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Introduction

• (M, J) 2n-dimensional compact almost complex manifold.

The J-tamed symplectic cone is

Kt
J(M) =

{
[ω] ∈ H2(M,R) |ω is symplectic and tamed by J

}
and the J-compatible symplectic cone is

Kc
J(M) =

{
[ω] ∈ H2(M,R) |ω is symplectic and compatible with J

}
.



Introduction

• (M, J) 2n-dimensional compact almost complex manifold.

The J-tamed symplectic cone is

Kt
J(M) =

{
[ω] ∈ H2(M,R) |ω is symplectic and tamed by J

}
and the J-compatible symplectic cone is

Kc
J(M) =

{
[ω] ∈ H2(M,R) |ω is symplectic and compatible with J

}
.



Introduction

• (M, J) 2n-dimensional compact almost complex manifold.

The J-tamed symplectic cone is

Kt
J(M) =

{
[ω] ∈ H2(M,R) |ω is symplectic and tamed by J

}
and the J-compatible symplectic cone is

Kc
J(M) =

{
[ω] ∈ H2(M,R) |ω is symplectic and compatible with J

}
.



Introduction

• (M, J) 2n-dimensional compact almost complex manifold.

The J-tamed symplectic cone is

Kt
J(M) =

{
[ω] ∈ H2(M,R) |ω is symplectic and tamed by J

}
and the J-compatible symplectic cone is

Kc
J(M) =

{
[ω] ∈ H2(M,R) |ω is symplectic and compatible with J

}
.



Introduction

• (M, J) 2n-dimensional compact almost complex manifold.

The J-tamed symplectic cone is

Kt
J(M) =

{
[ω] ∈ H2(M,R) |ω is symplectic and tamed by J

}
and the J-compatible symplectic cone is

Kc
J(M) =

{
[ω] ∈ H2(M,R) |ω is symplectic and compatible with J

}
.



Introduction

• (M, J) 2n-dimensional compact almost complex manifold.

The J-tamed symplectic cone is

Kt
J(M) =

{
[ω] ∈ H2(M,R) |ω is symplectic and tamed by J

}
and the J-compatible symplectic cone is

Kc
J(M) =

{
[ω] ∈ H2(M,R) |ω is symplectic and compatible with J

}
.



Introduction

By T.-J. Li and W. Zhang

if J is a complex structure and Kc
J(M) 6= ∅

⇓

the following split holds

Kt
J(M) = Kc

J(M) +
[
(H2,0

∂
(M)⊕ H0,2

∂
(M))R ∩ H2(M,R)

]
,

where Hp,q

∂
(M) denotes the (p, q)-Dolbeault cohomology group

of the complex manifold (M, J).
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Introduction

• Study of the tamed symplectic cone and calibrated symplectic
cone.

• Extend the previous decomposition theorem to the non
integrable almost complex structures.

Li and Zhang introduce the coohomology groups

H1,1
J (M)R = {[α] |α ∈ Z1,1

J },

H
(2,0),(0,2)
J (M)R = {[α] |α ∈ Z(2,0),(0,2)

J }

and the notion of C∞-pure and full almost complex structure,
when the previous groups give rise to a direct sum decomposition
of H2(M,R).
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C∞ pure and full almost complex structures

• J almost complex structure on a compact 2n-dimensional
manifold M.

Ωk(M)R =
⊕

p+q=k

Ωp,q
J (M)R,

where

Ωp,q
J (M)R =

{
α ∈ Ωp,q

J (M)⊕ Ωq,p
J (M) |α = α

}
.

For a finite set S of pairs of integers, let

ZS
J =

⊕
(p,q)∈S

Zp,q
J , BS

J =
⊕

(p,q)∈S

Bp,q
J ,

Zp,q
J = {α ∈ Ωp,q(M)R | dα = 0}
Bp,q

J = {α ∈ Ωp,q(M)R | ∃γ : α = dγ}
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J (M)R =

{
[α] | α ∈ ZS

J
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B
.

Then there is a natural inclusion

H1,1
J (M)R + H

(2,0),(0,2)
J (M)R ⊆ H2(M,R).
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• J is C∞ full if and only if

H2(M,R) = H1,1
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4-dimensional case

• (M, J) 4-dimensional compact almost complex manifold.

Theorem (Draghici, Li, Zhang, 2008, to appear in Inter. Math.
Res. Not.) If M is a compact 4-dimensional manifold, then every
almost complex structure J on M is C∞ pure and full. Thus, there
is a direct sum decomposition

H2(M,R) = H+
J (M)⊕ H−J (M) .

Theorem (Draghici, Li, Zhang, 2008, to appear in Inter. Math.
Res. Not.) Suppose that J is tamed by a symplectic form ω.
Then

h+
J ≥ b− + 1 , h−J ≤ b+ − 1 .
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Pure and full almost complex structures

• (M, J) compact almost complex manifold of real dimension 2n.

• Ek(M) k-currents on M, i.e. the topological dual of Ω2n−k(M).

k-forms are (2n− k)-currents =⇒ k-th de Rham homology group

Hk(M,R) ∼= H2n−k(M,R)

Hk(M,R) k-th de Rham homology group.

• a k-current is a boundary if and only if it vanishes on the space
of closed k-forms.
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Pure and full almost complex structures

Ek(M)R =
⊕

p+q=k

EJ
p,q(M)R ,

EJ
p,q(M)R space of real k-currents of bi-dimension (p, q).

• S finite set of pairs of integers;

ZJ
S =

⊕
(p,q)∈S

ZJ
p,q, BJ

S =
⊕

(p,q)∈S

BJ
p,q,

ZJ
p,q real closed bi-dimension (p, q) currents

BJ
p,q real exact bi-dimension (p, q) currents.

Set (Li-Zhang)

HJ
S (M)R = {[α] |α ∈ ZJ

S} =
ZJ

S

B
,

where B denotes the space of currents which are boundaries.
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Pure and full almost complex structures

Z2 and B2 respectively the space of real 2-currents which are
closed and boundaries.

Definition (Li, Zhang 2008) An almost complex structure J is
said to be

pure if
HJ

1,1(M)R ∩ HJ
(2,0),(0,2)(M)R = {0} ,

full if
H2(M,R) = HJ

1,1(M)R + HJ
(2,0),(0,2)(M)R .



Pure and full almost complex structures

Z2 and B2 respectively the space of real 2-currents which are
closed and boundaries.

Definition (Li, Zhang 2008) An almost complex structure J is
said to be

pure if
HJ

1,1(M)R ∩ HJ
(2,0),(0,2)(M)R = {0} ,

full if
H2(M,R) = HJ

1,1(M)R + HJ
(2,0),(0,2)(M)R .



Pure and full almost complex structures

Z2 and B2 respectively the space of real 2-currents which are
closed and boundaries.

Definition (Li, Zhang 2008) An almost complex structure J is
said to be

pure if
HJ

1,1(M)R ∩ HJ
(2,0),(0,2)(M)R = {0} ,

full if
H2(M,R) = HJ

1,1(M)R + HJ
(2,0),(0,2)(M)R .



Pure and full almost complex structures

Z2 and B2 respectively the space of real 2-currents which are
closed and boundaries.

Definition (Li, Zhang 2008) An almost complex structure J is
said to be

pure if
HJ

1,1(M)R ∩ HJ
(2,0),(0,2)(M)R = {0} ,

full if
H2(M,R) = HJ

1,1(M)R + HJ
(2,0),(0,2)(M)R .



Pure and full almost complex structures

Z2 and B2 respectively the space of real 2-currents which are
closed and boundaries.

Definition (Li, Zhang 2008) An almost complex structure J is
said to be

pure if
HJ

1,1(M)R ∩ HJ
(2,0),(0,2)(M)R = {0} ,

full if
H2(M,R) = HJ

1,1(M)R + HJ
(2,0),(0,2)(M)R .



Pure and full almost complex structures

Z2 and B2 respectively the space of real 2-currents which are
closed and boundaries.

Definition (Li, Zhang 2008) An almost complex structure J is
said to be

pure if
HJ

1,1(M)R ∩ HJ
(2,0),(0,2)(M)R = {0} ,

full if
H2(M,R) = HJ

1,1(M)R + HJ
(2,0),(0,2)(M)R .



Pure and full almost complex structures

Z2 and B2 respectively the space of real 2-currents which are
closed and boundaries.

Definition (Li, Zhang 2008) An almost complex structure J is
said to be

pure if
HJ

1,1(M)R ∩ HJ
(2,0),(0,2)(M)R = {0} ,

full if
H2(M,R) = HJ

1,1(M)R + HJ
(2,0),(0,2)(M)R .



Pure and full almost complex structures

We have the following

Theorem (Fino,—, to appear in J. Geom. Anal.)
Let (M, ω) be an almost symplectic 2n-dimensional compact
manifold and J be a C∞-pure and full almost complex structure
calibrated by ω.
Then J is pure.
If, in addition, either n = 2 or if any cohomology class in

H1,1
J (M)R (H

(2,0),(0,2)
J (M)R respectively) has the harmonic

representative in Z1,1
J (Z(2,0),(0,2)

J respectively) with respect to the
metric induced by ω and J, then J is pure and full.
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Pure and full almost complex structures

Proof. We start to prove that J is pure.

We show that
π1,1B2 ∩ ZJ

1,1 = BJ
1,1 .

Since π1,1B2 ∩ZJ
1,1 ⊃ BJ

1,1, we need to prove the other inclusion.

Let T ∈ π1,1B2 ∩ ZJ
1,1; then T = π1,1dS , where S is a real

3-current and d(π1,1dS) = 0. We have to show that T = π1,1dS
is a boundary, i.e. that it vanishes on any closed real 2-form α.

• If α is exact, then (π1,1dS)(α) = 0.
Suppose that [α] 6= 0 ∈ H2(M,R), then since J is C∞ pure and
full, we can write

α = α1 + α2 + dγ,

with α1 ∈ Z1,1
J , α2 ∈ Z(2,0),(0,2)

J and γ ∈ Ω1(M)R. Therefore,

T (α) = (π1,1dS)(α) = (π1,1dS)(α1 + α2) = (dS)(α1) = 0 ,

since α1 is closed.



Pure and full almost complex structures

Proof. We start to prove that J is pure.

We show that
π1,1B2 ∩ ZJ

1,1 = BJ
1,1 .

Since π1,1B2 ∩ZJ
1,1 ⊃ BJ

1,1, we need to prove the other inclusion.

Let T ∈ π1,1B2 ∩ ZJ
1,1; then T = π1,1dS , where S is a real

3-current and d(π1,1dS) = 0. We have to show that T = π1,1dS
is a boundary, i.e. that it vanishes on any closed real 2-form α.

• If α is exact, then (π1,1dS)(α) = 0.
Suppose that [α] 6= 0 ∈ H2(M,R), then since J is C∞ pure and
full, we can write

α = α1 + α2 + dγ,

with α1 ∈ Z1,1
J , α2 ∈ Z(2,0),(0,2)

J and γ ∈ Ω1(M)R. Therefore,

T (α) = (π1,1dS)(α) = (π1,1dS)(α1 + α2) = (dS)(α1) = 0 ,

since α1 is closed.



Pure and full almost complex structures

Proof. We start to prove that J is pure.

We show that
π1,1B2 ∩ ZJ

1,1 = BJ
1,1 .

Since π1,1B2 ∩ZJ
1,1 ⊃ BJ

1,1, we need to prove the other inclusion.

Let T ∈ π1,1B2 ∩ ZJ
1,1; then T = π1,1dS , where S is a real

3-current and d(π1,1dS) = 0. We have to show that T = π1,1dS
is a boundary, i.e. that it vanishes on any closed real 2-form α.

• If α is exact, then (π1,1dS)(α) = 0.
Suppose that [α] 6= 0 ∈ H2(M,R), then since J is C∞ pure and
full, we can write

α = α1 + α2 + dγ,

with α1 ∈ Z1,1
J , α2 ∈ Z(2,0),(0,2)

J and γ ∈ Ω1(M)R. Therefore,

T (α) = (π1,1dS)(α) = (π1,1dS)(α1 + α2) = (dS)(α1) = 0 ,

since α1 is closed.



Pure and full almost complex structures

Proof. We start to prove that J is pure.

We show that
π1,1B2 ∩ ZJ

1,1 = BJ
1,1 .

Since π1,1B2 ∩ZJ
1,1 ⊃ BJ

1,1, we need to prove the other inclusion.

Let T ∈ π1,1B2 ∩ ZJ
1,1; then T = π1,1dS , where S is a real

3-current and d(π1,1dS) = 0. We have to show that T = π1,1dS
is a boundary, i.e. that it vanishes on any closed real 2-form α.

• If α is exact, then (π1,1dS)(α) = 0.
Suppose that [α] 6= 0 ∈ H2(M,R), then since J is C∞ pure and
full, we can write

α = α1 + α2 + dγ,

with α1 ∈ Z1,1
J , α2 ∈ Z(2,0),(0,2)

J and γ ∈ Ω1(M)R. Therefore,

T (α) = (π1,1dS)(α) = (π1,1dS)(α1 + α2) = (dS)(α1) = 0 ,

since α1 is closed.



Pure and full almost complex structures

Proof. We start to prove that J is pure.

We show that
π1,1B2 ∩ ZJ

1,1 = BJ
1,1 .

Since π1,1B2 ∩ZJ
1,1 ⊃ BJ

1,1, we need to prove the other inclusion.

Let T ∈ π1,1B2 ∩ ZJ
1,1; then T = π1,1dS , where S is a real

3-current and d(π1,1dS) = 0. We have to show that T = π1,1dS
is a boundary, i.e. that it vanishes on any closed real 2-form α.

• If α is exact, then (π1,1dS)(α) = 0.
Suppose that [α] 6= 0 ∈ H2(M,R), then since J is C∞ pure and
full, we can write

α = α1 + α2 + dγ,

with α1 ∈ Z1,1
J , α2 ∈ Z(2,0),(0,2)

J and γ ∈ Ω1(M)R. Therefore,

T (α) = (π1,1dS)(α) = (π1,1dS)(α1 + α2) = (dS)(α1) = 0 ,

since α1 is closed.



Pure and full almost complex structures

Proof. We start to prove that J is pure.

We show that
π1,1B2 ∩ ZJ

1,1 = BJ
1,1 .

Since π1,1B2 ∩ZJ
1,1 ⊃ BJ

1,1, we need to prove the other inclusion.

Let T ∈ π1,1B2 ∩ ZJ
1,1; then T = π1,1dS , where S is a real

3-current and d(π1,1dS) = 0. We have to show that T = π1,1dS
is a boundary, i.e. that it vanishes on any closed real 2-form α.

• If α is exact, then (π1,1dS)(α) = 0.
Suppose that [α] 6= 0 ∈ H2(M,R), then since J is C∞ pure and
full, we can write

α = α1 + α2 + dγ,

with α1 ∈ Z1,1
J , α2 ∈ Z(2,0),(0,2)

J and γ ∈ Ω1(M)R. Therefore,

T (α) = (π1,1dS)(α) = (π1,1dS)(α1 + α2) = (dS)(α1) = 0 ,

since α1 is closed.



Pure and full almost complex structures

Proof. We start to prove that J is pure.

We show that
π1,1B2 ∩ ZJ

1,1 = BJ
1,1 .

Since π1,1B2 ∩ZJ
1,1 ⊃ BJ

1,1, we need to prove the other inclusion.

Let T ∈ π1,1B2 ∩ ZJ
1,1; then T = π1,1dS , where S is a real

3-current and d(π1,1dS) = 0. We have to show that T = π1,1dS
is a boundary, i.e. that it vanishes on any closed real 2-form α.

• If α is exact, then (π1,1dS)(α) = 0.
Suppose that [α] 6= 0 ∈ H2(M,R), then since J is C∞ pure and
full, we can write

α = α1 + α2 + dγ,

with α1 ∈ Z1,1
J , α2 ∈ Z(2,0),(0,2)

J and γ ∈ Ω1(M)R. Therefore,

T (α) = (π1,1dS)(α) = (π1,1dS)(α1 + α2) = (dS)(α1) = 0 ,

since α1 is closed.



Pure and full almost complex structures

Proof. We start to prove that J is pure.

We show that
π1,1B2 ∩ ZJ

1,1 = BJ
1,1 .

Since π1,1B2 ∩ZJ
1,1 ⊃ BJ

1,1, we need to prove the other inclusion.

Let T ∈ π1,1B2 ∩ ZJ
1,1; then T = π1,1dS , where S is a real

3-current and d(π1,1dS) = 0. We have to show that T = π1,1dS
is a boundary, i.e. that it vanishes on any closed real 2-form α.

• If α is exact, then (π1,1dS)(α) = 0.
Suppose that [α] 6= 0 ∈ H2(M,R), then since J is C∞ pure and
full, we can write

α = α1 + α2 + dγ,

with α1 ∈ Z1,1
J , α2 ∈ Z(2,0),(0,2)

J and γ ∈ Ω1(M)R. Therefore,

T (α) = (π1,1dS)(α) = (π1,1dS)(α1 + α2) = (dS)(α1) = 0 ,

since α1 is closed.



Pure and full almost complex structures

Proof. We start to prove that J is pure.

We show that
π1,1B2 ∩ ZJ

1,1 = BJ
1,1 .

Since π1,1B2 ∩ZJ
1,1 ⊃ BJ

1,1, we need to prove the other inclusion.

Let T ∈ π1,1B2 ∩ ZJ
1,1; then T = π1,1dS , where S is a real

3-current and d(π1,1dS) = 0. We have to show that T = π1,1dS
is a boundary, i.e. that it vanishes on any closed real 2-form α.

• If α is exact, then (π1,1dS)(α) = 0.
Suppose that [α] 6= 0 ∈ H2(M,R), then since J is C∞ pure and
full, we can write

α = α1 + α2 + dγ,

with α1 ∈ Z1,1
J , α2 ∈ Z(2,0),(0,2)

J and γ ∈ Ω1(M)R. Therefore,

T (α) = (π1,1dS)(α) = (π1,1dS)(α1 + α2) = (dS)(α1) = 0 ,

since α1 is closed.



Pure and full almost complex structures

Proof. We start to prove that J is pure.

We show that
π1,1B2 ∩ ZJ

1,1 = BJ
1,1 .

Since π1,1B2 ∩ZJ
1,1 ⊃ BJ

1,1, we need to prove the other inclusion.

Let T ∈ π1,1B2 ∩ ZJ
1,1; then T = π1,1dS , where S is a real

3-current and d(π1,1dS) = 0. We have to show that T = π1,1dS
is a boundary, i.e. that it vanishes on any closed real 2-form α.

• If α is exact, then (π1,1dS)(α) = 0.
Suppose that [α] 6= 0 ∈ H2(M,R), then since J is C∞ pure and
full, we can write

α = α1 + α2 + dγ,

with α1 ∈ Z1,1
J , α2 ∈ Z(2,0),(0,2)

J and γ ∈ Ω1(M)R. Therefore,

T (α) = (π1,1dS)(α) = (π1,1dS)(α1 + α2) = (dS)(α1) = 0 ,

since α1 is closed.



Pure and full almost complex structures

Proof. We start to prove that J is pure.

We show that
π1,1B2 ∩ ZJ

1,1 = BJ
1,1 .

Since π1,1B2 ∩ZJ
1,1 ⊃ BJ

1,1, we need to prove the other inclusion.

Let T ∈ π1,1B2 ∩ ZJ
1,1; then T = π1,1dS , where S is a real

3-current and d(π1,1dS) = 0. We have to show that T = π1,1dS
is a boundary, i.e. that it vanishes on any closed real 2-form α.

• If α is exact, then (π1,1dS)(α) = 0.
Suppose that [α] 6= 0 ∈ H2(M,R), then since J is C∞ pure and
full, we can write

α = α1 + α2 + dγ,

with α1 ∈ Z1,1
J , α2 ∈ Z(2,0),(0,2)

J and γ ∈ Ω1(M)R. Therefore,

T (α) = (π1,1dS)(α) = (π1,1dS)(α1 + α2) = (dS)(α1) = 0 ,

since α1 is closed.



Pure and full almost complex structures

Proof. We start to prove that J is pure.

We show that
π1,1B2 ∩ ZJ

1,1 = BJ
1,1 .

Since π1,1B2 ∩ZJ
1,1 ⊃ BJ

1,1, we need to prove the other inclusion.

Let T ∈ π1,1B2 ∩ ZJ
1,1; then T = π1,1dS , where S is a real

3-current and d(π1,1dS) = 0. We have to show that T = π1,1dS
is a boundary, i.e. that it vanishes on any closed real 2-form α.

• If α is exact, then (π1,1dS)(α) = 0.
Suppose that [α] 6= 0 ∈ H2(M,R), then since J is C∞ pure and
full, we can write

α = α1 + α2 + dγ,

with α1 ∈ Z1,1
J , α2 ∈ Z(2,0),(0,2)

J and γ ∈ Ω1(M)R. Therefore,

T (α) = (π1,1dS)(α) = (π1,1dS)(α1 + α2) = (dS)(α1) = 0 ,

since α1 is closed.



Pure and full almost complex structures

Proof. We start to prove that J is pure.

We show that
π1,1B2 ∩ ZJ

1,1 = BJ
1,1 .

Since π1,1B2 ∩ZJ
1,1 ⊃ BJ

1,1, we need to prove the other inclusion.

Let T ∈ π1,1B2 ∩ ZJ
1,1; then T = π1,1dS , where S is a real

3-current and d(π1,1dS) = 0. We have to show that T = π1,1dS
is a boundary, i.e. that it vanishes on any closed real 2-form α.

• If α is exact, then (π1,1dS)(α) = 0.
Suppose that [α] 6= 0 ∈ H2(M,R), then since J is C∞ pure and
full, we can write

α = α1 + α2 + dγ,

with α1 ∈ Z1,1
J , α2 ∈ Z(2,0),(0,2)

J and γ ∈ Ω1(M)R. Therefore,

T (α) = (π1,1dS)(α) = (π1,1dS)(α1 + α2) = (dS)(α1) = 0 ,

since α1 is closed.



Pure and full almost complex structures

Proof. We start to prove that J is pure.

We show that
π1,1B2 ∩ ZJ

1,1 = BJ
1,1 .

Since π1,1B2 ∩ZJ
1,1 ⊃ BJ

1,1, we need to prove the other inclusion.

Let T ∈ π1,1B2 ∩ ZJ
1,1; then T = π1,1dS , where S is a real

3-current and d(π1,1dS) = 0. We have to show that T = π1,1dS
is a boundary, i.e. that it vanishes on any closed real 2-form α.

• If α is exact, then (π1,1dS)(α) = 0.
Suppose that [α] 6= 0 ∈ H2(M,R), then since J is C∞ pure and
full, we can write

α = α1 + α2 + dγ,

with α1 ∈ Z1,1
J , α2 ∈ Z(2,0),(0,2)

J and γ ∈ Ω1(M)R. Therefore,

T (α) = (π1,1dS)(α) = (π1,1dS)(α1 + α2) = (dS)(α1) = 0 ,

since α1 is closed.



Pure and full almost complex structures

Proof. We start to prove that J is pure.

We show that
π1,1B2 ∩ ZJ

1,1 = BJ
1,1 .

Since π1,1B2 ∩ZJ
1,1 ⊃ BJ

1,1, we need to prove the other inclusion.

Let T ∈ π1,1B2 ∩ ZJ
1,1; then T = π1,1dS , where S is a real

3-current and d(π1,1dS) = 0. We have to show that T = π1,1dS
is a boundary, i.e. that it vanishes on any closed real 2-form α.

• If α is exact, then (π1,1dS)(α) = 0.
Suppose that [α] 6= 0 ∈ H2(M,R), then since J is C∞ pure and
full, we can write

α = α1 + α2 + dγ,

with α1 ∈ Z1,1
J , α2 ∈ Z(2,0),(0,2)

J and γ ∈ Ω1(M)R. Therefore,

T (α) = (π1,1dS)(α) = (π1,1dS)(α1 + α2) = (dS)(α1) = 0 ,

since α1 is closed.



Pure and full almost complex structures

Proof. We start to prove that J is pure.

We show that
π1,1B2 ∩ ZJ

1,1 = BJ
1,1 .

Since π1,1B2 ∩ZJ
1,1 ⊃ BJ

1,1, we need to prove the other inclusion.

Let T ∈ π1,1B2 ∩ ZJ
1,1; then T = π1,1dS , where S is a real

3-current and d(π1,1dS) = 0. We have to show that T = π1,1dS
is a boundary, i.e. that it vanishes on any closed real 2-form α.

• If α is exact, then (π1,1dS)(α) = 0.
Suppose that [α] 6= 0 ∈ H2(M,R), then since J is C∞ pure and
full, we can write

α = α1 + α2 + dγ,

with α1 ∈ Z1,1
J , α2 ∈ Z(2,0),(0,2)

J and γ ∈ Ω1(M)R. Therefore,

T (α) = (π1,1dS)(α) = (π1,1dS)(α1 + α2) = (dS)(α1) = 0 ,

since α1 is closed.



Pure and full almost complex structures

Proof. We start to prove that J is pure.

We show that
π1,1B2 ∩ ZJ

1,1 = BJ
1,1 .

Since π1,1B2 ∩ZJ
1,1 ⊃ BJ

1,1, we need to prove the other inclusion.

Let T ∈ π1,1B2 ∩ ZJ
1,1; then T = π1,1dS , where S is a real

3-current and d(π1,1dS) = 0. We have to show that T = π1,1dS
is a boundary, i.e. that it vanishes on any closed real 2-form α.

• If α is exact, then (π1,1dS)(α) = 0.
Suppose that [α] 6= 0 ∈ H2(M,R), then since J is C∞ pure and
full, we can write

α = α1 + α2 + dγ,

with α1 ∈ Z1,1
J , α2 ∈ Z(2,0),(0,2)

J and γ ∈ Ω1(M)R. Therefore,

T (α) = (π1,1dS)(α) = (π1,1dS)(α1 + α2) = (dS)(α1) = 0 ,

since α1 is closed.



Pure and full almost complex structures

Proof. We start to prove that J is pure.

We show that
π1,1B2 ∩ ZJ

1,1 = BJ
1,1 .

Since π1,1B2 ∩ZJ
1,1 ⊃ BJ

1,1, we need to prove the other inclusion.

Let T ∈ π1,1B2 ∩ ZJ
1,1; then T = π1,1dS , where S is a real

3-current and d(π1,1dS) = 0. We have to show that T = π1,1dS
is a boundary, i.e. that it vanishes on any closed real 2-form α.

• If α is exact, then (π1,1dS)(α) = 0.
Suppose that [α] 6= 0 ∈ H2(M,R), then since J is C∞ pure and
full, we can write

α = α1 + α2 + dγ,

with α1 ∈ Z1,1
J , α2 ∈ Z(2,0),(0,2)

J and γ ∈ Ω1(M)R. Therefore,

T (α) = (π1,1dS)(α) = (π1,1dS)(α1 + α2) = (dS)(α1) = 0 ,

since α1 is closed.



Pure and full almost complex structures

Proof. We start to prove that J is pure.

We show that
π1,1B2 ∩ ZJ

1,1 = BJ
1,1 .

Since π1,1B2 ∩ZJ
1,1 ⊃ BJ

1,1, we need to prove the other inclusion.

Let T ∈ π1,1B2 ∩ ZJ
1,1; then T = π1,1dS , where S is a real

3-current and d(π1,1dS) = 0. We have to show that T = π1,1dS
is a boundary, i.e. that it vanishes on any closed real 2-form α.

• If α is exact, then (π1,1dS)(α) = 0.
Suppose that [α] 6= 0 ∈ H2(M,R), then since J is C∞ pure and
full, we can write

α = α1 + α2 + dγ,

with α1 ∈ Z1,1
J , α2 ∈ Z(2,0),(0,2)

J and γ ∈ Ω1(M)R. Therefore,

T (α) = (π1,1dS)(α) = (π1,1dS)(α1 + α2) = (dS)(α1) = 0 ,

since α1 is closed.



Pure and full almost complex structures

Proof. We start to prove that J is pure.

We show that
π1,1B2 ∩ ZJ

1,1 = BJ
1,1 .

Since π1,1B2 ∩ZJ
1,1 ⊃ BJ

1,1, we need to prove the other inclusion.

Let T ∈ π1,1B2 ∩ ZJ
1,1; then T = π1,1dS , where S is a real

3-current and d(π1,1dS) = 0. We have to show that T = π1,1dS
is a boundary, i.e. that it vanishes on any closed real 2-form α.

• If α is exact, then (π1,1dS)(α) = 0.
Suppose that [α] 6= 0 ∈ H2(M,R), then since J is C∞ pure and
full, we can write

α = α1 + α2 + dγ,

with α1 ∈ Z1,1
J , α2 ∈ Z(2,0),(0,2)

J and γ ∈ Ω1(M)R. Therefore,

T (α) = (π1,1dS)(α) = (π1,1dS)(α1 + α2) = (dS)(α1) = 0 ,

since α1 is closed.
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Pure and full almost complex structures

If n = 2, to prove that J is also full, we have to show that

H2(M,R) = HJ
1,1(M)R + HJ

(2,0),(0,2)(M)R .

holds.

Let [T ] ∈ H2(M,R); then there exists a smooth closed 2-form β
on M such that [T ] = [β].

Since J is C∞ full, =⇒

[α] = [α1] + [α2] ,

with α1 ∈ Z1,1
J and α2 ∈ Z(2,0),(0,2)

J

• α1 and α2 can be viewed as elements of ZJ
1,1 and ZJ

(2,0),(0,2)
respectively. J is full
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Pure and full almost complex structures

• n > 2 and any cohomology class in H1,1
J (M)R (H

(2,0),(0,2)
J (M)R

respectively) has a pure harmonic representative.

[T ] ∈ H2(M,R), =⇒ there exists a harmonic (2n − 2)-form β on
M such that [T ] = [β].

• The 2-form γ = ∗β is closed and defines a cohomology class
[γ] ∈ H2(M,R).

• By the assumption, =⇒ there exist real harmonic forms

γ1 ∈ Ω1,1
J (M)R and γ2 ∈ Ω

(2,0),(0,2)
J (M)R such that

[γ] = [γ1] + [γ2].

The (2n − 2)-forms β1 = ∗γ1 and β2 = ∗γ2 give rise to (1, 1)
and (2, 0) + (0, 2) real closed currents, i.e.

[T ] = [β1] + [β2] .
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Pure and full almost complex structures

• The assumption in the last Theorem that any (1, 1)
(respectively (2, 0) + (0, 2)) de Rham class contains a harmonic
representative seems quite strong.

• There are examples of compact non-Kähler solvmanifolds
satisfying the above assumption.

• To get the pureness of J, it is enough to assume that J is C∞
full (see also Li, Zhang).

• By Draghici, Li, Zhang, if n = 2, then any almost complex
structure J is C∞ pure and full

the last Theorem =⇒ J is pure and full.
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Example

• G simply-connected nilpotent Lie group whose Lie algebra has
structure equation

de j = 0, j = 1, . . . , 4,

de5 = e1 ∧ e2,

de6 = e1 ∧ e3,

M = Γ\G (compact) nilmanifold.

• Left-invariant almost complex structure on M, defined by the
(1, 0)-forms

η1 = e1 + ie2, η2 = e3 + ie4, η3 = e5 + ie6,

is not C∞-pure, since

[Re(η1 ∧ η2)] = [e13 + e24] = [e24] = [Re(η1 ∧ η2)] = [e13 − e24].
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Hard Lefschetz condition

• (M, ω) 2n-dimensional compact symplectic
manifold

• (M, ω) satisfies the Hard Lefschetz Condition if

ωk : Ωn−k(M)→ Ωn+k(M) , α 7→ ωk ∧ α

induce an isomorphism in cohomology.

Theorem (Fino,—, to appear in J. Geom. Anal.)
Let (M, ω) be a 2n-dimensional compact symplectic
manifold which satisfies the Hard Lefschetz condition.
Let J be a C∞ pure and full almost complex structure
calibrated by ω. Then J is pure and full.
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Hard Lefschetz condition

Proof n = 2 the result follows by the last Theorem.

• n > 2, J is pure. We have to show

H2(M,R) = HJ
1,1(M)R + HJ

(2,0),(0,2)(M)R .

• a = [T ] ∈ H2(M,R) =⇒ a = [α], α ∈ Ω2n−2(M) d-closed.

(M, ω) satisfies HLC =⇒ ∃ b ∈ H2(M,R), b = [β] such that

a = b ∪ [ω]n−2 ,

i.e.
[β ∧ ωn−2] = [α] .
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Families of C∞ pure and full almost complex structures

• s = sol3 ⊕ sol3 6-dimensional completely solvable Lie algebra
with structure equations

df 1 = 0 ,

df 2 = −f 1 ∧ f 2 ,

df 3 = f 3 ∧ f 4 ,

df 4 = 0,

df 5 = f 1 ∧ f 5 ,

df 6 = f 4 ∧ f 6 .

• The corresponding simply connected Lie group S has a
compact quotient M6 = Γ\S .

H2(M6,R) = R < [f 14], [f 25], [f 36] > .
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Families of C∞ pure and full almost complex structures

• J0 defined by the (1, 0)-forms

ϕ1 = f 1 + if 4, ϕ2 = f 2 + if 5, ϕ3 = f 3 + if 6.

J0 is almost-Kähler with respect to

ω = f 14 + f 25 + f 36 .

• By M. Fernández, V. Muñoz, J. A. Santisteban (2003) Int. J.
Math. Math. Sci., (M6, J0, ω) satisfies the Hard Lefschetz
condition and

H2(M6,R) = H1,1
J0

(M6)R

f 1 ∧ f 4, f 2 ∧ f 5, f 4 ∧ f 6 are of type (1, 1).
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