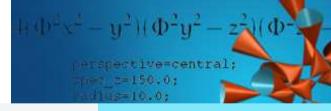
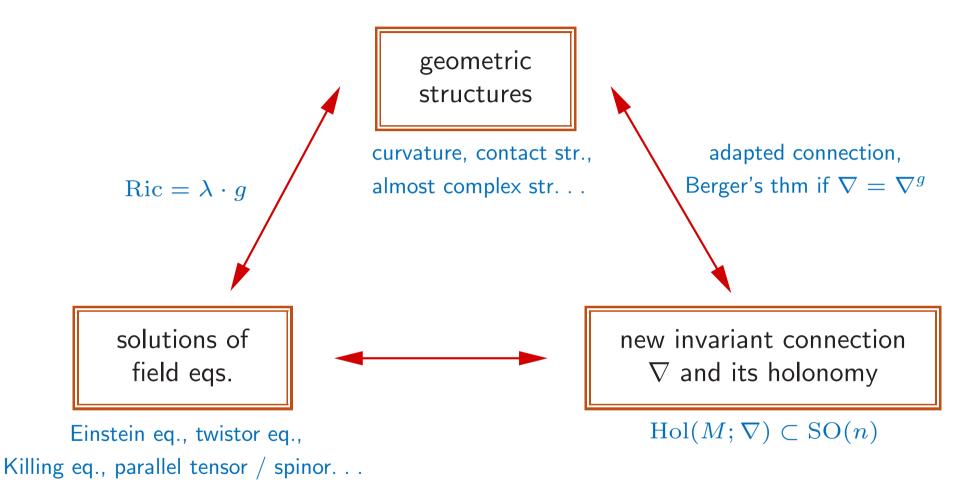


Connections and Dirac operators with torsion

Prof. Dr. habil. Ilka Agricola Philipps-Universität Marburg



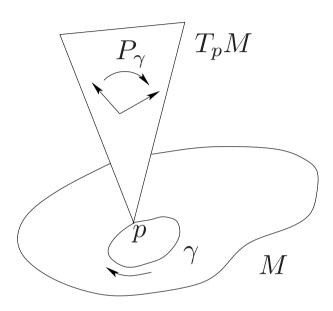
XVIII International Fall Workshop on Geometry and Physics September 2009 Relations between different objects on a Riemannian manifold (M^n, g) :



• Henceforth: $\nabla^g = \text{Levi-Civita connection}$

Holonomy group of a connection ∇

- $\gamma:$ closed path through $p\in M$, $P_{\gamma}:T_pM\to T_pM \text{ parallel transport}$
- P_{γ} isometry $\Leftrightarrow: \nabla$ metric
- $C_0(p)$: null-homotopic γ 's Hol₀ $(M; \nabla) := \{ P_\gamma \mid \gamma \in C_0(p) \}$ \subset SO(n)



Thm (Berger / Simons, ≥ 1955). The reduced holonomy $\operatorname{Hol}_0(M; \nabla^g)$ of the LC connection ∇^g is either that of a symmetric space or

 $\operatorname{Sp}(n)\operatorname{Sp}(1)$ [qK], U(n) [K], $\operatorname{SU}(n)$ [CY], $\operatorname{Sp}(n)$ [hK], G_2 , $\operatorname{Spin}(7)$. Ric=0

All of them admit a ∇^g -parallel object and will be called **integrable geometries**'

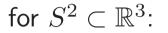
Examples of non-integrable geometries

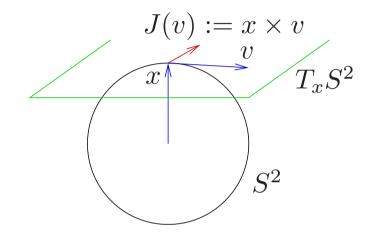
Example 1: almost Hermitian mnfd

• (S^6, g_{can}) : $S^6 \subset \mathbb{R}^7$ has an almost complex structure J $(J^2 = -id)$ inherited from "cross product" on \mathbb{R}^7 .

• J is not integrable, $\nabla^g J \neq 0$

• **Problem (Hopf):** Does S^6 admit an (integrable) complex structure ?





J is an example of a nearly Kähler structure: $\nabla_X^g J(X) = 0$

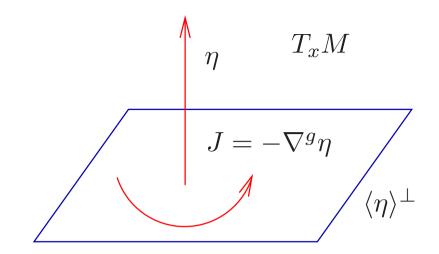
More generally: (M^{2n}, g, J) almost Hermitian mnfd: *J* almost complex structure, *g* a compatible Riemannian metric.

Fact: structure group $G \subset U(n) \subset SO(2n)$, but $Hol_0(\nabla^g) = SO(2n)$.

Examples: twistor spaces $(\mathbb{CP}^3, F_{1,2})$ with their nK str., $SL(2, \mathbb{C})_{\mathbb{R}}$, compact complex mnfd with $b_1(M)$ odd ($\not\exists$ Kähler metric)...

Example 2 – contact mnfd

- (M^{2n+1}, g, η) contact mnfd, η : 1-form (\cong vector field)
- $\langle \eta \rangle^{\perp}$ admits an almost complex structure J compatible with g



- Contact condition: $\eta \wedge (d\eta)^n \neq 0 \Rightarrow \nabla^g \eta \neq 0$, i.e. contact structures are never integrable ! (no analogue on Berger's list)
- structure group: $G \subset U(n) \subset SO(2n+1)$

Examples:
$$S^{2n+1} = \frac{\mathrm{SU}(n+1)}{\mathrm{SU}(n)}$$
, $V_{4,2} = \frac{\mathrm{SO}(4)}{\mathrm{SO}(2)}$, $M^{11} = \frac{G_2}{\mathrm{Sp}(1)}$, $M^{31} = \frac{F_4}{\mathrm{Sp}(3)}$

Example 3 – Mnfds with G_2 - or Spin(7)-structure (dim = 7,8)

- G_2 has a 7-dimensional irred. representation,
- Spin(7) has a spin representation of dimension $2^3 = 8$. Examples: $S^7 = \frac{\text{Spin}(7)}{G_2}$, $M_{k,l}^{AW} = \frac{\text{SU}(3)}{\text{U}(1)_{k,l}}$, $V_{5,2} = \frac{\text{SO}(5)}{\text{SO}(3)}$, $M^8 = \frac{G_2}{\text{SO}(4)}$...

Example 4 – 5-dim. SO(3)-mnfd

- \bullet modelled on the geometry of the symmetric space ${\rm SU}(3)/{\rm SO}(3)$
- \exists two nonequivalent embeddings $SO(3) \rightarrow SO(5)$:

* as upper diagonal block matrices: $SO(3)_{st}$

* by the irreducible 5-dim. representation of SO(3): 'SO(3)_{ir}'

Fact: $SO(3)_{ir}$ is the isotropy group of a symmetric (3,0)-tensor on \mathbb{R}^5 that is deeply related to Cartan's isoparametric hypersurfaces in spheres

Dfn. A 5-manifold with a $SO(3)_{ir}$ -structure is a manifold with a reduction of the frame bundle to $SO(3)_{ir}$.

Examples: SO(4)/SO(2), solvable Lie groups [Chiossi-Fino, 2008], topological constructions, but not S^5 , \mathbb{RP}^5 ...

Thm. If M^5 admits a $SO(3)_{ir}$ -structure, then $p_1(M^5) \in H^4(M^5;\mathbb{Z})$ is divisible by 5, $w_1(M^5) = 0$, $w_4(M^5) = 0$, $w_5(M^5) = 0$.

[IA-Friedrich, 2009] 5

N.B. Non-integrable geometries are not necessarily homogeneous. Some of those who *are* homogeneous fall into the following class:

Example 5 – naturally reductive homogeneous space

M = G/H reductive space, $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$, \langle, \rangle a scalar product on \mathfrak{m} .

The PFB $G \to G/H$ induces a metric connection ∇ with torsion

 $T(X, Y, Z) := -\langle [X, Y]_{\mathfrak{m}}, Z \rangle.$

Dfn. M = G/H is called *naturally reductive* if $T \in \Lambda^3(M)$

Naturally reductive spaces have the properties $\nabla T = \nabla \mathcal{R} = 0$ \rightarrow direct generalisation of symmetric spaces

Special geometries \cong mnfds with geometric structures that are not defined through ∇^g -parallel objects

General philosophy:

Given a mnfd M^n with G-structure $(G \subset SO(n))$, replace ∇^g by a metric connection ∇ with torsion that preserves the geometric structure!

torsion:
$$T(X, Y, Z) := g(\nabla_X Y - \nabla_Y X - [X, Y], Z)$$

Special case: require $T \in \Lambda^3(M^n)$ (\Leftrightarrow same geodesics as ∇^g)

$$\Rightarrow g(\nabla_X Y, Z) = g(\nabla_X^g Y, Z) + \frac{1}{2}T(X, Y, Z)$$

1) representation theory yields

- a clear answer *which G*-structures admit such a connection; if existent, it's unique and called the *'characteristic connection'*

- a *classification scheme* for *G*-structures with characteristic connection: $T_x \in \Lambda^3(T_x M) \stackrel{G}{=} V_1 \oplus \ldots \oplus V_p$

2) Analytic tool: Dirac operator D of the metric connection with torsion T/3: *characteristic Dirac operator*' (generalizes the Dolbeault operator) ₇

Difficulties:

(1) $\operatorname{Hol}_0(M; \nabla)$ needs not to be closed inside $\operatorname{SO}(n)!$

(2) The holonomy representation on TM needs not to be irreducible for irreducible manifolds! (see contact case)

---- Larger variety of holonomy groups possible, but

- classification impossible: no 'Berger Theorem'
- no 'de Rham splitting Theorem'

Thm (Holonomy Principle). If a metric connection ∇ admits a parallel spinor / tensor α ($\nabla \alpha = 0$), its holonomy group is contained in the isotropy group of the parallel object,

$$\operatorname{Hol}_0(\nabla) \subset \operatorname{Iso}(\alpha) := \{A \in \operatorname{SO}(n) \,|\, A^* \alpha = \alpha\}.$$

For (almost) all interesting objects the isotropy groups are known.

The characteristic connection of a geometric structure

Fix $G \subset SO(n)$, $\Lambda^2(\mathbb{R}^n) \cong \mathfrak{so}(n) = \mathfrak{g} \oplus \mathfrak{m}$, $\mathcal{F}(M^n)$: frame bundle of (M^n, g) .

Dfn. A geometric *G*-structure on M^n is a *G*-PFB \mathcal{R} which is subbundle of $\mathcal{F}(M^n)$: $\mathcal{R} \subset \mathcal{F}(M^n)$.

Choose a *G*-adapted local ONF e_1, \ldots, e_n in \mathcal{R} and define *connection* 1-forms of ∇^g :

$$\omega_{ij}(X) := g(\nabla_X^g e_i, e_j), \quad g(e_i, e_j) = \delta_{ij} \implies \omega_{ij} + \omega_{ji} = 0.$$

Define a skew symmetric matrix Ω with values in $\Lambda^1(\mathbb{R}^n) \cong \mathbb{R}^n$ by $\Omega(X) := (\omega_{ij}(X)) \in \mathfrak{so}(n) = \mathfrak{g} \oplus \mathfrak{m}$ und set

 $\Gamma := \operatorname{pr}_{\mathfrak{m}}(\Omega).$

• Γ is a 1-Form on M^n with values in \mathfrak{m} , $\Gamma_x \in \mathbb{R}^n \otimes \mathfrak{m}$ $(x \in M^n)$ ["intrinsic torsion", Swann/Salamon] Fact: $\Gamma = 0 \Leftrightarrow \nabla^g$ is a *G*-connection $\Leftrightarrow \operatorname{Hol}(\nabla^g) \subset G$

Via Γ , geometric *G*-structures $\mathcal{R} \subset \mathcal{F}(M^n)$ correspond to irreducible components of the *G*-representation $\mathbb{R}^n \otimes \mathfrak{m}$.

Thm. A geometric *G*-structure $\mathcal{R} \subset \mathcal{F}(M^n)$ admits a metric *G*-connection with antisymmetric torsion iff Γ lies in the image of Θ ,

$$\Theta: \Lambda^3(M^n) \to T^*(M^n) \otimes \mathfrak{m}, \quad \Theta(T) := \sum_{i=1}^n e_i \otimes \operatorname{pr}_{\mathfrak{m}}(e_i \, \lrcorner \, T).$$

If such a connection exists, it is called the *characteristic connection* ∇^c and it is unique in all known cases; its torsion is essentially Γ and $\operatorname{Hol}(\nabla^c) \subset G$.

If existent, we can thus replace the (unadapted) LC connection by some new unique metric *G*-connection!

Some characteristic connections

Example 1 - almost Hermitian mnfd[Friedrich, Ivanov 2000] \exists a char. connection $\nabla \Leftrightarrow$ Nijenhuis tensor $g(N(X,Y),Z) \in \Lambda^3(M)$, $g(\nabla_X Y,Z) := g(\nabla_X^g Y,Z) + \frac{1}{2}[g(N(X,Y),Z) + d\Omega(JX,JY,JZ)]$

- $\operatorname{Hol}_0(\nabla) \subset \operatorname{U}(n) \subset \operatorname{SO}(2n)$
- In the nearly-Kähler case it is the *Gray connection* and satisfies $\nabla T = 0$ [Kirichenko, 1977]

Example 2 – contact mnfd

[Friedrich, Ivanov 2000]

A large class admits a char. connection ∇ , and $\operatorname{Hol}_0(\nabla) \subset \operatorname{U}(n) \subset \operatorname{SO}(2n+1)$. For Sasaki manifolds, the formula is particularly simple,

$$g(\nabla_X Y, Z) = g(\nabla_X^g Y, Z) + \frac{1}{2}\eta \wedge d\eta(X, Y, Z),$$

and $\nabla T = 0$ holds.

[Kowalski-Wegrzynowski, 1987 for Sasaki] 11

Example: G_2 structures in dimension 7

Fix $G_2 \subset SO(7)$, $\mathfrak{so}(7) = \mathfrak{g}_2 \oplus \mathfrak{m}^7 \cong \mathfrak{g}_2 \oplus \mathbb{R}^7$. Intrinsic torsion Γ lies in $\mathbb{R}^7 \otimes \mathfrak{m}^7 \cong \mathbb{R}^1 \oplus \mathfrak{g}_2 \oplus S_0(\mathbb{R}^7) \oplus \mathbb{R}^7 =: \bigoplus_{i=1}^4 W_i$

⇒ four classes of geometric G_2 structures [Fernandez-Gray, '82] • Decomposition of 3-forms: $\Lambda^3(\mathbb{R}^7) = \mathbb{R}^1 \oplus S_0(\mathbb{R}^7) \oplus \mathbb{R}^7$.

 G_2 is the isotropy group of a generic element of $\omega \in \Lambda^3(\mathbb{R}^7)$:

$$G_2 = \{A \in \mathrm{SO}(7) \mid A \cdot \omega = \omega\}.$$

Thm. A 7-dimensional Riemannian mfd (M^7, g, ω) with a fixed G_2 structure $\omega \in \Lambda^3(M^7)$ has a G_2 -invariant characteristic connection ∇^c

 $\Leftrightarrow \text{ the } \mathfrak{g}_2 \text{ component of } \Gamma \text{ vanishes}$ $\Leftrightarrow \text{ There exists a VF } \beta \text{ with } \delta \omega = -\beta \, \lrcorner \, \omega$

The torsion of ∇^c is then $T^c = -* d\omega - \frac{1}{6}(d\omega, *\omega)\omega + *(\beta \wedge \omega)$, and ∇^c admits (at least) one parallel spinor.

Examples: Explicit constructions of G_2 structures:

[Friedrich-Kath, Fernandez-Gray, Fernandez-Ugarte, Aloff-Wallach, Boyer-Galicki. . .]

 M^7 : 3-Sasaki mnfd, corresponds to $SU(2) \subset G_2 \subset SO(7)$.

• Has 3 compatible contact structures $\eta_i \in T^*M^7$ and 3 Killing spinors $\psi_i \Rightarrow$ Ansatz:

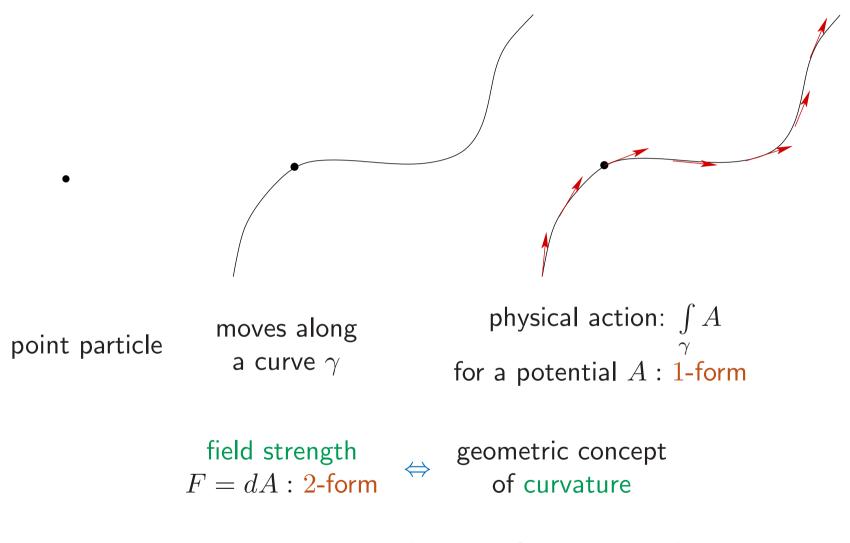
$$T = \sum_{i,j=1}^{3} \alpha_{ij} \eta_i \wedge d\eta_j + \gamma \eta_1 \wedge \eta_2 \wedge \eta_3, \quad \psi = \sum_{i=1}^{3} \mu_i \psi_i.$$

Thm. Every 7-dimensional 3-Sasaki mnfd admits a \mathbb{P}^2 -family of metric connections with antisymmetric torsion and parallel spinors. Its holonomy is G_2 . [IA-Friedrich, 2005]

 \Rightarrow First <u>constructive</u> global existence thm for parallel spinors!

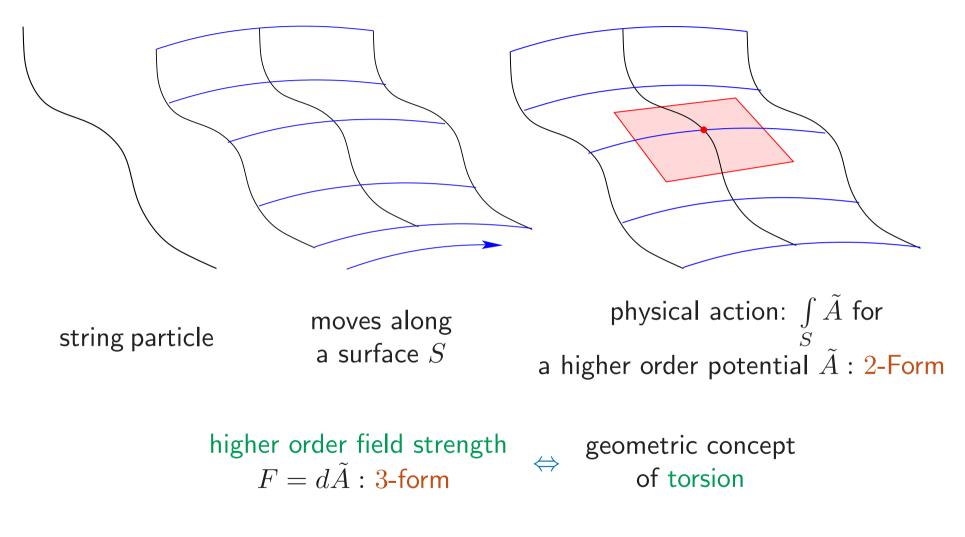
We know show the relevance of parallel spinors for physics:

Classical general relativity and electromagnetism



curvature measures deviation from vacuum !

Modern unified models



torsion measures deviation from vacuum ("integrable case") !

Mathematical scheme for unified theories

No more described as Yang-Mills theories (electrodynamics, standard model of elementary particles), but rather:

• Particles are "oscillatory states" on some high dimensional configuration space

$$Y^{10,11} = V^{3-5} \times M^{5-8}$$

V: configuration space visible to the outside, i.e. Minkowski space or some solution from General Relativity (adS is popular here).

M: configuration space of *internal symmetries* = Riemannian manifold with special geometric structure, quantized internal symmetries are described by spinor fields.

Example: Supersymmetry transformation, transform bosons into fermions and vice versa by tensoring with a (special) spin 1/2 field ('Killing spinor').

[>1980 Nieuwenhuizen, Strominger, Witten, Seiberg. . .] 16

Common sector of Type II string equations

• A. Strominger, 1986: (M^n, g) Riemannian Spin mnfd with a 3-Form T, a spinor field Ψ , and a function Φ . (field strength) (supersymmetry) (dilaton)

If one considers the metric connection ∇ with torsion T, the field eqs. become:

- Bosonic eq.: $\operatorname{Ric}^{\nabla} + \frac{1}{2}\delta(T) + 2\operatorname{Hess}\Phi = 0, \quad \delta(e^{-2\Phi}T) = 0.$
- Fermionic eq.: $\nabla \Psi = 0$, $T \cdot \Psi = 2 d\Phi \cdot \Psi$.

Remarks:

- Bosonic eq. generalizes Einstein's eq. of general relativity
- Calabi-Yau and parallel G_2 or Spin(7) mfds (n = 7, 8) are exact solution with T = 0 and $\Phi = const \rightarrow Bergers' list + algebraic geometry$
- For $T \neq 0$, the relation between curvature and spinor is subtler
- ∃ models with higher order forms

Main non existence theorem

Thm. A full solution of Strominger's model with $\Phi = \text{const satisfies}$ necessarily T = 0 or $\Psi = 0$.

[IA - M compact, 2002, general case: IA-Friedrich-Nagy-Puhle, 2005]

N.B. Need only $\mathrm{Scal}^{\nabla} = 0$, not $\mathrm{Ric}^{\nabla} = 0$

 \Rightarrow physical corrections or deeper meaning of the dilaton

- \exists solutions for any 3 out of the 4 equations
- Particularly interesting: solutions of $\nabla \Psi = 0$ (supersymmetries)

Thm. On a naturally reductive space M = G/H with $\Phi = \text{const}$, any solution with $\nabla \Psi = 0$ and $T \cdot \Psi = 0$ satisfies T = 0 or $\Psi = 0$. [IA, 2002]

N.B. Proofs make heavy use of Dirac operators with torsion and their Weitzenböck formulas

Thm. Let M be a *compact*, Ricci-flat manifold from Berger's list, $\psi \neq 0$ a ∇ -parallel spinor for some $T \in \Lambda^3(M)$ s.t. $\langle dT \cdot \psi, \psi \rangle \leq 0$. Then T = 0, i.e. *only* ∇^g can have parallel spinors. [IA-Friedrich, 2004]

- Physics interpretation: compact vacuum solutions are 'rigid' -

Different situation if M^n is not compact:

Consider solvmanifolds $Y^7 = N \times \mathbb{R}$, \mathfrak{n} : nilpotent 6-dim. Lie algebra $(\neq \mathfrak{h}_3 \oplus \mathfrak{h}_3) \Rightarrow$

1) N carries "half flat" SU(3) structure,

2) Y carries a G_2 structure (ω, g) with characteristic torsion $\neq 0$,

3) Y carries – after a conformal change of the metric – an *integrable* G_2 structure $(\tilde{\omega}, \tilde{g})$. In particular, \tilde{g} is Ricci flat und admits (at least) one LC-parallel spinor.

[Gibbons, Lü, Pope, Stelle (2002): described such a metric in local coordinates]

[Heber (1998): noncompact Einstein manifolds]

[Chiossi, Fino (2004): classification of all such solvmnfds (6 cases)]

[Hitchin (2001): existence of conformal change 3)]

Thm. For $\mathfrak{n} \cong (0, 0, e_{15}, e_{25}, 0, e_{12})$, there exists on $(Y, \tilde{\omega}, \tilde{g})$ a 1-parametric family $(T_h, \psi_h) \in \Lambda^3(Y) \times S(Y)$ s.t. every connection ∇^h with torsion T_h satisfies:

$$\nabla^h \psi_h = 0.$$

For h = 1: $T_h = 0$, $\nabla^h = \nabla^g$ und ψ_h coincides with the LC-parallel spinor. [IA-Chiossi-Fino, 2006]

 Only example of a Riemannian mnfd carrying a Ricci-flat integrable and a non-integrable geometry!