cooling" distance becomes very short
- Focusing can get quite strong:
 - Solenoid: $\beta_{\perp} \approx \frac{2B\rho}{B} = \frac{2P_{\mu}}{0.3B}$
 - β_{\perp} =0.0013m at 50T, 10MeV/c
- ε_{N,eq} = 1×10⁻⁶ m at 10MeV/c
 - Small enough for "low-emittance" collider
- But Beam is heated longitudinally - (ε_{6-D} is ~ constant)

춖

Li-lens cooling

- Lithium Lens provides strongfocusing and low-Z absorber in same device
- Liquid Li-lens may be needed for highest-field, high rep. rate lens
- BINP (Silvestrov) started prototype liquid Li lens for FNAL, but not completed

$$\boldsymbol{\beta}_{\perp} \approx \sqrt{\frac{\boldsymbol{B}\boldsymbol{\rho}}{\boldsymbol{B}'}} = \sqrt{\frac{\boldsymbol{P}_{\mu}}{0.3\boldsymbol{B}'}}$$

μ-Cooling Li lens parameters B(T) radius(cm) Length(m) I (MA) B' (T/m) τ(δ=0.7r) 10 1000 0 50 0.25ms 1 15 3000 0.5 0.375 64µs 20 8000 0.25 0.25 16µs

 $\begin{array}{l} \beta_{\perp} = 0.026m \quad \mbox{(200 MeV/c, 1000 T/m)} \\ \beta_{\perp} = 0.004m \quad \mbox{(40 MeV/c, 8000 T/m)} \end{array}$

Other applications- not just muons!

- . Stopping μ beam
 - (for μ 2e conversion experiment)
 - C. Ankenbrandt et al., Muons, Inc.
- For BCNT neutron source
 Y. Mori KURRI
- For beta-beam source
 - C. Rubbia et al
 - Nucl. Inst. and Meth. A 568, 475 (2006).

FFAG-ERIT neutron source (Mori, KURRI)

β-beam Scenario (Rubbia et al.)

- β -beam another v_e source
 - Produce accelerate, and store unstable nuclei for β-decay
 - Example: ${}^{8}B \rightarrow {}^{8}Be + e^{+}+v$ or ${}^{8}Li \rightarrow {}^{8}Be + e^{-}+v^{*}$
- Source production can use ionization cooling
 - Produce Li and inject at 25 MeV
 - nuclear interaction at gas jet target produces ⁸Li or ⁸B
 - ${}^{6}\text{Li} + {}^{3}\text{He} \rightarrow {}^{8}\text{B} + p$
 - Multiturn storage with **ionization "cooling"** maximizes ion production
 - ⁸Li or ⁸B is caught, is ion source for β-beam accelerator
 - Concept needs development

β-beams example: ${}^{6}\text{Li} + {}^{3}\text{He} \rightarrow {}^{8}\text{B} + n$

- Beam: **25MeV** ⁶Li⁺⁺⁺
 - $P_{Li} = 530 \text{ MeV/c}$ $B\rho = 0.6 \text{ T-m}; \text{ v/c} = 0.094 \text{ J}_{z,0} = -1.6$
- Absorber:³He
 - Z=2, A=3, I=31eV, z=3, a=6
 - $dE/ds = 1180 \text{ MeV/gm/cm}^2$, $L_R = 70.9 \text{ gm/cm}^2$
- If $g_{x,y,z} = 0.13$ ($\Sigma_g = 0.4$), $\beta_{\perp} = 0.3m$ at absorber
 - Must mix both x and y with z

•
$$\epsilon_{N,eq} = \sim 0.000046 \text{ m-rad},$$

- $\sigma_{x,rms} = \sim 2 \text{ cm at } \beta_{\perp} = 1 \text{ m}$
- $\sigma_{E,eq}$ is ~ 0.4 MeV
- Promising but many problems ...
- Better with ³He beam, ⁶Li target ⁵
 - D. Neuffer, NIM A 583, p.109 (2008).

$$\boldsymbol{\varepsilon}_{\mathbf{N}, \mathbf{eq}} \cong \frac{\mathbf{z}^2 \boldsymbol{\beta}_{\perp} \mathbf{E}_{\mathbf{s}}^2}{2 \mathbf{J}_{\mathbf{x}} \boldsymbol{\beta} \ \mathbf{am}_{\mathbf{p}} \mathbf{c}^2 \mathbf{L}_{\mathbf{R}} \frac{\mathbf{d} \mathbf{E}_{\mathbf{z}, \mathbf{a}}}{\mathbf{d} \mathbf{s}}}$$

$${}_{E,eq}^{2} = \frac{(m_{e}c^{2})(am_{p}c^{2})\beta^{4}\gamma^{3}}{2J_{L}\ln[]} \left(1 - \frac{\beta^{2}}{2}\right)$$

Beta beam source

- Key Difficulties
 - Gas jet target
 - Separation of created from circulating ions
 - MW cooling power
- Easier with He-3 beam, Li-6 target
 - Liquid Li "waterfall" target
 - B-8 more separated from He-3
 - 0.5 MW

Low energy Ion cooling for B-8 production							
Parameter	Symbol	Reverse Dynamics	Direct Scenario				
Beam		₆ Li	₃ He				
Absorber		₃ He	₆ Li				
Momentum	Р	530 MeV/c	265 MeV/c				
Kinetic energy	Ta	25	12.5 MeV				
Speed	$\beta = v/c$	0.094	0.094				
Absorber density	ρ_{ref} (liquid or solid)	0.09375	0.46				
Energy loss	dE/ds	110.6 MeV/cm	170.4 MeV/cm				
Radiation Length		756cm	155cm				
Betatron functions	β_, η	0.3m, 0.3m	0.3m, 0.3m				
Rms angle	$\delta \theta_{rms} \left(\beta_t = 0.3m \right)$	2.25 K _s °	3.8 K _s °				
Rms beam size	$\sigma_t (at \beta_t = 1m)$	2.15K _s cm	3.6K _s cm				
Absorber thickness ()	L _{abs} (liquid)	0.018cm	0.00725cm				
Characteristic Cooling Length	(dP/ds/P) ⁻¹	0.45cm	0.147cm				
Multiple scattering	$d(\theta^2)/ds$	8.84×10 ⁻⁴ K _s ² /cm	0.0078K _s ² /cm				
Energy straggling	$d(\delta E^2)/ds$	0.0886 MeV ² /cm	0.143				
Sum of partition numbers.	ΣJ_i	0.4	0.4				
Eq. transverse emittance	ET, N, ms	4.35×10 ⁻⁵ K _s ² m	0.000123 K _s ² m				
Equilibrium $\delta P/P$ (J _z =0.13)	δ _{rms}	0.0078					
Maximum production angle	θ_{max}	14.5 °	30 °				

Another possible application: Fr atoms

- Francium desirable for atomic parity violation measurements and Electric dipole moment.
- Scantari et al., INFN

µ2e experiment ~MECO

Series of helical cooling channel (white: reference orbit, blue: particles)

> GH2 (p - 50 atm) L = 0.8 m

> > GH2 (p = 20 atm) L = 0.8 m

- Mu-E COnversion Experiment
 - $\mu^- + Z \rightarrow e^- + Z$
- Stopped μ^{-} beam
- Helical energy-loss cooling channel can greatly increase μ intensity
 - C. Ankenbrandt et al., Muons \bullet Inc./FNAL

LHe $L = 1.6 \, m$

GH2 (p - 100 atm

L = 3.2 m

Ionization Cooling

- Experimental R&D Program
- MICE –International Muon Ionization Cooling Experiment
 - μ-beam at RAL ISIS
 - Systems test of complete cooling system
- MuCOOL Program
 - Rf, absorber, magnet R&D-supports MICE
 - MuCOOL test area (Fermilab)
 - Muon Collider Task Force
- **MUONS, Inc.** (R. Johnson, et al.)
 - High-pressure rf cavities
 - Helical cooler, Parametric resonance cooler

Muon Ionization Cooling Experiment (MICE)

Leurino Pacioz Tation Collider

MICE Measurement of Muon Cooling Emittance Measurement @ 10⁻³ First Beam February 2008

MICF components

TOF1 Active area = 42 cm x 42 cm

MuCOOL-MTA experimental program

- Rf: 805, 201 MHz, gas-filled
 - 201MHz reached 16 MV/m
 - 805 MHz 3T, gas-cavity test
- H₂ absorbers
- Solenoids

Muons, Inc. Experimental Program

0.002 0.003

0.004 0.005 0.006

High Pressure Gas Cavities

- Absorber and energy recovery in
- Gas limits breakdown, may permit higher gradients
- Can operate in magnetic fields?
- Helical Wiggler 6-D cooling
 - 3-coil magnet prototype

MANX

- Cooling for **Neutrino Factory** is practical
 - Components are being built & tested
- **Collider** cooling scenario has made great progress but needs development
 - Longitudinal cooling by large factors ...
 - Transverse cooling by very large factors
 - Final beam compression with emittance exchange

Other Ionization Cooling applications are appearing

Copyright 3 1998 United Feature Syndicate, Inc. Redistribution in whole or in part prohibited trino racio,

Summary

© Scott Adams, Inc./Dist. by UFS, Inc.

Solenoidal Focusing and Angular Momentum

- Angular motion with focusing complicates cooling
- Energy loss in absorbers reduces P_⊥, including P_θ
 Orbits cool to Larmor centers, not r = 0

Solution: Flip magnetic fields; new Larmor center is near r=0

Heutrino Factor

FFAG-ERIT – under construction

With baseline parameters, cannot cool both x and δE

 Σ J_i \cong 0.36; J_z =-1.6

- Optimal x-E exchange could increases storage time from ~1000 to 3000 turns
- With x-y-E coupling, can cool 3-D with g_i= 0.12
 - Cooling time would be ~5000 turns
 - With β_{\perp} =0.2m, δE_{rms} = 0.4MeV $\epsilon_{\perp,N}$ = 0.0004m (x_{rms}=2.3cm)
 - x_{rms} = 7.3cm at β_{\perp} =2m
- Construction complete:
 - November 2007
- First "cooling" demonstration

PIC-Parametric-resonance Ionization Cooling

(Y. Derbenev) (also Balbekov, 1997)

Excite 1/2 integer parametric resonance (in Linac or ring)

- Similar to vertical rigid pendulum or ¹/₂-integer extraction
- Elliptical phase space motion becomes hyperbolic
- ➢ Use xx'=const to reduce x, increase x'
- Use Ionization Cooling to reduce x'

