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Relations between different objects on a Riemannian manifold (Mn, g):

geometric
structures

curvature, contact str.,

almost complex str. . .

solutions of
field eqs.

Ric = λ · g

Einstein eq., twistor eq.,

Killing eq., parallel tensor / spinor. . .

new invariant connection
∇ and its holonomy

adapted connection,

Berger’s thm if ∇ = ∇
g

Hol(M ;∇) ⊂ SO(n)

• Henceforth: ∇g = Levi-Civita connection
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Holonomy group of a connection ∇

• γ: closed path through p ∈M ,
Pγ : TpM → TpM parallel transport

• Pγ isometry ⇔: ∇ metric

• C0(p): null-homotopic γ’s

Hol0(M ;∇) := {Pγ | γ ∈ C0(p)}
⊂ SO(n)

p

TpMPγ

γ
M

Thm (Berger / Simons, ≥ 1955). The reduced holonomy Hol0(M ;∇g)
of the LC connection ∇g is either that of a symmetric space or

Sp(n)Sp(1) [qK], U(n) [K], SU(n) [CY], Sp(n) [hK], G2, Spin(7)
︸ ︷︷ ︸

Ric=0

.

All of them admit a ∇g-parallel object and will be called

‘integrable geometries’
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Examples of non-integrable geometries

Example 1: almost Hermitian mnfd

• (S6, gcan): S6 ⊂ R7 has an almost
complex structure J (J2 = −id)
inherited from ”cross product” on R

7.

• J is not integrable, ∇gJ 6= 0

• Problem (Hopf): Does S6 admit
an (integrable) complex structure ?

x TxS
2

v
J(v) := x× v

S2

for S2 ⊂ R3:

J is an example of a nearly Kähler structure: ∇g
XJ(X) = 0

More generally: (M2n, g, J) almost Hermitian mnfd:
J almost complex structure, g a compatible Riemannian metric.

Fact: structure group G ⊂ U(n) ⊂ SO(2n), but Hol0(∇
g) = SO(2n).

Examples: twistor spaces (CP
3, F1,2) with their nK str., SL(2,C)R,

compact complex mnfd with b1(M) odd (6 ∃ Kähler metric) . . .
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Example 2 – contact mnfd

• (M2n+1, g, η) contact mnfd,
η: 1-form (∼= vector field)

• 〈η〉⊥ admits an almost complex
structure J compatible with g

η

J = −∇gη

TxM

〈η〉⊥

• Contact condition: η ∧ (dη)n 6= 0 ⇒ ∇gη 6= 0, i. e. contact structures
are never integrable ! (no analogue on Berger’s list)

• structure group: G ⊂ U(n) ⊂ SO(2n+ 1)

Examples: S2n+1 = SU(n+1)
SU(n) , V4,2 = SO(4)

SO(2), M
11 = G2

Sp(1), M
31 = F4

Sp(3)

Example 3 – Mnfds with G2- or Spin(7)-structure (dim = 7, 8)

• G2 has a 7-dimensional irred. representation,

• Spin(7) has a spin representation of dimension 23 = 8.

Examples: S7 = Spin(7)
G2

, MAW
k,l = SU(3)

U(1)k,l
, V5,2 = SO(5)

SO(3), M
8 = G2

SO(4). . .
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Example 4 – 5-dim. SO(3)-mnfd [Bobienski-Nurowski, 2007]

• modelled on the geometry of the symmetric space SU(3)/SO(3)

∃ two nonequivalent embeddings SO(3) → SO(5):

∗ as upper diagonal block matrices:‘SO(3)st’

∗ by the irreducible 5-dim. representation of SO(3): ‘SO(3)ir’

Fact: SO(3)ir is the isotropy group of a symmetric (3, 0)-tensor on R
5

that is deeply related to Cartan’s isoparametric hypersufaces in spheres

Dfn. A 5-manifold with a SO(3)ir-structure is a manifold with a reduction
of the frame bundle to SO(3)ir.

Examples: SO(4)/SO(2), solvable Lie groups [Chiossi-Fino, 2008],
topological constructions, but not S5, RP5. . .

Thm. If M5 admits a SO(3)ir-structure, then p1(M
5) ∈ H4(M5; Z) is

divisible by 5, w1(M
5) = 0, w4(M

5) = 0, w5(M
5) = 0.

[IA-Friedrich, 2009]
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N.B. Non-integrable geometries are not necessarily homogeneous. Some
of those who are homogeneous fall into the following class:

Example 5 – naturally reductive homogeneous space

M = G/H reductive space, g = h ⊕ m, 〈, 〉 a scalar product on m.

The PFB G→ G/H induces a metric connection ∇ with torsion

T (X,Y,Z) := −〈[X,Y ]m, Z〉.

Dfn. M = G/H is called naturally reductive if T ∈ Λ3(M)

Naturally reductive spaces have the properties ∇T = ∇R = 0
direct generalisation of symmetric spaces

Special geometries ∼=
mnfds with geometric structures that are
not defined through ∇g-parallel objects
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General philosophy:

Given a mnfd Mn with G-structure (G ⊂ SO(n)), replace ∇g by a
metric connection ∇ with torsion that preserves the geometric structure!

torsion: T (X,Y, Z) := g(∇XY −∇YX − [X,Y ], Z)

Special case: require T ∈ Λ3(Mn) (⇔ same geodesics as ∇g)

⇒ g(∇XY,Z) = g(∇g
XY,Z) + 1

2 T (X,Y,Z)

1) representation theory yields

- a clear answer which G-structures admit such a connection; if existent,
it’s unique and called the ‘characteristic connection’

- a classification scheme for G-structures with characteristic connection:
Tx ∈ Λ3(TxM)

G
= V1 ⊕ . . .⊕ Vp

2) Analytic tool: Dirac operator /D of the metric connection with torsion
T/3: ‘characteristic Dirac operator’ (generalizes the Dolbeault operator)
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Difficulties:

(1) Hol0(M ;∇) needs not to be closed inside SO(n)!

(2) The holonomy representation on TM needs not to be irreducible for
irreducible manifolds! (see contact case)

Larger variety of holonomy groups possible, but

• classification impossible: no ‘Berger Theorem’

• no ‘de Rham splitting Theorem’

Thm (Holonomy Principle). If a metric connection ∇ admits a parallel
spinor / tensor α (∇α = 0), its holonomy group is contained in the
isotropy group of the parallel object,

Hol0(∇) ⊂ Iso(α) := {A ∈ SO(n) |A∗α = α}.

For (almost) all interesting objects the isotropy groups are known.
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The characteristic connection of a geometric structure

Fix G ⊂ SO(n), Λ2(Rn) ∼= so(n) = g ⊕ m, F(Mn): frame bundle of
(Mn, g).

Dfn. A geometric G-structure on Mn is a G-PFB R which is subbundle
of F(Mn): R ⊂ F(Mn).

Choose a G-adapted local ONF e1, . . . , en in R and define connection

1-forms of ∇g:

ωij(X) := g(∇g
Xei, ej), g(ei, ej) = δij ⇒ ωij + ωji = 0.

Define a skew symmetric matrix Ω with values in Λ1(Rn) ∼= Rn by
Ω(X) :=

(
ωij(X)

)
∈ so(n) = g ⊕ m und set

Γ := prm(Ω).

• Γ is a 1-Form on Mn with values in m, Γx ∈ Rn ⊗ m (x ∈ Mn)
[“intrinsic torsion”, Swann/Salamon]
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Fact: Γ = 0 ⇔ ∇g is a G-connection ⇔ Hol(∇g) ⊂ G

Via Γ, geometric G-structures R ⊂ F(Mn) correspond to irreducible
components of the G-representation Rn ⊗ m.

Thm. A geometric G-structure R ⊂ F(Mn) admits a metric G-
connection with antisymmetric torsion iff Γ lies in the image of Θ,

Θ : Λ3(Mn) → T ∗(Mn) ⊗ m, Θ(T ) :=

n∑

i=1

ei ⊗ prm(ei T ) .

If such a connection exists, it is called the characteristic connection

∇c and it is unique in all known cases; its torsion is essentially Γ and
Hol(∇c) ⊂ G.

If existent, we can thus replace the (unadapted) LC connection by some
new unique metric G-connection!
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Some characteristic connections

Example 1 – almost Hermitian mnfd [Friedrich, Ivanov 2000]

∃ a char. connection ∇ ⇔ Nijenhuis tensor g(N(X,Y ), Z) ∈ Λ3(M),

g(∇XY,Z) := g(∇g
XY,Z) + 1

2 [g(N(X,Y ), Z) + dΩ(JX, JY, JZ)]

• Hol0(∇) ⊂ U(n) ⊂ SO(2n)

• In the nearly-Kähler case it is the Gray connection and satisfies ∇T = 0
[Kirichenko, 1977]

Example 2 – contact mnfd [Friedrich, Ivanov 2000]

A large class admits a char. connection ∇, and Hol0(∇) ⊂ U(n) ⊂
SO(2n+ 1). For Sasaki manifolds, the formula is particularly simple,

g(∇XY,Z) = g(∇g
XY,Z) + 1

2η ∧ dη(X,Y,Z),

and ∇T = 0 holds. [Kowalski-Wegrzynowski, 1987 for Sasaki]
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Example: G2 structures in dimension 7

Fix G2 ⊂ SO(7), so(7) = g2 ⊕ m7 ∼= g2 ⊕ R7.

Intrinsic torsion Γ lies in R
7 ⊗m7 ∼= R

1 ⊕ g2 ⊕ S0(R
7)⊕R

7 =:
⊕4

i=1Wi

⇒ four classes of geometric G2 structures [Fernandez-Gray, ’82]

• Decomposition of 3-forms: Λ3(R7) = R1 ⊕ S0(R
7) ⊕ R7.

G2 is the isotropy group of a generic element of ω ∈ Λ3(R7):

G2 = {A ∈ SO(7) | A · ω = ω}.

Thm. A 7-dimensional Riemannian mfd (M7, g, ω) with a fixed G2

structure ω ∈ Λ3(M7) has a G2-invariant characteristic connection ∇c

⇔ the g2 component of Γ vanishes

⇔ There exists a VF β with δω = −β ω

The torsion of ∇c is then T c = − ∗ dω − 1
6(dω, ∗ω)ω + ∗(β ∧ ω) , and

∇c admits (at least) one parallel spinor.
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Examples: Explicit constructions of G2 structures:

[Friedrich-Kath, Fernandez-Gray, Fernandez-Ugarte, Aloff-Wallach, Boyer-Galicki. . . ]

M7: 3-Sasaki mnfd, corresponds to SU(2) ⊂ G2 ⊂ SO(7).

• Has 3 compatible contact structures ηi ∈ T ∗M7 and 3 Killing spinors
ψi ⇒ Ansatz:

T =

3∑

i,j=1

αijηi ∧ dηj + γη1 ∧ η2 ∧ η3, ψ =

3∑

i=1

µiψi.

Thm. Every 7-dimensional 3-Sasaki mnfd admits a P2-family of metric
connections with antisymmetric torsion and parallel spinors. Its holonomy
is G2. [IA-Friedrich, 2005]

⇒ First constructive global existence thm for parallel spinors!

We know show the relevance of parallel spinors for physics:
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Classical general relativity and electromagnetism

point particle
moves along
a curve γ

physical action:
∫

γ

A

for a potential A : 1-form

field strength
F = dA : 2-form

⇔
geometric concept

of curvature

curvature measures deviation from vacuum !



15

Modern unified models

����

string particle
moves along
a surface S

physical action:
∫

S

Ã for

a higher order potential Ã : 2-Form

higher order field strength

F = dÃ : 3-form
⇔

geometric concept
of torsion

torsion measures deviation from vacuum (“integrable case”) !
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Mathematical scheme for unified theories

No more described as Yang-Mills theories (electrodynamics, standard
model of elementary particles), but rather:

• Particles are “oscillatory states” on some high dimensional configuration
space

Y 10,11 = V 3-5 ×M5-8

V : configuration space visible to the outside, i. e. Minkowski space or
some solution from General Relativity (adS is popular here).

M : configuration space of internal symmetries = Riemannian manifold
with special geometric structure, quantized internal symmetries are
described by spinor fields.

Example: Supersymmetry transformation, transform bosons into fermions
and vice versa by tensoring with a (special) spin 1/2 field (‘Killing spinor’).

[ > 1980 Nieuwenhuizen, Strominger, Witten, Seiberg. . . ]
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Common sector of Type II string equations

• A. Strominger, 1986: (Mn, g) Riemannian Spin mnfd with

a 3-Form T, a spinor field Ψ, and a function Φ .
(field strength) (supersymmetry) (dilaton)

If one considers the metric connection ∇ with torsion T , the field eqs.
become:

• Bosonic eq.: Ric∇ + 1
2δ(T ) + 2HessΦ = 0, δ(e−2ΦT ) = 0.

• Fermionic eq.: ∇Ψ = 0, T · Ψ = 2 dΦ · Ψ.

Remarks:

• Bosonic eq. generalizes Einstein’s eq. of general relativity

• Calabi-Yau and parallel G2 or Spin(7) mfds (n = 7, 8) are exact
solution with T = 0 and Φ = const → Bergers’ list + algebraic geometry

• For T 6= 0, the relation between curvature and spinor is subtler

• ∃ models with higher order forms
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Main non existence theorem

Thm. A full solution of Strominger’s model with Φ = const satisfies
necessarily T = 0 or Ψ = 0.

[IA – M compact, 2002, general case: IA-Friedrich-Nagy-Puhle, 2005]

N.B. Need only Scal∇ = 0, not Ric∇ = 0

⇒ physical corrections or deeper meaning of the dilaton

• ∃ solutions for any 3 out of the 4 equations

• Particularly interesting: solutions of ∇Ψ = 0 (supersymmetries)

Thm. On a naturally reductive space M = G/H with Φ = const,
any solution with ∇Ψ = 0 and T · Ψ = 0 satisfies T = 0 or Ψ = 0.
[IA, 2002]

N.B. Proofs make heavy use of Dirac operators with torsion and their
Weitzenböck formulas
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Thm. Let M be a compact, Ricci-flat manifold from Berger’s list,
ψ 6= 0 a ∇-parallel spinor for some T ∈ Λ3(M) s. t. 〈dT · ψ, ψ〉 ≤ 0.
Then T = 0, i. e. only ∇g can have parallel spinors. [IA-Friedrich, 2004]

– Physics interpretation: compact vacuum solutions are ‘rigid’ –

Different situation if Mn is not compact:

Consider solvmanifolds Y 7 = N × R, n : nilpotent 6-dim. Lie algebra
( 6= h3 ⊕ h3) ⇒

1) N carries “half flat” SU(3) structure,

2) Y carries a G2 structure (ω, g) with characteristic torsion 6= 0,

3) Y carries – after a conformal change of the metric – an integrable

G2 structure (ω̃, g̃). In particular, g̃ is Ricci flat und admits (at least)
one LC-parallel spinor.
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[Gibbons, Lü, Pope, Stelle (2002): described such a metric in local coordinates]

[Heber (1998): noncompact Einstein manifolds]

[Chiossi, Fino (2004): classification of all such solvmnfds (6 cases)]

[Hitchin (2001): existence of conformal change 3)]

Thm. For n ∼= (0, 0, e15, e25, 0, e12), there exists on (Y, ω̃, g̃) a 1-
parametric family (Th, ψh) ∈ Λ3(Y )×S(Y ) s. t. every connection ∇h

with torsion Th satisfies:

∇hψh = 0.

For h = 1: Th = 0,∇h = ∇g und ψh coincides with the LC-parallel
spinor. [IA-Chiossi-Fino, 2006]

– Only example of a Riemannian mnfd carrying a Ricci-flat integrable
and a non-integrable geometry! –


