COMPLETE HOLOMORPHIC VECTOR FIELDS WHOSE UNDERLYING FOLIATION IS POLYNOMIAL

ALVARO BUSTINDUY

ABSTRACT. Let X be a holomorphic vector field on \mathbb{C}^2 . The solutions of the associated complex ordinary differential equation

$$\dot{z} = X(z), \ X(0) = z \in \mathbb{C}^2,$$

define the local flow φ_z of X. For a fixed point $z \in \mathbb{C}^2$ the local solution φ_z can be extended, by analytic continuation along paths in \mathbb{C} , to a maximal domain Ω_z . The map thus defined is said to be a *solution*, and its image C_z is called the *trajectory* of X through z. The vector field is *complete* if $\Omega_z = \mathbb{C}$ for every $z \in \mathbb{C}^2$.

In this talk we will prove that a complete non-polynomial vector field on \mathbb{C}^2 whose underlying foliation is polynomial has all its trajectories contained in analytic curves of \mathbb{C}^2 and thus it defines a proper flow in \mathbb{C}^2 . This fact will allow us to extend the classification of complete polynomial vector fields on \mathbb{C}^2 given by Marco Brunella.

DEPARTAMENTO DE INGENIERÍA INDUSTRIAL ESCUELA POLITÉCNICA SUPERIOR UNIVERSIDAD ANTONIO DE NEBRIJA C/ PIRINEOS 55, 28040 MADRID. SPAIN *E-mail address*: abustind@nebrija.es