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Relations between different objects on a Riemannian manifold (M", g):

Ric=M\.g

geometric
structures

solutions of
field egs.

curvature, contact str.,

almost complex str. . .

Einstein eq., twistor eq.,
Killing eq., parallel tensor / spinor. . .

® Henceforth: VY9 = Levi-Civita connection

adapted connection,
Berger's thm if V. = VY

new invariant connection
V and its holonomy

Hol(M; V) C SO(n)




Holonomy group of a connection V

T,M
e v: closed path through p € M,
Py : T,M — T, M parallel transport
e P, isometry <: V metric
e Co(p): null-homotopic ~'s
Holo(M; V) := {P, | v € Co(p)} P
C SO(n)

Thm (Berger / Simons, > 1955). The reduced holonomy Holy(M; V9)
of the LC connection VY is either that of a symmetric space or

Sp(n)Sp(1) [aK], U(n) (K], $U(n) [CY], Sp(n) [1K], Gz, Spin(7).

All of them admit a V9-parallel object and will be called
‘integrable geometries’



Examples of non-integrable geometries

Example 1: almost Hermitian mnfd for S C R*:

¢ <S6agcan): S% C R7 has an almost J(v) :=x X0

complex structure J (J? = —id) ﬂ%) T, 52

inherited from " cross product” on R”. ‘
e .J is not integrable, VI9J # 0

e Problem (Hopf): Does S° admit S?
an (integrable) complex structure ?

J is an example of a nearly Kahler structure: V% J(X) =0

More generally: (M?" g,J) almost Hermitian mnfd:
J almost complex structure, g a compatible Riemannian metric.

Fact: structure group G C U(n) C SO(2n), but Holp(VY) = SO(2n).

Examples: twistor spaces (CP?, Fy5) with their nK str., SL(2,C)g,
compact complex mnfd with b;(M) odd ( A Kahler metric) . . .



Example 2 — contact mnfd

o (M?" 1 g.m) contact mnfd, B
n: 1-form (= vector field)

e (n)1 admits an almost complex

structure J compatible with g

e Contact condition: n A (dn)™ # 0 = V97 # 0, i.e. contact structures
are never integrable ! (no analogue on Berger's list)

e structure group: G C U(n) C SO(2n + 1)

Examples: §2n+1 = SUlntl) = 50W) a1l =

F.
SU(n) ' 42 = S0(2)" M3 = gt

Sp(3)

Sp(1)’
Example 3 — Mnfds with G- or Spin(7)-structure (dim = 7,8)
e (G5 has a 7-dimensional irred. representation,

e Spin(7) has a spin representation of dimension 23 = 8.

_ Spin(7) A SU(3) __S0O(5) G
Examples: S7 = pG2 M Vo= U(l() o V5o = 8053), M8 = 80(24). .



Example 4 — 5-dim. SO(3)-mnfd [Bobienski-Nurowski, 2007]
e modelled on the geometry of the symmetric space SU(3)/SO(3)
3 two nonequivalent embeddings SO(3) — SO(5):
* as upper diagonal block matrices:'SO(3)’
* by the irreducible 5-dim. representation of SO(3): ‘SO(3);,

Fact: SO(3);, is the isotropy group of a symmetric (3,0)-tensor on R®
that is deeply related to Cartan's isoparametric hypersufaces in spheres

Dfn. A 5-manifold with a SO(3);,-structure is a manifold with a reduction
of the frame bundle to SO(3);,.

Examples:  SO(4)/SO(2), solvable Lie groups [Chiossi-Fino, 2008],
topological constructions, but not S°, RP°. . .

Thm. If M?° admits a SO(3);,-structure, then p;(M°) € HY(M?>;Z) is
divisible by 5, w1 (M?®) = 0, wy(M?®) =0, ws(M?) = 0.

[IA-Friedrich, 2009]



N.B. Non-integrable geometries are not necessarily homogeneous. Some
of those who are homogeneous fall into the following class:

Example 5 — naturally reductive homogeneous space
M = G/H reductive space, g =h@m, (,) a scalar product on m.
The PFB G — G/H induces a metric connection V with torsion
T(X,Y,Z):=—(X,Y]|n 2).
Dfn. M = G/H is called naturally reductive if T € A3(M)

Naturally reductive spaces have the properties V' = VR =0
—» direct generalisation of symmetric spaces

mnfds with geometric structures that are

>pecial geometries = not defined through V9-parallel objects



General philosophy:

Given a mnfd M™ with G-structure (G C SO(n)), replace VY by a
metric connection NV with torsion that preserves the geometric structure!

torsion: T(X,Y,Z) = g(VxY —VyX — |X,Y], 2)

Special case: require T € A3(M") (< same geodesics as VY)

= g(VxY,Z) = g(V4Y.2)+3T(X,Y, Z)

1) representation theory yields

- a clear answer which G-structures admit such a connection; if existent,
it's unique and called the ‘characteristic connection’

- a c/assificationGscheme for GG-structures with characteristic connection:
T, e (T, M)=Vi&®...8V,

2) Analytic tool: Dirac operator D of the metric connection with torsion
T'/3: ‘characteristic Dirac operator’ (generalizes the Dolbeault operator)



Difficulties:

(1) Holp(M; V) needs not to be closed inside SO(n)!

(2) The holonomy representation on T'M needs not to be irreducible for
irreducible manifolds! (see contact case)

— Larger variety of holonomy groups possible, but
e classification impossible: no ‘Berger Theorem’

e no ‘de Rham splitting Theorem’

Thm (Holonomy Principle). If a metric connection V admits a parallel
spinor / tensor o (Va = 0), its holonomy group is contained in the
isotropy group of the parallel object,

Holp(V) C Iso(a) := {A € SO(n)|A*a = a}.

For (almost) all interesting objects the isotropy groups are known.



The characteristic connection of a geometric structure

Fix G C SO(n), A*2(R") 2 so(n) = g®m, F(M™): frame bundle of
(M", g).

Dfn. A geometric G-structure on M™ is a G-PFB 'R which is subbundle
of F(M™): R C F(M™).

Choose a (G-adapted local ONF eq,...,¢e, in R and define connection
1-forms of V9:

wij(X) = g(ngez-,ej), g(@i, Gj) = 5@' = Wi + Wji = 0.

Define a skew symmetric matrix € with values in A1(R") = R" by
Q(X) := (w;(X)) € s0(n) =g ®m und set

[':=pr, ().

e ['is a 1-Form on M™ with values in m, I', € R"®@m (z € M")

[ “intrinsic torsion”, Swann/Salamon]



Fact: I' = 0 < V9 is a G-connection < Hol(VY) C G

Via I', geometric G-structures R C F(M™) correspond to irreducible
components of the G-representation R™” ® m.

Thm. A geometric G-structure R C F(M"™) admits a metric G-
connection with antisymmetric torsion iff I' lies in the image of O,

O: AP (M™) > T*(M™")@m, O(T) := Y e ®@pry(e;aT).
1=1

If such a connection exists, it is called the characteristic connection

V¢ and it is unique in all known cases; its torsion is essentially I' and
Hol(V¢) C G.

If existent, we can thus replace the (unadapted) LC connection by some
new unique metric G-connection!
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Some characteristic connections

Example 1 — almost Hermitian mnfd [Friedrich, lvanov 2000]
3 a char. connection V < Nijenhuis tensor g(N(X,Y), Z) € A>(M),

g(VxY,Z) == g(V4Y,Z)+ 3 [g(N(X,Y),Z) + dUJI X, JY, JZ)]
e Holy(V) C U(n) C SO(2n)

e In the nearly-Kahler case it is the Gray connection and satisfies VII' = 0
[Kirichenko, 1977]

Example 2 — contact mnfd [Friedrich, Ilvanov 2000]

A large class admits a char. connection V, and Holyp(V) C U(n) C
SO(2n + 1). For Sasaki manifolds, the formula is particularly simple,

9(VxY,Z) = g(V&Y,2) +inNdn(X.Y, Z),

and V1" = 0 holds. [Kowalski-Wegrzynowski, 1987 for Sasaki]
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Example: (G5 structures in dimension 7

Fix Gy C SO(7), s0(7) = go @ m’ = g2 D R”.
Intrinsic torsion T lies in R” @ m” = R' @ g, & So(RT) & R7 = ., W,

= four classes of geometric GG, structures [Fernandez-Gray, '82]
e Decomposition of 3-forms: A3(R”) = R! @ So(R7) @ R”.
G is the isotropy group of a generic element of w € A3(R7):

Gy = {AeSO(7) | A -w=w}.

Thm. A 7-dimensional Riemannian mfd (M7, g,w) with a fixed G
structure w € A3(M7) has a Ga-invariant characteristic connection V¢

< the go component of I' vanishes
< There exists a VF 3 with ow = —f Jw

The torsion of V¢ is then T¢ = — % dw — #(dw, *w)w + *(f A w) , and
V¢ admits (at least) one parallel spinor.



Examples: Explicit constructions of (G5 structures:

[Friedrich-Kath, Fernandez-Gray, Fernandez-Ugarte, Aloff-Wallach, Boyer-Galicki. . . |
MT: 3-Sasaki mnfd, corresponds to SU(2) C G5 C SO(7).

e Has 3 compatible contact structures 1; € T*M" and 3 Killing spinors
¥; = Ansatz:

3 3
T= ) agmAdng+ymAnAns, ¥ =Y ;.
i =1 i=1

Thm. Every 7-dimensional 3-Sasaki mnfd admits a P?-family of metric
connections with antisymmetric torsion and parallel spinors. Its holonomy
is Gis. [IA-Friedrich, 2005]

—> First constructive global existence thm for parallel spinors!

We know show the relevance of parallel spinors for physics:
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Classical general relativity and electromagnetism

moves along physical action: [ A
point particle ot

a curve 7y for a potential A : 1-form
field strength - geometric concept
F=dA: 2-form of curvature

curvature measures deviation from vacuum ! 14



Modern unified models

-~

moves along physical action: gﬁ for

string particle

a surface 5 a higher order potential A : 2-Form
higher order field strength o geometric concept
F=dA : 3-form of torsion

torsion measures deviation from vacuum ( “integrable case”) ! e



Mathematical scheme for unified theories

No more described as Yang-Mills theories (electrodynamics, standard
model of elementary particles), but rather:

e Particles are “oscillatory states” on some high dimensional configuration

Space
YlO,ll _ V3—5 < M5—8

V. configuration space visible to the outside, i.e. Minkowski space or
some solution from General Relativity (adS is popular here).

M : configuration space of internal symmetries = Riemannian manifold
with special geometric structure, quantized internal symmetries are
described by spinor fields.

Example: Supersymmetry transformation, transform bosons into fermions
and vice versa by tensoring with a (special) spin 1/2 field (‘Killing spinor’).

[ > 1980 Nieuwenhuizen, Strominger, Witten, Seiberg. . .| 16



Common sector of Type Il string equations

e A. Strominger, 1986: (M™, g) Riemannian Spin mnfd with

a 3-Form T, a spinor field ¥, and a function ®.
(field strength) (supersymmetry) (dilaton)

If one considers the metric connection V with torsion 7', the field egs.
become:

o Bosonic eq.: Ric¥ + 25(T) + 2Hess® = 0, (e 2?T) = 0.
e Fermioniceq.: V¥ =0, T -V = 2d® -V,

Remarks:

e Bosonic eq. generalizes Einstein’'s eq. of general relativity

e Calabi-Yau and parallel G5 or Spin(7) mfds (n = 7,8) are exact
solution with 7" = 0 and & = const — Bergers' list + algebraic geometry

e For T' # 0, the relation between curvature and spinor is subtler

e 1 models with higher order forms 17



Main non existence theorem

Thm. A full solution of Strominger's model with & = const satisfies
necessarily T'=0 or ¥ = 0.

[IA — M compact, 2002, general case: |A-Friedrich-Nagy-Puhle, 2005]
N.B. Need only Scal¥ = 0, not Ric¥ =0
—> physical corrections or deeper meaning of the dilaton
e J solutions for any 3 out of the 4 equations
e Particularly interesting: solutions of V¥ = (0 (supersymmetries)

Thm. On a naturally reductive space M = G/H with & = const,
any solution with V¥ = 0 and T"- W = 0 satisfies 7' =0 or ¥ = 0.
[IA, 2002]

N.B. Proofs make heavy use of Dirac operators with torsion and their
Weitzenbock formulas
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Thm. Let M be a compact, Ricci-flat manifold from Berger's list,
) # 0 a V-parallel spinor for some T' € A3(M) s.t. {(dT -,) < 0.
Then T"= 0, i.e. only V9 can have parallel spinors. [IA-Friedrich, 2004]

— Physics interpretation: compact vacuum solutions are ‘rigid’ —

Different situation if M™ is not compact:

Consider solvmanifolds Y7 = N x R, n : nilpotent 6-dim. Lie algebra

(# b3 @ b3) =
1) N carries "half flat” SU(3) structure,

2) Y carries a G4 structure (w, g) with characteristic torsion # 0,

3) Y carries — after a conformal change of the metric — an integrable
G4 structure (@, g). In particular, g is Ricci flat und admits (at least)
one LC-parallel spinor.
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[Gibbons, Lii, Pope, Stelle (2002): described such a metric in local coordinates]
[Heber (1998): noncompact Einstein manifolds]

[Chiossi, Fino (2004): classification of all such solvmnfds (6 cases)]

[Hitchin (2001): existence of conformal change 3)]

Thm. For n = (0,0, e15,€25,0,e12), there exists on (Y,w,g) a 1-
parametric family (T}, ) € A3(Y) x S(Y) s.t. every connection V"
with torsion T3} satisfies:

Vi, = 0.

For h =1: T}, = 0,V" = V9 und 1y, coincides with the LC-parallel
spinor. [IA-Chiossi-Fino, 2006]

— Only example of a Riemannian mnfd carrying a Ricci-flat integrable
and a non-integrable geometry! —
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