Ivan Struchiner

Universiteit Utrecht Joint work with Prof. Rui Loja Fernandes

イロト イヨト イヨト イヨト

A Very Simple Problem

Metrics of Constant Curvature on \mathbb{R}^2

- **1** Describe the Moduli Space of germs of metrics in \mathbb{R}^2 with constant Gaussian curvature.
- **2** Describe their Symmetry Lie Algebras.
- **3** Construct examples of each of the metrics.

| 4 回 2 4 U = 2 4 U =

Solution to (1) and (2)

There is a bundle of Lie algebras $A \rightarrow X$, where:

• $X \equiv \mathbb{R}$ is the Moduli Space of germs of metrics of constant curvature on \mathbb{R}^2 .

< 口 > < 回 > < 回 > < 回 > < 回 > <

3

Solution to (1) and (2)

There is a bundle of Lie algebras $A \rightarrow X$, where:

- $X \equiv \mathbb{R}$ is the Moduli Space of germs of metrics of constant curvature on \mathbb{R}^2 .
- $A \equiv X \times \mathbb{R}^3$ is a trivial vector bundle whose fibers can be identified with:

\mathfrak{sl}_2	if $k < 0$	Hyperbolic Geometry
\mathfrak{se}_2	if $k = 0$	Euclidean Geometry
\mathfrak{so}_3	if $k > 0$	Spherical Geometry

Solution to (3)

Let $\mathcal{G} \rightrightarrows X$ be the bundle of Lie groups with fibers:

$$\mathbf{s}^{-1}(k) = \begin{cases} \operatorname{SL}_2 \text{ if } k < 0\\ \operatorname{SE}_2 \text{ if } k = 0\\ \operatorname{SO}_3 \text{ if } k > 0 \end{cases}$$

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Solution to (3)

Let $\mathcal{G} \rightrightarrows X$ be the bundle of Lie groups with fibers:

$$\mathbf{s}^{-1}(k) = \begin{cases} \operatorname{SL}_2 \text{ if } k < 0\\ \operatorname{SE}_2 \text{ if } k = 0\\ \operatorname{SO}_3 \text{ if } k > 0 \end{cases}$$

Each fiber of \mathcal{G} can be identified with the (oriented) orthogonal frame bundle of a Riemannian 2-manifold:

$$M^{2} = \begin{cases} \mathrm{SL}_{2}/\mathrm{SO}_{2} \text{ if } k < 0\\ \mathrm{SE}_{2}/\mathrm{SO}_{2} \text{ if } k = 0\\ \mathrm{SO}_{3}/\mathrm{SO}_{2} \text{ if } k > 0 \end{cases}$$

イロン イヨン イヨン イヨン

Why is there a Lie Algebroid Associated to this Problem?

Every metric can be characterized by a coframe on some other manifold.

伺下 イヨト イヨト

Why is there a Lie Algebroid Associated to this Problem?

- Every metric can be characterized by a coframe on some other manifold.
- The moduli space of germs of metrics of constant Gaussian curvature in ℝ² depends on a finite amount of invariants (in this case only 1: the Gaussian curvature).

伺下 イヨト イヨト

Equivalence of Coframes

•
$$\{\theta^1, \dots, \theta^n\}$$
 a coframe on M .
• $\{\bar{\theta}^1, \dots, \bar{\theta}^n\}$ a coframe on \bar{M} .

Definition

 $\{\theta^i\}$ is (locally) equivalent to $\{\bar{\theta}^i\}$ if there exists a (locally defined) diffeomorphism

$$\phi: M \to \bar{M}$$

such that

$$\phi^* \bar{\theta}^i = \theta^i$$
 for all $i = 1, \dots, n$.

・ロン ・回と ・ヨン ・ヨン

Cartan's Realization Problem

Invariants of Coframes

・ロト ・回ト ・ヨト ・ヨト

æ

Cartan's Realization Problem

Invariants of Coframes

If $\{\theta^i\}$ is equivalent to $\{\bar{\theta}^i\}$ through $\phi: M \to \bar{M}$, then

 $\bar{C}^k_{ij}(\phi(x)) = C^k_{ij}(x).$

Cartan's Realization Problem

Invariants of Coframes

If $\{\theta^i\}$ is equivalent to $\{\bar{\theta}^i\}$ through $\phi: M \to \bar{M}$, then

$$\bar{C}_{ij}^k(\phi(x)) = C_{ij}^k(x).$$

Definition

A function $I \in C^{\infty}(M)$ is an invariant of $\{\theta^i\}$ if

$$I \circ \phi = I$$
 for every symmetry ϕ of $\{\theta^i\}$

・ロト ・回ト ・ヨト ・ヨト

Cartan's Realization Problem

Cartan's Realization Problem

Initial Data:

- An integer $n \in \mathbb{N}$,
- an open subset $X \subset \mathbb{R}^d$,
- functions $C_{ij}^k \in C^{\infty}(X)$ $(1 \le i, j, k \le n)$,
- functions $F_i^a \in C^{\infty}(X)$ $(1 \le a \le d)$;

- 4 回 ト - 4 回 ト - 4 回 ト

Cartan's Realization Problem (continued)

Does there exist a realization?

- An *n*-dimensional manifold *M*,
- a coframe $\{\theta^i\}$ on M,
- \blacksquare a smooth map $h: M \to X$

個 と く ヨ と く ヨ と …

Cartan's Realization Problem (continued)

Does there exist a realization?

- An *n*-dimensional manifold *M*,
- a coframe $\{\theta^i\}$ on M,
- a smooth map $h: M \to X$

such that

$$d\theta^{k} = \sum_{i < j} C_{ij}^{k}(h)\theta^{i} \wedge \theta^{j}$$
$$dh^{a} = \sum_{i} F_{i}^{a}(h)\theta^{i}.$$

・ 回 ト ・ ヨ ト ・ ヨ ト

Cartan's Realization Problem (continued)

Does there exist a realization?

- An *n*-dimensional manifold *M*,
- a coframe $\{\theta^i\}$ on M,
- a smooth map $h: M \to X$

such that

$$\begin{split} \mathrm{d} \theta^k &= \sum_{i < j} C^k_{ij}(h) \theta^i \wedge \theta^j \\ \mathrm{d} h^a &= \sum_i F^a_i(h) \theta^i. \end{split}$$

Definition

A solution (M, θ^i, h) to Cartan's problem will be called a realization.

Cartan's Realization Problem

Morphisms of Realizations and the Local Classification Problem

Definition

Let (M_1, θ_1, h_1) and (M_2, θ_2, h_2) be two realizations of (n, X, C_{ij}^k, F_i^a) . A morphism of realizations is a local diffeomorphism $\phi: M_1 \to M_2$ such that

 $\phi^*\theta_2 = \theta_1$ and $h_2 \circ \phi = h_1$.

イロン イ部ン イヨン イヨン 三日

Cartan's Realization Problem

Morphisms of Realizations and the Local Classification Problem

Definition

Let (M_1, θ_1, h_1) and (M_2, θ_2, h_2) be two realizations of (n, X, C_{ij}^k, F_i^a) . A morphism of realizations is a local diffeomorphism $\phi: M_1 \to M_2$ such that

 $\phi^*\theta_2 = \theta_1$ and $h_2 \circ \phi = h_1$.

Local Classification Problem

What are all the germs of solutions of a Cartan's realization problem?

イロト イヨト イヨト イヨト

Cartan's Realization Problem

Morphisms of Realizations and the Local Classification Problem

Definition

Let (M_1, θ_1, h_1) and (M_2, θ_2, h_2) be two realizations of (n, X, C_{ij}^k, F_i^a) . A morphism of realizations is a local diffeomorphism $\phi: M_1 \to M_2$ such that

 $\phi^*\theta_2 = \theta_1$ and $h_2 \circ \phi = h_1$.

Local Classification Problem

- What are all the germs of solutions of a Cartan's realization problem?
- When are two germs of realizations isomorphic?

・ロト ・回ト ・ヨト ・ヨト

Another Very Simple Example: d = o

• Suppose that
$$X = \{pt\}$$
, i.e., $d = 0$.

- - 4 回 ト - 4 回 ト

æ

Cartan's Realization Problem

Another Very Simple Example: d = o

- Suppose that $X = \{pt\}$, i.e., d = 0.
- Thus, C_{ij}^k are all constant and $F_i^a \equiv 0$.

(1日) (日) (日)

3

Another Very Simple Example: d = o

- Suppose that $X = \{pt\}$, i.e., d = 0.
- Thus, C_{ij}^k are all constant and $F_i^a \equiv 0$.
- Necessary conditions for solving the realization problem are obtained from d² = 0: -C^k_{ij} must be the structure constants of a Lie algebra g.

Another Very Simple Example: d = o

- Suppose that $X = \{pt\}$, i.e., d = 0.
- Thus, C_{ij}^k are all constant and $F_i^a \equiv 0$.
- Necessary conditions for solving the realization problem are obtained from d² = 0: -C^k_{ij} must be the structure constants of a Lie algebra g.
- This condition is also sufficient: (G, ω_{MC}) is a realization.

Another Very Simple Example: d = o

- Suppose that $X = \{pt\}$, i.e., d = 0.
- Thus, C_{ij}^k are all constant and $F_i^a \equiv 0$.
- Necessary conditions for solving the realization problem are obtained from d² = 0: -C^k_{ij} must be the structure constants of a Lie algebra g.
- This condition is also sufficient: (G, ω_{MC}) is a realization.
- The universal property of the Maurer-Cartan form implies that locally this is the only solution.

Another Very Simple Example: d = o

- Suppose that $X = \{pt\}$, i.e., d = 0.
- Thus, C_{ij}^k are all constant and $F_i^a \equiv 0$.
- Necessary conditions for solving the realization problem are obtained from d² = 0: -C^k_{ij} must be the structure constants of a Lie algebra g.
- This condition is also sufficient: (G, ω_{MC}) is a realization.
- The universal property of the Maurer-Cartan form implies that locally this is the only solution.

In general $(d \neq 0)$, we will have to consider Lie algebroids instead of Lie algebras.

Another Very Simple Example: d = o

- Suppose that $X = \{pt\}$, i.e., d = 0.
- Thus, C_{ij}^k are all constant and $F_i^a \equiv 0$.
- Necessary conditions for solving the realization problem are obtained from d² = 0: -C^k_{ij} must be the structure constants of a Lie algebra g.
- This condition is also sufficient: (G, ω_{MC}) is a realization.
- The universal property of the Maurer-Cartan form implies that locally this is the only solution.

In general $(d \neq 0)$, we will have to consider Lie algebroids instead of Lie algebras.

Lie Algebroids

Definition

A Lie algebroid is a vector bundle $A \to X$ equipped with a Lie bracket [,] on $\Gamma(A)$ and a bundle map $\# : A \to TX$ such that:

 $[\alpha, f\beta] = f[\alpha, \beta] + \#(\alpha)(f)\beta \text{ for all } \alpha, \beta \in \Gamma(A) \text{ and } f \in \mathrm{C}^\infty(X).$

イロン イ部ン イヨン イヨン 三日

Existence of Solutions: Necessary Conditions

Proposition

Let (n, X, C_{ij}^k, F_i^a) be the initial data of a Cartan's realization problem. If for every $x_0 \in X$ there is a realization (M, θ, h) with $h(p_0) = x_0$, for some $p_0 \in M$, then the $-C_{ij}^k, F_i^a \in C^{\infty}(X)$ are the structure functions of a Lie algebroid A over X.

(1日) (日) (日)

Existence of Solutions: Necessary Conditions

Proposition

Let (n, X, C_{ij}^k, F_i^a) be the initial data of a Cartan's realization problem. If for every $x_0 \in X$ there is a realization (M, θ, h) with $h(p_0) = x_0$, for some $p_0 \in M$, then the $-C_{ij}^k, F_i^a \in C^\infty(X)$ are the structure functions of a Lie algebroid A over X.

Proof

• $A = X \times \mathbb{R}^n \to X$, with basis of sections $\{\alpha_1, \dots, \alpha_n\}$ and coordinates (x_1, \dots, x_d) on X

(二)

Existence of Solutions: Necessary Conditions

Proposition

Let (n, X, C_{ij}^k, F_i^a) be the initial data of a Cartan's realization problem. If for every $x_0 \in X$ there is a realization (M, θ, h) with $h(p_0) = x_0$, for some $p_0 \in M$, then the $-C_{ij}^k, F_i^a \in C^\infty(X)$ are the structure functions of a Lie algebroid A over X.

Proof

• $A = X \times \mathbb{R}^n \to X$, with basis of sections $\{\alpha_1, \dots, \alpha_n\}$ and coordinates (x_1, \dots, x_d) on X• $[\alpha_i, \alpha_j](x) = \sum C_{ij}^k(x)\alpha_k$,

Existence of Solutions: Necessary Conditions

Proposition

Let (n, X, C_{ij}^k, F_i^a) be the initial data of a Cartan's realization problem. If for every $x_0 \in X$ there is a realization (M, θ, h) with $h(p_0) = x_0$, for some $p_0 \in M$, then the $-C_{ij}^k, F_i^a \in C^\infty(X)$ are the structure functions of a Lie algebroid A over X.

Proof

A = X × ℝⁿ → X, with basis of sections {α₁,...α_n} and coordinates (x₁,...,x_d) on X
[α_i, α_j](x) = ∑ C^k_{ii}(x)α_k, #(α_i)(x) = ∑ F^a_i(x) ∂/∂x

イロン 人間 とくせい くせい

Existence of Solutions: Necessary Conditions

Proposition

Let (n, X, C_{ij}^k, F_i^a) be the initial data of a Cartan's realization problem. If for every $x_0 \in X$ there is a realization (M, θ, h) with $h(p_0) = x_0$, for some $p_0 \in M$, then the $-C_{ij}^k, F_i^a \in C^{\infty}(X)$ are the structure functions of a Lie algebroid A over X.

Proof

- $A = X \times \mathbb{R}^n \to X$, with basis of sections $\{\alpha_1, \dots, \alpha_n\}$ and coordinates (x_1, \dots, x_d) on X
- $[\alpha_i, \alpha_j](x) = \sum C_{ij}^k(x)\alpha_k, \ \#(\alpha_i)(x) = \sum F_i^a(x)\frac{\partial}{\partial x_a}$
- $d^2\theta^k = 0$ implies that [,] satisfies the Jacobi Identity.

Existence of Solutions: Necessary Conditions

Proposition

Let (n, X, C_{ij}^k, F_i^a) be the initial data of a Cartan's realization problem. If for every $x_0 \in X$ there is a realization (M, θ, h) with $h(p_0) = x_0$, for some $p_0 \in M$, then the $-C_{ij}^k, F_i^a \in C^{\infty}(X)$ are the structure functions of a Lie algebroid A over X.

Proof

- $A = X \times \mathbb{R}^n \to X$, with basis of sections $\{\alpha_1, \dots, \alpha_n\}$ and coordinates (x_1, \dots, x_d) on X
- $[\alpha_i, \alpha_j](x) = \sum C_{ij}^k(x)\alpha_k, \ \#(\alpha_i)(x) = \sum F_i^a(x)\frac{\partial}{\partial x_a}$
- $d^2\theta^k = 0$ implies that [,] satisfies the Jacobi Identity.
- $d^2h_a = 0$ implies that # is a Lie algebra homorphism.

イロン イビン イビン イビン

Cartan's Realization Problem

Classifying Lie Algebroid

Definition

The Lie algebroid $A \rightarrow X$ is called the Classifying Lie Algebroid of the Cartan's realization problem.

- 4 回 2 - 4 □ 2 - 4 □

Realizations and Lie Algebroid Morphisms

Each realization (M, θ, h) of the problem determines a bundle map:

$$TM \longrightarrow A = X \times \mathbb{R}^n,$$

$$v \longmapsto (h(p(v)), (\theta^1(v), \dots, \theta^n(v))),$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Realizations and Lie Algebroid Morphisms

Proposition

Let $A \to X$ be the classifying Lie algebroid of a Cartan's problem. The realizations of this problem are in 1:1 correspondence with bundle maps as above which are Lie algebroid morphisms and fiberwise isomorphisms.

伺下 イヨト イヨト
Realizations and Lie Algebroid Morphisms

Proposition

Let $A \to X$ be the classifying Lie algebroid of a Cartan's problem. The realizations of this problem are in 1:1 correspondence with bundle maps as above which are Lie algebroid morphisms and fiberwise isomorphisms.

Proof

• $dh^a = \sum_i F_i^a(h)\theta^i$ if and only if (θ, h) is compatible with anchors.

・ロン ・回と ・ヨン・

Realizations and Lie Algebroid Morphisms

Proposition

Let $A \to X$ be the classifying Lie algebroid of a Cartan's problem. The realizations of this problem are in 1:1 correspondence with bundle maps as above which are Lie algebroid morphisms and fiberwise isomorphisms.

Proof

- $dh^a = \sum_i F_i^a(h)\theta^i$ if and only if (θ, h) is compatible with anchors.
- $d\theta^k = \sum_{i < j} C_{ij}^k(h) \theta^i \wedge \theta^j$ if and only if (θ, h) is compatible with brackets.

Maurer-Cartan Equation

Definition

A bundle map

which is compatible with the anchors will be called a 1-form with values in A. We will write $\theta \in \Omega^1(M, A)$.

Maurer-Cartan Equation

Definition

A bundle map

which is compatible with the anchors will be called a 1-form with values in A. We will write $\theta \in \Omega^1(M, A)$.

The bracket compatibility can be expressed in terms of a Maurer-Cartan equation:

$$\mathrm{d}_{\nabla}\theta + \frac{1}{2}[\theta,\theta]_{\nabla} = 0$$

The Maurer-Cartan Form on ${\cal G}$

Definition

The Maurer-Cartan form on a Lie groupoid \mathcal{G} is the s-foliated 1-forma with values in A

defined by

$$\omega_{\mathrm{MC}}(\xi) = (\mathrm{d}R_{g^{-1}})_g(\xi) \in A_{\mathbf{t}(g)}$$

for all $\xi \in T_q^{\mathbf{s}} \mathcal{G}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

The Maurer-Cartan Form on ${\cal G}$

Definition

The Maurer-Cartan form on a Lie groupoid \mathcal{G} is the s-foliated 1-forma with values in A

defined by

$$\omega_{\mathrm{MC}}(\xi) = (\mathrm{d}R_{g^{-1}})_g(\xi) \in A_{\mathbf{t}(g)}$$

for all $\xi \in T_a^{\mathbf{s}} \mathcal{G}$.

$$d_{\nabla}\omega_{\rm MC} + \frac{1}{2}[\omega_{\rm MC}, \omega_{\rm MC}]_{\nabla} = 0$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

The Classifying Lie Algebroid of a Geometric Structure

Cartan's Realization Problem

The Local Universal Property

Proposition

$$\bullet \ (\theta,h) \in \Omega^1(M,A)$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

The Classifying Lie Algebroid of a Geometric Structure

Cartan's Realization Problem

The Local Universal Property

Proposition

$$\bullet (\theta, h) \in \Omega^1(M, A)$$

 $\blacksquare \ A \to X$ a Lie algebroid integrated by $\mathcal{G} \rightrightarrows X$

・ロト ・回ト ・ヨト ・ヨト

The Local Universal Property

Proposition

$$\bullet \ (\theta,h) \in \Omega^1(M,A)$$

- $\blacksquare \ A \to X$ a Lie algebroid integrated by $\mathcal{G} \rightrightarrows X$
- $\blacksquare \operatorname{rank}(A) = \dim M$

The Local Universal Property

Proposition

$$\ \ \, (\theta,h)\in\Omega^1(M,A)$$

- $\blacksquare \ A \to X$ a Lie algebroid integrated by $\mathcal{G} \rightrightarrows X$
- $\square \operatorname{rank}(A) = \dim M$

The Local Universal Property

Proposition

$$\bullet \ (\theta,h) \in \Omega^1(M,A)$$

- $A \to X$ a Lie algebroid integrated by $\mathcal{G} \rightrightarrows X$
- $\square \operatorname{rank}(A) = \dim M$
- $\bullet \ \mathrm{d}_{\nabla}\theta + \frac{1}{2}[\theta,\theta]_{\nabla} = 0.$

Then, for every $p\in M$ and $g\in \mathcal{G}$ such that $h(p)=\mathbf{t}(g)$, there exists a unique locally defined diffeomorphism $\phi:M\to \mathbf{s}^{-1}(\mathbf{s}(g))$ such that

$$\begin{cases} \phi(p) &= g \\ \phi^* \omega_{\rm MC} &= \theta. \end{cases}$$

イロト イヨト イヨト イヨト

The Local Universal Property

Proposition

$$\bullet \ (\theta,h) \in \Omega^1(M,A)$$

- $A \to X$ a Lie algebroid integrated by $\mathcal{G} \rightrightarrows X$
- $\blacksquare \operatorname{rank}(A) = \dim M$
- $\bullet \ \mathrm{d}_{\nabla}\theta + \frac{1}{2}[\theta,\theta]_{\nabla} = 0.$

Then, for every $p\in M$ and $g\in \mathcal{G}$ such that $h(p)=\mathbf{t}(g)$, there exists a unique locally defined diffeomorphism $\phi:M\to \mathbf{s}^{-1}(\mathbf{s}(g))$ such that

$$\begin{cases} \phi(p) &= g \\ \phi^* \omega_{\rm MC} &= \theta. \end{cases}$$

Corollary of the Uniqueness

If $\phi : \mathbf{s}^{-1}(x) \to \mathbf{s}^{-1}(y)$ is a symmetry of ω_{MC} then ϕ is locally of the form $\phi = R_g$ for some $g \in \mathcal{G}$.

The Classifying Lie Algebroid of a Geometric Structure

Cartan's Realization Problem

Solution to the Local Classification Problem

• Necessary condition for existence of realizations: $-C_{ij}^k, F_i^a$ determine a classifying Lie algebroid $A \rightarrow X$.

・ 回 と ・ ヨ と ・ ヨ と

Solution to the Local Classification Problem

- Necessary condition for existence of realizations: $-C_{ij}^k, F_i^a$ determine a classifying Lie algebroid $A \rightarrow X$.
- Let \mathcal{G} be a (local) Lie groupoid integrating A.

Solution to the Local Classification Problem

- Necessary condition for existence of realizations: $-C_{ij}^k, F_i^a$ determine a classifying Lie algebroid $A \rightarrow X$.
- Let *G* be a (local) Lie groupoid integrating *A*.
- For each $x_0 \in X$, $(\mathbf{s}^{-1}(x_0), \omega_{\mathrm{MC}}, \mathbf{t})$ is a realization with $\mathbf{t}(\mathbf{1}_{x_0}) = x_0$.

Solution to the Local Classification Problem

- Necessary condition for existence of realizations: $-C_{ij}^k, F_i^a$ determine a classifying Lie algebroid $A \to X$.
- Let *G* be a (local) Lie groupoid integrating *A*.
- For each $x_0 \in X$, $(\mathbf{s}^{-1}(x_0), \omega_{\mathrm{MC}}, \mathbf{t})$ is a realization with $\mathbf{t}(\mathbf{1}_{x_0}) = x_0$.
- Locally, these are the only realizations (universal property).

The Classifying Lie Algebroid of a Geometric Structure

Symmetries of a Realization

Symmetries of a Realization

Definition

A symmetry of (M,θ,h) is a diffeomorphism $\phi:M\to M$ such that

 $\phi^*\theta = \theta$ and $h \circ \phi = h$.

- 4 同 ト 4 臣 ト 4 臣 ト

Symmetries of a Realization

Symmetries of a Realization

Definition

 \blacksquare A symmetry of (M,θ,h) is a diffeomorphism $\phi:M\to M$ such that

$$\phi^*\theta = \theta$$
 and $h \circ \phi = h$.

 \blacksquare An infinitesimal symmetry is a vector field $\xi\in\mathfrak{X}(M)$ such that

$$\mathcal{L}_{\xi}\theta = 0 \text{ and } \mathcal{L}_{\xi}h = 0.$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

—Symmetries of a Realization

Symmetries of a Realization

Definition

 \blacksquare A symmetry of (M,θ,h) is a diffeomorphism $\phi:M\to M$ such that

$$\phi^*\theta = \theta$$
 and $h \circ \phi = h$.

An infinitesimal symmetry is a vector field $\xi\in\mathfrak{X}(M)$ such that

$$\mathcal{L}_{\xi}\theta = 0$$
 and $\mathcal{L}_{\xi}h = 0$.

• $\mathfrak{X}(M, \theta, h)_p$ denotes the germs of infinitesimal symmetries of (M, θ, h) at a point $p \in M$.

イロト イポト イヨト イヨト

Symmetries of a Realization

Symmetries of a Realization (continued)

Proposition

- (M, θ, h) : Realization of a Cartan's problem.
- $A \rightarrow X$: Classifying Lie algebroid.
- **g**_x: Isotropy Lie algebra of A at $x \in X$.

- 4 回 2 - 4 □ 2 - 4 □

Symmetries of a Realization

Symmetries of a Realization (continued)

Proposition

- (M, θ, h) : Realization of a Cartan's problem.
- $A \rightarrow X$: Classifying Lie algebroid.
- **g**_x: Isotropy Lie algebra of A at $x \in X$.

Then $\mathfrak{X}(M,\theta,h)_p$ is a Lie algebra isomorphic to $\mathfrak{g}_{h(p)}$ and in particular

 $\dim \mathfrak{X}(M,\theta,h)_p = \dim M - \dim L_{h(p)}.$

イロン イヨン イヨン イヨン

Coverings of Realizations and Global Equivalence

Definition

 A Covering of realizations is a surjective morphism of realizations.

- 4 回 2 - 4 回 2 - 4 回 2

Coverings of Realizations and Global Equivalence

Definition

- A Covering of realizations is a surjective morphism of realizations.
- (M₁, θ₁, h) and (M₂, θ₂, h₂) are globally equivalent up to covering, if there exists another realization (M, θ, h) which covers both M₁ and M₂:

- 4 回 2 4 三 2 4 三 2 4

The Global Classification Problem and the Globalization Problem

Global Classification Problem

What are all the solutions of a Cartan's realization problem up to global equivalence, up to covering?

(4回) (1日) (日)

The Global Classification Problem and the Globalization Problem

Global Classification Problem

What are all the solutions of a Cartan's realization problem up to global equivalence, up to covering?

Globalization Problem

When are two germs of realizations contained in the same connected realization?

- 4 回 ト - 4 回 ト - 4 回 ト

Solution to the Globalization Problem

Theorem

Suppose that the classifying Lie algebroid $A \to X$ is integrable. Then (θ_0, h_0) and (θ_1, h_1) are germs of the same connected realization (M, θ, h) if and only if they correspond to points of X in the same orbit of A.

Solution to the Globalization Problem

Theorem

Suppose that the classifying Lie algebroid $A \to X$ is integrable. Then (θ_0, h_0) and (θ_1, h_1) are germs of the same connected realization (M, θ, h) if and only if they correspond to points of X in the same orbit of A.

• If A is not integrable then the theorem may not be true.

(4月) イヨト イヨト

Solution to the Global Classification Problem

Theorem

- (M, θ, h) : realization of a Cartan's problem.
- $A \rightarrow X$: integrable.

イロト イヨト イヨト イヨト

Solution to the Global Classification Problem

Theorem

- (M, θ, h) : realization of a Cartan's problem.
- $A \rightarrow X$: integrable.

Then M is globally equivalent up to cover to an open set of an s-fiber of a groupoid \mathcal{G} integrating A.

- - 4 回 ト - 4 回 ト

Global Classification II

Corollary

Rank 0 If the structure functions of a coframe θ on M are constant, then M is globally equivalent, up to covering, to an open set of a Lie group.

Global Classification II

Corollary Rank 0 If the structure functions of a coframe θ on M are constant, then M is globally equivalent, up to covering, to an open set of a Lie group. Rank $n = (M_1, \theta_1, h_1)$ and (M_2, θ_2, h_2) : realizations of a Cartan's problem. $h_1(M_1) = h_2(M_2) \subset L.$ $L \subset X$: an *n*-dimensional orbit of A.

Global Classification II

Corollary Rank 0 If the structure functions of a coframe θ on M are constant, then M is globally equivalent, up to covering, to an open set of a Lie group. • (M_1, θ_1, h_1) and (M_2, θ_2, h_2) : realizations of a Rank nCartan's problem. $h_1(M_1) = h_2(M_2) \subset L.$ • $L \subset X$: an *n*-dimensional orbit of A. Then (L, θ, h) is a realization of the Cartan's problem covered by both (M_1, θ_1, h_1) and (M_2, θ_2, h_2) , i.e., M_1 M_{2}

Special Symplectic Manifolds

Special Symplectic Geometries

Studied extensively by Schwachhöfer, Cahen, Chi, Merkulov, Bryant,.....

-Special Symplectic Manifolds

Special Symplectic Geometries

Studied extensively by Schwachhöfer, Cahen, Chi, Merkulov, Bryant,.....

1) Bochner-bi-Lagrangian M is a symplectic manifold equipped with a pair of complementary Lagrangian distributions which are parallel and the Bochner tensor of the curvature vanishes.

・回 ・ ・ ヨ ・ ・ ヨ ・

-Special Symplectic Manifolds

Special Symplectic Geometries

Studied extensively by Schwachhöfer, Cahen, Chi, Merkulov, Bryant,.....

 Bochner-bi-Lagrangian M is a symplectic manifold equipped with a pair of complementary Lagrangian distributions which are parallel and the Bochner tensor of the curvature vanishes.
Bochner-Kähler M is a Kähler manifold for which the Bochner tensor of the curvature vanishes.

・ 回 と ・ ヨ と ・ ヨ と

- Special Symplectic Manifolds

Special Symplectic Geometries

Studied extensively by Schwachhöfer, Cahen, Chi, Merkulov, Bryant,.....

 Bochner-bi-Lagrangian M is a symplectic manifold equipped with a pair of complementary Lagrangian distributions which are parallel and the Bochner tensor of the curvature vanishes.

- II) Bochner-Kähler M is a Kähler manifold for which the Bochner tensor of the curvature vanishes.
- III) Ricci Type M is a symplectic manifold equipped with a symplectic connection for which the Ricci flat component of its curvature vanishes.

イロン イ部ン イヨン イヨン 三日
Special Symplectic Geometries

Studied extensively by Schwachhöfer, Cahen, Chi, Merkulov, Bryant,.....

 Bochner-bi-Lagrangian M is a symplectic manifold equipped with a pair of complementary Lagrangian distributions which are parallel and the Bochner tensor of the curvature vanishes.

- II) Bochner-Kähler M is a Kähler manifold for which the Bochner tensor of the curvature vanishes.
- III) Ricci Type M is a symplectic manifold equipped with a symplectic connection for which the Ricci flat component of its curvature vanishes.
- IV) Proper Symplectic Holonomy M is symplectic manifold equipped with a symplectic connection whose holonomy group is a proper irreducible subgroup of Sp(V).

Special Symplectic Lie Algebras

All of these geometries are linked by their structure groups.

回 と く ヨ と く ヨ と

Special Symplectic Lie Algebras

All of these geometries are linked by their structure groups.

If \mathfrak{h} is a subalgebra of $\mathfrak{sp}(V, \omega_0)$ then there is a bilinear map $\circ: S^2(V) \cong \mathfrak{sp}(V) \to \mathfrak{h}$

 $(u \circ v, T) = \omega_0(Tu, v)$ for all $u, v \in V$ and $T \in \mathfrak{h}$.

· < @ > < 문 > < 문 > · · 문

Special Symplectic Lie Algebras

All of these geometries are linked by their structure groups.

If \mathfrak{h} is a subalgebra of $\mathfrak{sp}(V, \omega_0)$ then there is a bilinear map $\circ: S^2(V) \cong \mathfrak{sp}(V) \to \mathfrak{h}$

$$(u \circ v, T) = \omega_0(Tu, v)$$
 for all $u, v \in V$ and $T \in \mathfrak{h}$.

Definition

 \mathfrak{h} is a special symplectic Lie algebras if

$$(u \circ v)w - (u \circ w)v = 2\omega_0(v, w)u - \omega_0(u, v)w + \omega_0(u, w)v.$$

イロン イヨン イヨン イヨン

Special Symplectic Lie Algebras

All of these geometries are linked by their structure groups.

If \mathfrak{h} is a subalgebra of $\mathfrak{sp}(V, \omega_0)$ then there is a bilinear map $\circ: S^2(V) \cong \mathfrak{sp}(V) \to \mathfrak{h}$

$$(u \circ v, T) = \omega_0(Tu, v)$$
 for all $u, v \in V$ and $T \in \mathfrak{h}$.

Definition

 \mathfrak{h} is a special symplectic Lie algebras if

$$(u \circ v)w - (u \circ w)v = 2\omega_0(v, w)u - \omega_0(u, v)w + \omega_0(u, w)v.$$

These are the Berger algebras of torsion-free symplectic connections

・ロト ・回ト ・ヨト ・ヨト

Special Symplectic Lie Algebras

All of these geometries are linked by their structure groups.

If \mathfrak{h} is a subalgebra of $\mathfrak{sp}(V, \omega_0)$ then there is a bilinear map $\circ: S^2(V) \cong \mathfrak{sp}(V) \to \mathfrak{h}$

$$(u \circ v, T) = \omega_0(Tu, v)$$
 for all $u, v \in V$ and $T \in \mathfrak{h}$.

Definition

 \mathfrak{h} is a special symplectic Lie algebras if

$$(u \circ v)w - (u \circ w)v = 2\omega_0(v, w)u - \omega_0(u, v)w + \omega_0(u, w)v.$$

- These are the Berger algebras of torsion-free symplectic connections
- These Lie algebras have been classified.

イロン イヨン イヨン イヨン

Special Symplectic Manifolds

 \blacksquare There is an injective map $\mathfrak{h} \to \mathcal{K}(\mathfrak{h})$:

$$T \mapsto R_T(u, v) \mapsto 2\omega_0(u, v)T + u \circ (Tv) - v \circ (Tu).$$
$$R_T(u, v) = 2\omega_0(u, v)T + u \circ (Tv) - v \circ (Tu),$$

where

$$\mathcal{K}(\mathfrak{h}) = \left\{ R \in \wedge^2 V^* \otimes \mathfrak{g} : R(u, v)w + \mathsf{cycl. perm.} = 0, \text{ for all } u, v, w \in V \right\}$$

Special Symplectic Manifolds

• There is an injective map $\mathfrak{h} \to \mathcal{K}(\mathfrak{h})$:

$$T \mapsto R_T(u, v) \mapsto 2\omega_0(u, v)T + u \circ (Tv) - v \circ (Tu).$$
$$R_T(u, v) = 2\omega_0(u, v)T + u \circ (Tv) - v \circ (Tu),$$

where

$$\mathcal{K}(\mathfrak{h}) = \left\{ R \in \wedge^2 V^* \otimes \mathfrak{g} : R(u, v)w + \text{cycl. perm.} = 0, \text{ for all } u, v, w \in V \right\}$$

• Set: $\mathcal{R}_{\mathfrak{h}} = \{R_T : T \in \mathfrak{h}\} \cong \mathfrak{h}$

・ロン ・回 と ・ 回 と ・ 回 と

Special Symplectic Manifolds

• There is an injective map $\mathfrak{h} \to \mathcal{K}(\mathfrak{h})$:

$$T \mapsto R_T(u, v) \mapsto 2\omega_0(u, v)T + u \circ (Tv) - v \circ (Tu).$$
$$R_T(u, v) = 2\omega_0(u, v)T + u \circ (Tv) - v \circ (Tu),$$

where

$$\mathcal{K}(\mathfrak{h}) = \left\{ R \in \wedge^2 V^* \otimes \mathfrak{g} : R(u, v)w + \text{cycl. perm.} = 0, \text{ for all } u, v, w \in V \right\}$$

Set:
$$\mathcal{R}_{\mathfrak{h}} = \{R_T : T \in \mathfrak{h}\} \cong \mathfrak{h}$$

Definition

A torsion-free connection $\eta \in \Omega^1(\mathcal{B}_{\mathrm{Sp}_n}(M), \mathfrak{sp}_n)$ on (M, ω) is a special symplectic connection associated to $\mathfrak{h} \subset \mathfrak{sp}(V)$ if its curvature takes values in $\mathcal{R}_{\mathfrak{h}}$.

Structure Equations

Theorem (Cahen e Schwachhöfer)

Let (M,ω,η) be a special symplectic manifold associated to $\mathfrak{h}.$ Then there exists:

 \blacksquare an $H\mbox{-structure}$ over M which is compatible with η

Structure Equations

Theorem (Cahen e Schwachhöfer)

Let (M,ω,η) be a special symplectic manifold associated to $\mathfrak{h}.$ Then there exists:

 \blacksquare an $H\mbox{-structure}$ over M which is compatible with η

• maps
$$\rho: \mathcal{B}_H(M) \to \mathfrak{h}, u: \mathcal{B}_H(M) \to V$$
 and $f: \mathcal{B}_H(M) \to \mathbb{R}$

such that

$$\begin{cases} d\theta &= -\eta \wedge \theta \\ d\eta &= R_{\rho}(\theta \wedge \theta) - \eta \wedge \eta \\ d\rho &= u \circ \theta - [\eta, \rho] \\ du &= (\rho^2 + f)\theta - \eta u \\ df &= -2\omega(\rho u, \theta) \quad (= -d(\rho, \rho)) \end{cases}$$

where

$$R_{\rho}(x,y) = 2\omega(x,y)\rho + x \circ (\rho y) - y \circ (\rho x).$$

Special Symplectic Manifolds

The Classifying Lie Algebroid

$\bullet \ X \cong \mathfrak{h} \oplus V \oplus \mathbb{R}$

イロン イヨン イヨン イヨン

æ

Special Symplectic Manifolds

The Classifying Lie Algebroid

• $X \cong \mathfrak{h} \oplus V \oplus \mathbb{R}$ • $A = X \times (V \oplus \mathfrak{h})$

イロン イヨン イヨン イヨン

æ

Special Symplectic Manifolds

The Classifying Lie Algebroid

- $\blacksquare X \cong \mathfrak{h} \oplus V \oplus \mathbb{R}$
- $\bullet A = X \times (V \oplus \mathfrak{h})$

Bracket:

$$[(x,T),(y,U)](\rho,u,f) = (Ty - Ux,[T,U] - R_{\rho}(x,y))$$

Special Symplectic Manifolds

The Classifying Lie Algebroid

- $\blacksquare X \cong \mathfrak{h} \oplus V \oplus \mathbb{R}$
- $\bullet A = X \times (V \oplus \mathfrak{h})$

Bracket:

$$[(x,T),(y,U)](\rho,u,f) = (Ty - Ux,[T,U] - R_{\rho}(x,y))$$

Anchor:

$$\#(x,T)(\rho, u, f) = (u \circ x - [T, \rho], (\rho^2 + f)x - Tu, -2\omega(\rho u, x))$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Associated Poisson Manifold

•
$$F_c = \{(\rho, u, f) \in \mathfrak{h} \oplus V \oplus \mathbb{R} : f + (\rho, \rho) = c\} \subset \mathfrak{h} \oplus V \oplus \mathbb{R}$$

イロン イヨン イヨン イヨン

æ

Associated Poisson Manifold

- $\bullet \ F_c = \{(\rho, u, f) \in \mathfrak{h} \oplus V \oplus \mathbb{R} : f + (\rho, \rho) = c\} \subset \mathfrak{h} \oplus V \oplus \mathbb{R}$
- The restriction $A_c = A|_{F_c}$ is the cotangent Lie algebroid of a Poisson manifold.

イロン イボン イヨン イヨン 三日

Associated Poisson Manifold

- $\bullet \ F_c = \{(\rho, u, f) \in \mathfrak{h} \oplus V \oplus \mathbb{R} : f + (\rho, \rho) = c\} \subset \mathfrak{h} \oplus V \oplus \mathbb{R}$
- The restriction $A_c = A|_{F_c}$ is the cotangent Lie algebroid of a Poisson manifold.
- All of these Poisson structures may be put together into an integrable Poisson structure on $\mathfrak{h} \oplus V \oplus \mathbb{R}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Associated Poisson Manifold

- $\bullet \ F_c = \{(\rho, u, f) \in \mathfrak{h} \oplus V \oplus \mathbb{R} : f + (\rho, \rho) = c\} \subset \mathfrak{h} \oplus V \oplus \mathbb{R}$
- The restriction $A_c = A|_{F_c}$ is the cotangent Lie algebroid of a Poisson manifold.
- All of these Poisson structures may be put together into an integrable Poisson structure on $\mathfrak{h} \oplus V \oplus \mathbb{R}$

$$0 \longrightarrow \mathbb{L} \longrightarrow T^*(\mathfrak{h}^* \oplus V^* \oplus \mathbb{R}) \longrightarrow A \longrightarrow 0$$

Central Extension of \boldsymbol{A} by a line bundle

イロン イ部ン イヨン イヨン 三日

The Classifying Lie Algebroid of a Geometric Structure
Special Symplectic Manifolds
Moduli

Recall that the information about the moduli space is encoded on the foliation on X.

・ロン ・回と ・ヨン・

æ

Moduli

Recall that the information about the moduli space is encoded on the foliation on X.

Leafs of \boldsymbol{A}

The leafs of A in $X = \mathfrak{h} \oplus V \oplus \mathbb{R}$ coincide with the symplectic leafs of $T^*(\mathfrak{h}^* \oplus V^* \oplus \mathbb{R})$.

イロン イヨン イヨン イヨン

Symmetries

Recall that the information about the symmetries is encoded in the isotropy Lie algebras of $A \rightarrow X$.

(1日) (日) (日)

Symmetries

Recall that the information about the symmetries is encoded in the isotropy Lie algebras of $A \rightarrow X$.

Isotropy Lie algebras

Let \mathfrak{s}_{λ_0} be the isotropy Lie algebra of A at $\lambda_0 = (\rho, u, f) \in \mathfrak{h} \oplus V \oplus \mathbb{R}$, and \mathfrak{g}_{λ_0} the isotropy Lie algebra of $T^*(\mathfrak{h} \oplus V \oplus \mathbb{R})$. Then

$$0 \longrightarrow \mathbb{R}\lambda_0 \longrightarrow \mathfrak{g}_{\lambda_0} \longrightarrow \mathfrak{s}_{\lambda_0} \longrightarrow 0$$

is an extension of Lie algebras. In particular,

$$\dim \mathfrak{s}_{\lambda_0} = \dim \mathfrak{g}_{\lambda_0} - 1.$$

- - 4 回 ト - 4 回 ト

Special Symplectic Manifolds

Construction of Examples

"Integrating" the extension

$$0 \longrightarrow \mathbb{L} \longrightarrow T^*(\mathfrak{h}^* \oplus V^* \oplus \mathbb{R}) \longrightarrow A \longrightarrow 0,$$

we obtain:

- 4 回 2 - 4 回 2 - 4 回 2 - 4

-Special Symplectic Manifolds

Construction of Examples

"Integrating" the extension

$$0 \longrightarrow \mathbb{L} \longrightarrow T^*(\mathfrak{h}^* \oplus V^* \oplus \mathbb{R}) \longrightarrow A \longrightarrow 0,$$

we obtain:

Theorem (Cahen and Schwachhöfer)

If $s^{-1}(\lambda)/\exp(\mathbb{R}\lambda)$ is a smooth manifold, then each of its points has a neighborhood which can be embedded in the total space $\mathcal{B}_H(M)$ of an *H*-structure corresponding to a special symplectic manifold.

-Special Symplectic Manifolds

Construction of Examples

"Integrating" the extension

$$0 \longrightarrow \mathbb{L} \longrightarrow T^*(\mathfrak{h}^* \oplus V^* \oplus \mathbb{R}) \longrightarrow A \longrightarrow 0,$$

we obtain:

Theorem (Cahen and Schwachhöfer)

If $s^{-1}(\lambda)/\exp(\mathbb{R}\lambda)$ is a smooth manifold, then each of its points has a neighborhood which can be embedded in the total space $\mathcal{B}_H(M)$ of an *H*-structure corresponding to a special symplectic manifold.

Moreover, if

$$M_{\lambda} = \frac{(\mathbf{s}^{-1}(\lambda)/\exp(\mathbb{R}\lambda))}{H}$$

is a smooth manifold, then it is a special symplectic manifold.

Thank You!!!

・ロト ・回ト ・ヨト ・ヨト

æ