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K5(M) = {[w] € H*(M,R) |wis symplectic and tamed by J}

and the J-compatible symplectic cone is

K5(M) = {[w] € H*(M,R) |wis symplectic and compatible with J} .
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By T.-J. Li and W. Zhang

if J is a complex structure and K5(M) # 0

the following split holds
t _ pc 2,0 0,2 2
(M) = K5(M) + | (H2°(M) @ H3?(M))z 0 HA(M.R)|

where Hg’q(M) denotes the (p, g)-Dolbeault cohomology group
of the complex manifold (M, J).
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Introduction

e Study of the tamed symplectic cone and calibrated symplectic
cone.

e Extend the previous decomposition theorem to the non
integrable almost complex structures.

Li and Zhang introduce the coohomology groups

Hy (M)z = {[a]|a € 257},

HF OO (M) = {[a]| o € 270D}

and the notion of C*°-pure and full almost complex structure,
when the previous groups give rise to a direct sum decomposition
of H?(M,R).
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4

K4 (M) = K5(M) + HPO 2 (M)
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where
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For a finite set S of pairs of integers, let
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e J almost complex structure on a compact 2n-dimensional
manifold M.

Qk(M)R: @ Qg’q(M)R,
pt+q=k

where
QI Mg = {a e QT M) QTP (M) |a=7a} .
For a finite set S of pairs of integers, let
z3= @ 259 B = P B,
(p.q)€S (p,q)ES

209 ={a e QPI(M)r | da =0}
BT ={aeQPI(M)g | Iy : a=dy}
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Set

HS (M)e = {[o] | ac 25} = Zg

Then there is a natural inclusion

HI (M)g + HZO O (M) € HA (M, R).
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Definition (Li, Zhang 2008) A smooth almost complex structure J
on M is said to be C* pure and full if

H?(M,R) = H (M)z @ HPO 0D (M)
e Jis C* pure if and only if
Hy (M) 1 HG O OD (M) = {0}
e Jis C*™ full if and only if

H* (M, R) = HY (M) + HPO D ()
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e (M, J) 4-dimensional compact almost complex manifold.

Theorem (Draghici, Li, Zhang, 2008, to appear in Inter. Math.
Res. Not.) If M is a compact 4-dimensional manifold, then every
almost complex structure J on M is C*° pure and full. Thus, there
is a direct sum decomposition

H*(M,R) = Hf (M) & H; (M)

Theorem (Draghici, Li, Zhang, 2008, to appear in Inter. Math.
Res. Not.) Suppose that J is tamed by a symplectic form w.
Then

hf>b +1, h; <b"-1.
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e (M, J) compact almost complex manifold of real dimension 2n.
o £ (M) k-currents on M, i.e. the topological dual of Q>"~k(M).
k-forms are (2n — k)-currents = k-th de Rham homology group

Hk(Ma R) = Hzn_k(M7R)

Hi(M,R) k-th de Rham homology group.

e a k-current is a boundary if and only if it vanishes on the space
of closed k-forms.
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(Mr= D & o(M)r,

p+q=k

Eiq(M)R space of real k-currents of bi-dimension (p, q).

e S finite set of pairs of integers;

@ pq’ BS* @ Bpw

(p,q)eS (p,q)ES

Z,iq real closed bi-dimension (p, q) currents

Bg,q real exact bi-dimension (p, g) currents.
Set (Li-Zhang)

J
HUM)s = {lo] | a € 24} = =2,

where B denotes the space of currents which are boundaries.
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Z> and By respectively the space of real 2-currents which are
closed and boundaries.

Definition (Li, Zhang 2008) An almost complex structure J is
said to be

pure if
H{ 1(M)g N H(Jz,o),(o,z)(M)R = {0},

full if
Hy(M,R) = H{ {(M)g + H(Jz,O),(o,z)(M)R-
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Theorem (Fino,—, to appear in J. Geom. Anal.)

Let (M,w) be an almost symplectic 2n-dimensional compact
manifold and J be a C*°-pure and full almost complex structure
calibrated by w.

Then J is pure.

If, in addition, either n =2 or if any cohomology class in
H}’l(M)R (Hﬁz,o),(o,Z)(M)R respectively) has the harmonic
representative in Z}’l (252’0)’(0’2) respectively) with respect to the
metric induced by w and J, then J is pure and full.
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Proof. We start to prove that J is pure.

We show that
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with a1 € Zl’l, Qo € 252’0)’(0’2) and v € QY(M)g. Therefore,

T(a) = (7T1,1d5)(a) = (7T1’1d5)(041 + Oéz) = (dS)(Oél) = 0,

since o is closed.
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structure equation

de/ =0, j=1,....,4,
de® = el A €2,
de® = el A €3,

M =T\ G (compact) nilmanifold.

e Left-invariant almost complex structure on M, defined by the
(1,0)-forms

nt=el+ie?, n?=ed+iet, nd=ed+ied,
is not C*>°-pure, since

[Re(n A7%)] = €7 + ] = [*] = [Re(n” An?)] = [ — €**]
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Theorem (Fino,—, to appear in J. Geom. Anal.)

Let (M,w) be a 2n-dimensional compact symplectic

manifold which satisfies the Hard Lefschetz condition.

Let J be a C* pure and full almost complex structure
calibrated by w. Then J is pure and full.
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e w" 2 real form of type (n—2,n—2) =

a=[T]=[R] +[S],

R € H1J,1(M)Rr Se H(Jz,o),(o,z)(M)R'
J is pure and full.
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e 5 =50[3 @ sol3 6-dimensional completely solvable Lie algebra
with structure equations

((dft =0,
df2 = —fL A F2,
df3 = f3AF4,
df* =0,
df® = FL A f5,
dfé = F4 A fO.

e The corresponding simply connected Lie group S has a
compact quotient M® =T\S.

H?(M®,R) =R < [f*],[F?°],[F3°] > .
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e Jp defined by the (1, 0)-forms
ot =L 4ift, @ =2 +if°, ¢* = +if°
Jo is almost-Kahler with respect to
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e By M. Fernandez, V. Mufioz, J. A. Santisteban (2003) Int. J.
Math. Math. Sci., (M®, Jo,w) satisfies the Hard Lefschetz

condition and
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FLAFY, FAAFR, FANFO
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e Jp defined by the (1, 0)-forms
ot =L 4ift, @ =2 +if°, ¢* = +if°
Jo is almost-Kahler with respect to
w— fl14 1 £25 4 (36

e By M. Fernandez, V. Mufioz, J. A. Santisteban (2003) Int. J.
Math. Math. Sci., (M®, Jo,w) satisfies the Hard Lefschetz

condition and
H?(M®,R) = H}'(M®)g

fl A f4, f2 A f57 f4 A f6 are of type (17 1)




Families of C* pure and full almost complex structures

(0 -1
=1 )

and




Families of C* pure and full almost complex structures

and




Families of C* pure and full almost complex structures

and
. 0 th
be= ( thh 0 )
Je=(1+ L) Jo(I + Ls)7?
6t < 1




Families of C* pure and full almost complex structures

and
. 0 th
be= ( thh 0 )
Je=(1+ L) Jo(I + Ls)7?
6t < 1




Families of C* pure and full almost complex structures

and
. 0 th
be= ( thh 0 )
Je=(1+ L) Jo(I + Ls)7?
6t% < 1 family of




Families of C* pure and full almost complex structures

and I
. 0 th
be= ( thh 0 )
Jo=(I+L)ho(l + L)t

6t> < 1 family of w-calibrated




Families of C* pure and full almost complex structures

and
. 0 th
be= ( thh 0 )
Ji = (/ + Lt)JO(I + Lt)_l

6t%> < 1 family of w-calibrated almost complex structures on M°.
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Consequently,
2t

14¢2
1—t2l 1—t2l
Jt -
1+t2l 2t
1—t2 1-1t2
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Consequently,
2t | — 1+t2l

1—t2 1—t2
Jt —

1+t2l 2t

1—t2 T 12

and a basis of (1,0)-forms for J; is

. 2
‘P% =ft4i ((131;2)7{1 + 11_;2 f4) )

. 2
=12+ (e f? + 5

. 2
o=+ i (2 + HE )
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e J; is a family of C* pure and full almost complex structures, in
fact pure and full, since

CEADE, OINTE, O3 NPy

are harmonic.
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