Moving Frames

Peter J. Olver

University of Minnesota

http://www.math.umn.edu/ ~olver

Benasque, September 2009

History of Moving Frames

Classical contributions:

M. Bartels (~1800), J. Serret, J. Frénet, G. Darboux, É. Cotton,

Élie Cartan

Modern developments: (1970's)
S.S. Chern, M. Green, P. Griffiths, G. Jensen, T. Ivey, J. Landsberg, ...

The equivariant approach: (1997 -)
PJO, M. Fels, G. Marí-Beffa, I. Kogan, J. Cheh, J. Pohjanpelto, P. Kim, M. Boutin, D. Lewis, E. Mansfield, E. Hubert, E. Shemyakova, O. Morozov, R. McLenaghan, R. Smirnov, J. Yue, A. Nikitin, J. Patera, ...

Moving Frame - Space Curves

$$
\begin{array}{ccc}
\text { tangent } & \text { normal } & \text { binorm } \\
\mathbf{t}=\frac{d z}{d s} & \mathbf{n}=\frac{d^{2} z}{d s^{2}} \quad \mathbf{b}=\mathbf{t} \times \\
& s-\operatorname{arc} \text { length }
\end{array}
$$

Frénet-Serret equations

$$
\frac{d \mathbf{t}}{d s}=\kappa \mathbf{n} \quad \frac{d \mathbf{n}}{d s}=-\kappa \mathbf{t}+\tau \mathbf{b} \quad \frac{d \mathbf{b}}{d s}=-\tau \mathbf{n}
$$

κ - curvature
τ - torsion

Moving Frame - Space Curves

$$
\begin{array}{ccc}
\text { tangent } & \text { normal } & \text { binorm } \\
\mathbf{t}=\frac{d z}{d s} & \mathbf{n}=\frac{d^{2} z}{d s^{2}} \quad \mathbf{b}=\mathbf{t} \times \\
& s-\text { arc length }
\end{array}
$$

Frénet-Serret equations

$$
\frac{d \mathbf{t}}{d s}=\kappa \mathbf{n} \quad \frac{d \mathbf{n}}{d s}=-\kappa \mathbf{t}+\tau \mathbf{b} \quad \frac{d \mathbf{b}}{d s}=-\tau \mathbf{n}
$$

κ - curvature
τ - torsion
"I did not quite understand how he [Cartan] does this in general, though in the examples he gives the procedure is clear."
"Nevertheless, I must admit I found the book, like most of Cartan's papers, hard reading."

- Hermann Weyl
"Cartan on groups and differential geometry" Bull. Amer. Math. Soc. 44 (1938) 598-601

Applications of Moving Frames

- Differential geometry
- Equivalence
- Symmetry
- Differential invariants
- Rigidity
- Identities and syzygies
- Joint invariants and semi-differential invariants
- Invariant differential forms and tensors
- Integral invariants
- Classical invariant theory
- Computer vision
- object recognition
- symmetry detection
- Invariant variational problems
- Invariant numerical methods
- Mechanics, including DNA
- Poisson geometry \& solitons
- Killing tensors in relativity
- Invariants of Lie algebras in quantum mechanics
- Control theory
- Lie pseudo-groups

The Basic Equivalence Problem

M - smooth m-dimensional manifold.
G - transformation group acting on M

- finite-dimensional Lie group
- infinite-dimensional Lie pseudo-group

Equivalence:

Determine when two p-dimensional submanifolds

$$
N \text { and } \bar{N} \subset M
$$

are congruent:

$$
\bar{N}=g \cdot N \quad \text { for } \quad g \in G
$$

Symmetry:

Find all symmetries,
i.e., self-equivalences or self-congruences:

$$
N=g \cdot N
$$

Classical Geometry - F. Klein

- Euclidean group:

$$
G=\left\{\begin{aligned}
\mathrm{SE}(m) & =\mathrm{SO}(m) \ltimes \mathbb{R}^{m} \\
\mathrm{E}(m) & =\mathrm{O}(m) \ltimes \mathbb{R}^{m}
\end{aligned}\right.
$$

$$
z \longmapsto A \cdot z+b \quad A \in \mathrm{SO}(m) \text { or } \mathrm{O}(m), \quad b \in \mathbb{R}^{m}, \quad z \in \mathbb{R}^{m}
$$

\Rightarrow isometries: rotations, translations, (reflections)

- Equi-affine group: $\quad G=\mathrm{SA}(m)=\mathrm{SL}(m) \ltimes \mathbb{R}^{m}$ $A \in \mathrm{SL}(m)$ - volume-preserving
- Affine group:

$$
G=\mathrm{A}(m)=\mathrm{GL}(m) \ltimes \mathbb{R}^{m}
$$

$A \in \mathrm{GL}(m)$

- Projective group:

$$
G=\operatorname{PSL}(m+1)
$$

acting on $\mathbb{R}^{m} \subset \mathbb{R} \boldsymbol{\xi}^{m}$
\Longrightarrow Applications in computer vision

Tennis, Anyone?

Classical Invariant Theory

Binary form:

$$
Q(x)=\sum_{k=0}^{n}\binom{n}{k} a_{k} x^{k}
$$

Equivalence of polynomials (binary forms):
$Q(x)=(\gamma x+\delta)^{n} \bar{Q}\left(\frac{\alpha x+\beta}{\gamma x+\delta}\right) \quad g=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathrm{GL}(2)$

- multiplier representation of GL(2)
- modular forms

$$
Q(x)=(\gamma x+\delta)^{n} \bar{Q}\left(\frac{\alpha x+\beta}{\gamma x+\delta}\right)
$$

Transformation group:

$$
g:(x, u) \longmapsto\left(\frac{\alpha x+\beta}{\gamma x+\delta}, \frac{u}{(\gamma x+\delta)^{n}}\right)
$$

Equivalence of functions \Longleftrightarrow equivalence of graphs

$$
\Gamma_{Q}=\{(x, u)=(x, Q(x))\} \subset \mathbb{C}^{2}
$$

Moving Frames

Definition.

A moving frame is a G-equivariant map

$$
\rho: M \longrightarrow G
$$

Equivariance:

$$
\rho(g \cdot z)= \begin{cases}g \cdot \rho(z) & \text { left moving frame } \\ \rho(z) \cdot g^{-1} & \text { right moving frame }\end{cases}
$$

$$
\rho_{\text {left }}(z)=\rho_{\text {right }}(z)^{-1}
$$

The Main Result

Theorem. A moving frame exists in a neighborhood of a point $z \in M$ if and only if G acts freely and regularly near z.

Isotropy \& Freeness

Isotropy subgroup: $\quad G_{z}=\{g \mid g \cdot z=z\} \quad$ for $z \in M$

- free - the only group element $g \in G$ which fixes one point $z \in M$ is the identity: $\quad \Longrightarrow G_{z}=\{e\}$ for all $z \in M$.
- locally free - the orbits all have the same dimension as G :
$\Longrightarrow G_{z}$ is a discrete subgroup of G.
- regular - all orbits have the same dimension and intersect sufficiently small coordinate charts only once $\not \approx$ irrational flow on the torus
- effective - the only group element which fixes every point in M is the identity: $g \cdot z=z$ for all $z \in M$ iff $g=e$:

$$
G_{M}^{*}=\bigcap_{z \in M} G_{z}=\{e\}
$$

Proof of the Main Theorem

Necessity: Let $\rho: M \rightarrow G$ be a left moving frame.

Proof of the Main Theorem

Necessity: Let $\rho: M \rightarrow G$ be a left moving frame.
Freeness: If $g \in G_{z}$, so $g \cdot z=z$, then by left equivariance:

$$
\rho(z)=\rho(g \cdot z)=g \cdot \rho(z) .
$$

Therefore $g=e$, and hence $G_{z}=\{e\}$ for all $z \in M$.

Proof of the Main Theorem

Necessity: Let $\rho: M \rightarrow G$ be a left moving frame.
Freeness: If $g \in G_{z}$, so $g \cdot z=z$, then by left equivariance:

$$
\rho(z)=\rho(g \cdot z)=g \cdot \rho(z) .
$$

Therefore $g=e$, and hence $G_{z}=\{e\}$ for all $z \in M$.
Regularity: Suppose $z_{n}=g_{n} \cdot z \longrightarrow z$ as $n \rightarrow \infty$.
By continuity, $\rho\left(z_{n}\right)=\rho\left(g_{n} \cdot z\right)=g_{n} \cdot \rho(z) \longrightarrow \rho(z)$.
Hence $g_{n} \longrightarrow e$ in G.

Proof of the Main Theorem

Necessity: Let $\rho: M \rightarrow G$ be a left moving frame.
Freeness: If $g \in G_{z}$, so $g \cdot z=z$, then by left equivariance:

$$
\rho(z)=\rho(g \cdot z)=g \cdot \rho(z) .
$$

Therefore $g=e$, and hence $G_{z}=\{e\}$ for all $z \in M$.
Regularity: Suppose $z_{n}=g_{n} \cdot z \longrightarrow z$ as $n \rightarrow \infty$.
By continuity, $\rho\left(z_{n}\right)=\rho\left(g_{n} \cdot z\right)=g_{n} \cdot \rho(z) \longrightarrow \rho(z)$.
Hence $g_{n} \longrightarrow e$ in G.

Sufficiency: By direct construction - "normalization".
Q.E.D.

Geometric Construction

Normalization $=$ choice of cross-section to the group orbits

Geometric Construction

Normalization $=$ choice of cross-section to the group orbits

Geometric Construction

Normalization $=$ choice of cross-section to the group orbits

Geometric Construction

Normalization $=$ choice of cross-section to the group orbits
K - cross-section to the group orbits
\mathcal{O}_{z} - orbit through $z \in M$
$k \in K \cap \mathcal{O}_{z}$ - unique point in the intersection

- k is the canonical or normal form of z
- the (nonconstant) coordinates of k are the fundamental invariants
$g \in G$ - unique group element mapping k to z
$\rho(z)=g \quad$ left moving frame $\quad \rho(h \cdot z)=h \cdot \rho(z)$

$$
k=\rho^{-1}(z) \cdot z=\rho_{\text {right }}(z) \cdot z
$$

Algebraic Construction

$$
r=\operatorname{dim} G \leq m=\operatorname{dim} M
$$

Coordinate cross-section

$$
K=\left\{z_{1}=c_{1}, \ldots, z_{r}=c_{r}\right\}
$$

left	right
$w(g, z)=g^{-1} \cdot z$	$w(g, z)=g \cdot z$

$$
\begin{array}{ll}
g=\left(g_{1}, \ldots, g_{r}\right) \quad-\quad \text { group parameters } \\
z=\left(z_{1}, \ldots, z_{m}\right) \quad-\quad \text { coordinates on } M
\end{array}
$$

Choose $r=\operatorname{dim} G$ components to normalize:

$$
w_{1}(g, z)=c_{1} \quad \ldots \quad w_{r}(g, z)=c_{r}
$$

Solve for the group parameters $g=\left(g_{1}, \ldots, g_{r}\right)$
\Longrightarrow Implicit Function Theorem
The solution

$$
g=\rho(z)
$$

is a (local) moving frame.

The Fundamental Invariants

Substituting the moving frame formulae

$$
g=\rho(z)
$$

into the unnormalized components of $w(g, z)$ produces the fundamental invariants

$$
I_{1}(z)=w_{r+1}(\rho(z), z) \quad \ldots \quad I_{m-r}(z)=w_{m}(\rho(z), z)
$$

Theorem. Every invariant $I(z)$ can be (locally) uniquely written as a function of the fundamental invariants:

$$
I(z)=H\left(I_{1}(z), \ldots, I_{m-r}(z)\right)
$$

Prolongation

Most interesting group actions (Euclidean, affine, projective, etc.) are not free!

Freeness typically fails because the dimension of the underlying manifold is not large enough, i.e., $m<r=\operatorname{dim} G$.

Thus, to make the action free, we must increase the dimension of the space via some natural prolongation procedure.

- An effective action can usually be made free by:
- Prolonging to derivatives (jet space)

$$
G^{(n)}: \mathrm{J}^{n}(M, p) \longrightarrow \mathrm{J}^{n}(M, p)
$$

\Longrightarrow differential invariants

- Prolonging to Cartesian product actions

$$
G^{\times n}: M \times \cdots \times M \longrightarrow M \times \cdots \times M
$$

\Longrightarrow joint invariants

- Prolonging to "multi-space"

$$
G^{(n)}: M^{(n)} \longrightarrow M^{(n)}
$$

\Longrightarrow joint or semi-differential invariants
\Longrightarrow invariant numerical approximations

- Prolonging to derivatives (jet space)

$$
G^{(n)}: \mathrm{J}^{n}(M, p) \longrightarrow \mathrm{J}^{n}(M, p)
$$

\Longrightarrow differential invariants

- Prolonging to Cartesian product actions

$$
G^{\times n}: M \times \cdots \times M \longrightarrow M \times \cdots \times M
$$

\Longrightarrow joint invariants

- Prolonging to "multi-space"

$$
G^{(n)}: M^{(n)} \longrightarrow M^{(n)}
$$

\Longrightarrow joint or semi-differential invariants
\Longrightarrow invariant numerical approximations

Euclidean Plane Curves

Special Euclidean group: $\quad G=\mathrm{SE}(2)=\mathrm{SO}(2) \ltimes \mathbb{R}^{2}$ acts on $M=\mathbb{R}^{2}$ via rigid motions: $w=R z+c$

To obtain the classical (left) moving frame we invert the group transformations:

$$
\left.\begin{array}{r}
y=\cos \phi(x-a)+\sin \phi(u-b) \\
v=-\sin \phi(x-a)+\cos \phi(u-b)
\end{array}\right\} \quad w=R^{-1}(z-c)
$$

Assume for simplicity the curve is (locally) a graph:

$$
\mathcal{C}=\{u=f(x)\}
$$

\Longrightarrow extensions to parametrized curves are straightforward

Prolong the action to J^{n} via implicit differentiation:

$$
\begin{aligned}
y & =\cos \phi(x-a)+\sin \phi(u-b) \\
v & =-\sin \phi(x-a)+\cos \phi(u-b) \\
v_{y} & =\frac{-\sin \phi+u_{x} \cos \phi}{\cos \phi+u_{x} \sin \phi} \\
v_{y y} & =\frac{u_{x x}}{\left(\cos \phi+u_{x} \sin \phi\right)^{3}} \\
v_{y y y} & =\frac{\left(\cos \phi+u_{x} \sin \phi\right) u_{x x x}-3 u_{x x}^{2} \sin \phi}{\left(\cos \phi+u_{x} \sin \phi\right)^{5}}
\end{aligned}
$$

Choose a cross-section, or, equivalently a set of $r=\operatorname{dim} G=3$ normalization equations:

$$
\begin{aligned}
y & =\cos \phi(x-a)+\sin \phi(u-b)=0 \\
v & =-\sin \phi(x-a)+\cos \phi(u-b)=0 \\
v_{y} & =\frac{-\sin \phi+u_{x} \cos \phi}{\cos \phi+u_{x} \sin \phi}=0 \\
v_{y y} & =\frac{u_{x x}}{\left(\cos \phi+u_{x} \sin \phi\right)^{3}} \\
v_{y y y} & =\frac{\left(\cos \phi+u_{x} \sin \phi\right) u_{x x x}-3 u_{x x}^{2} \sin \phi}{\left(\cos \phi+u_{x} \sin \phi\right)^{5}}
\end{aligned}
$$

Solve the normalization equations for the group parameters:

$$
\begin{aligned}
y & =\cos \phi(x-a)+\sin \phi(u-b)=0 \\
v & =-\sin \phi(x-a)+\cos \phi(u-b)=0 \\
v_{y} & =\frac{-\sin \phi+u_{x} \cos \phi}{\cos \phi+u_{x} \sin \phi}=0
\end{aligned}
$$

The result is the left moving frame $\rho: \mathrm{J}^{1} \longrightarrow \mathrm{SE}(2)$

$$
a=x \quad b=u \quad \phi=\tan ^{-1} u_{x}
$$

$$
a=x \quad b=u \quad \phi=\tan ^{-1} u_{x}
$$

Substitute into the moving frame formulas for the group parameters into the remaining prolonged transformation formulae to produce the basic differential invariants:

$$
\begin{aligned}
v_{y y} & =\frac{u_{x x}}{\left(\cos \phi+u_{x} \sin \phi\right)^{3}} \longmapsto \kappa=\frac{u_{x x}}{\left(1+u_{x}^{2}\right)^{3 / 2}} \\
v_{y y y} & =\cdots \quad \longmapsto \frac{d \kappa}{d s}=\frac{\left(1+u_{x}^{2}\right) u_{x x x}-3 u_{x} u_{x x}^{2}}{\left(1+u_{x}^{2}\right)^{3}} \\
v_{y y y y} & =\cdots \quad \longmapsto \frac{d^{2} \kappa}{d s^{2}}-3 \kappa^{3}=\cdots
\end{aligned}
$$

Theorem. All differential invariants are functions of the derivatives of curvature with respect to arc length:

$$
\kappa \quad \frac{d \kappa}{d s} \quad \frac{d^{2} \kappa}{d s^{2}}
$$

The invariant differential operators and invariant differential forms are also substituting the moving frame formulas for the group parameters:
(Contact-)invariant one-form - arc length element

$$
d y=\left(\cos \phi+u_{x} \sin \phi\right) d x \quad \longmapsto \quad d s=\sqrt{1+u_{x}^{2}} d x
$$

Invariant differential operator - arc length derivative

$$
\frac{d}{d y}=\frac{1}{\cos \phi+u_{x} \sin \phi} \frac{d}{d x} \quad \longmapsto \quad \frac{d}{d s}=\frac{1}{\sqrt{1+u_{x}^{2}}} \frac{d}{d x}
$$

The Classical Picture:

Moving frame $\quad \rho:\left(x, u, u_{x}\right) \longmapsto(R, \mathbf{a}) \in \mathrm{SE}(2)$

$$
R=\frac{1}{\sqrt{1+u_{x}^{2}}}\left(\begin{array}{cc}
1 & -u_{x} \\
u_{x} & 1
\end{array}\right)=(\mathbf{t}, \mathbf{n}) \quad \mathbf{a}=\binom{x}{u}
$$

Equi-affine Curves $\quad G=\mathrm{SA}(2)$

$$
z \longmapsto A z+\mathbf{b} \quad A \in \mathrm{SL}(2), \quad \mathbf{b} \in \mathbb{R}^{2}
$$

Invert for left moving frame:

$$
\begin{gathered}
y=\delta(x-a)-\beta(u-b) \\
v=-\gamma(x-a)+\alpha(u-b) \\
\alpha \delta-\beta \gamma=1
\end{gathered}
$$

Prolong to J^{3} via implicit differentiation

$$
d y=\left(\delta-\beta u_{x}\right) d x \quad D_{y}=\frac{1}{\delta-\beta u_{x}} D_{x}
$$

Prolongation:

$$
\begin{aligned}
y & =\delta(x-a)-\beta(u-b) \\
v & =-\gamma(x-a)+\alpha(u-b) \\
v_{y} & =-\frac{\gamma-\alpha u_{x}}{\delta-\beta u_{x}} \\
v_{y y} & =-\frac{u_{x x}}{\left(\delta-\beta u_{x}\right)^{3}} \\
v_{y y y} & =-\frac{\left(\delta-\beta u_{x}\right) u_{x x x}+3 \beta u_{x x}^{2}}{\left(\delta-\beta u_{x}\right)^{5}} \\
v_{y y y y} & =-\frac{u_{x x x x}\left(\delta-\beta u_{x}\right)^{2}+10 \beta\left(\delta-\beta u_{x}\right) u_{x x} u_{x x x}+15 \beta^{2} u_{x x}^{3}}{\left(\delta-\beta u_{x}\right)^{7}} \\
v_{y y y y y} & =\cdots
\end{aligned}
$$

Normalization: $\quad r=\operatorname{dim} G=5$

$$
\begin{aligned}
y & =\delta(x-a)-\beta(u-b)=0 \\
v & =-\gamma(x-a)+\alpha(u-b)=0 \\
v_{y} & =-\frac{\gamma-\alpha u_{x}}{\delta-\beta u_{x}}=0 \\
v_{y y} & =-\frac{u_{x x}}{\left(\delta-\beta u_{x}\right)^{3}}=1 \\
v_{y y y} & =-\frac{\left(\delta-\beta u_{x}\right) u_{x x x}+3 \beta u_{x x}^{2}}{\left(\delta-\beta u_{x}\right)^{5}}=0 \\
v_{y y y y} & =-\frac{u_{x x x x}\left(\delta-\beta u_{x}\right)^{2}+10 \beta\left(\delta-\beta u_{x}\right) u_{x x} u_{x x x}+15 \beta^{2} u_{x x}^{3}}{\left(\delta-\beta u_{x}\right)^{7}} \\
v_{y y y y y} & =\cdots
\end{aligned}
$$

Equi-affine Moving Frame

$$
\begin{aligned}
& \rho:\left(x, u, u_{x}, u_{x x}, u_{x x x}\right) \longmapsto(A, \mathbf{b}) \in \mathrm{SA}(2) \\
& A=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{cc}
\sqrt[3]{u_{x x}} & -\frac{1}{3} u_{x x}^{-5 / 3} u_{x x x} \\
u_{x} \sqrt[3]{u_{x x}} & u_{x x}^{-1 / 3}-\frac{1}{3} u_{x x}^{-5 / 3} u_{x x x}
\end{array}\right) \\
& \quad \mathbf{b}=\binom{a}{b}=\binom{x}{u}
\end{aligned}
$$

Nondegeneracy condition:

$$
u_{x x} \neq 0
$$

Equi-affine arc length

$$
d y=\left(\delta-\beta u_{x}\right) d x \quad \longmapsto \quad d s=\sqrt[3]{u_{x x}} d x
$$

Equi-affine curvature

$$
\begin{aligned}
v_{y y y y} & \longmapsto \kappa=\frac{5 u_{x x} u_{x x x x}-3 u_{x x x}^{2}}{9 u_{x x}^{8 / 3}} \\
v_{y y y y y} & \longmapsto \frac{d \kappa}{d s} \\
v_{\text {yyyyyy }} & \longmapsto \frac{d^{2} \kappa}{d s^{2}}-5 \kappa^{2}
\end{aligned}
$$

The Classical Picture:

$$
A=\left(\begin{array}{cc}
\sqrt[3]{u_{x x}} & -\frac{1}{3} u_{x x}^{-5 / 3} u_{x x x} \\
u_{x} \sqrt[3]{u_{x x}} & u_{x x}^{-1 / 3}-\frac{1}{3} u_{x x}^{-5 / 3} u_{x x x}
\end{array}\right)=(\mathbf{t}, \mathbf{n}) \quad \mathbf{b}=\binom{x}{u}
$$

Equivalence \& Invariants

- Equivalent submanifolds $N \approx \bar{N}$ must have the same invariants: $I=\bar{I}$.

Constant invariants provide immediate information:

$$
\text { e.g. } \quad \kappa=2 \Longleftrightarrow \bar{\kappa}=2
$$

Non-constant invariants are not useful in isolation, because an equivalence map can drastically alter the dependence on the submanifold parameters:

$$
\text { e.g. } \quad \kappa=x^{3} \quad \text { versus } \quad \bar{\kappa}=\sinh x
$$

Syzygies

However, a functional dependency or syzygy among the invariants is intrinsic:

$$
\text { e.g. } \quad \kappa_{s}=\kappa^{3}-1 \quad \Longleftrightarrow \quad \bar{\kappa}_{\bar{s}}=\bar{\kappa}^{3}-1
$$

- Universal syzygies - Gauss-Codazzi
- Distinguishing syzygies.

Equivalence \& Syzygies

Theorem. (Cartan) Two smooth submanifolds are (locally) equivalent if and only if they have identical syzygies among all their differential invariants.

Proof:
Cartan's technique of the graph:
Construct the graph of the equivalence map as the solution to a (Frobenius) integrable differential system, which can be integrated by solving ordinary differential equations.

Finiteness of Generators and Syzygies

A There are, in general, an infinite number of differential invariants and hence an infinite number of syzygies must be compared to establish equivalence.
\bigcirc But the higher order syzygies are all consequences of a finite number of low order syzygies!

Example - Plane Curves

If non-constant, both κ and κ_{s} depend on a single parameter, and so, locally, are subject to a syzygy:

$$
\begin{equation*}
\kappa_{s}=H(\kappa) \tag{*}
\end{equation*}
$$

But then

$$
\kappa_{s s}=\frac{d}{d s} H(\kappa)=H^{\prime}(\kappa) \kappa_{s}=H^{\prime}(\kappa) H(\kappa)
$$

and similarly for $\kappa_{\text {sss }}$, etc.
Consequently, all the higher order syzygies are generated by the fundamental first order syzygy ($*$).

Thus, for Euclidean (or equi-affine or projective or ...) plane curves we need only know a single syzygy between κ and κ_{s} in order to establish equivalence!

The Signature Map

The generating syzygies are encoded by the signature map

$$
\Sigma: N \quad \longrightarrow \quad \mathcal{S}
$$

of the submanifold N, which is parametrized by the fundamental differential invariants:

$$
\Sigma(x)=\left(I_{1}(x), \ldots, I_{m}(x)\right)
$$

The image

$$
\mathcal{S}=\operatorname{Im} \Sigma
$$

is the signature subset (or submanifold) of N.

Equivalence \& Signature

Theorem. Two smooth submanifolds are equivalent

$$
\bar{N}=g \cdot N
$$

if and only if their signatures are identical

$$
\overline{\mathcal{S}}=\mathcal{S}
$$

Signature Curves

Definition. The signature curve $\mathcal{S} \subset \mathbb{R}^{2}$ of a curve $\mathcal{C} \subset \mathbb{R}^{2}$ is parametrized by the two lowest order differential invariants

$$
\mathcal{S}=\left\{\left(\kappa, \frac{d \kappa}{d s}\right)\right\} \quad \subset \quad \mathbb{R}^{2}
$$

Equivalence \& Signature Curves

Theorem. Two smooth curves \mathcal{C} and $\overline{\mathcal{C}}$ are equivalent:

$$
\overline{\mathcal{C}}=g \cdot \mathcal{C}
$$

if and only if their signature curves are identical:

$$
\overline{\mathcal{S}}=\mathcal{S}
$$

\Longrightarrow object recognition

Symmetry and Signature

Theorem. The dimension of the symmetry group

$$
G_{N}=\{g \mid g \cdot N \subset N\}
$$

of a nonsingular submanifold $N \subset M$ equals the codimension of its signature:

$$
\operatorname{dim} G_{N}=\operatorname{dim} N-\operatorname{dim} \mathcal{S}
$$

Corollary. For a nonsingular submanifold $N \subset M$,

$$
0 \leq \operatorname{dim} G_{N} \leq \operatorname{dim} N
$$

\Longrightarrow Only totally singular submanifolds can have larger symmetry groups!

Maximally Symmetric Submanifolds

Theorem. The following are equivalent:

- The submanifold N has a p-dimensional symmetry group
- The signature \mathcal{S} degenerates to a point: $\operatorname{dim} \mathcal{S}=0$
- The submanifold has all constant differential invariants
- $N=H \cdot\left\{z_{0}\right\}$ is the orbit of a p-dimensional subgroup $H \subset G$
\Longrightarrow Euclidean geometry: circles, lines, helices, spheres, cylinders, planes, ..
\Longrightarrow Equi-affine plane geometry: conic sections.
\Longrightarrow Projective plane geometry: W curves (Lie © Klein)

Discrete Symmetries

Definition. The index of a submanifold N equals the number of points in N which map to a generic point of its signature:

$$
\iota_{N}=\min \left\{\# \Sigma^{-1}\{w\} \mid w \in \mathcal{S}\right\}
$$

$\Longrightarrow \quad$ Self-intersections

Theorem. The cardinality of the symmetry group of a submanifold N equals its index ι_{N}.
\Longrightarrow Approximate symmetries

The Index

$$
\text { The polar curve } r=3+\frac{1}{10} \cos 3 \theta
$$

The Original Curve

Euclidean Signature

Numerical Signature

The Curve $x=\cos t+\frac{1}{5} \cos ^{2} t, \quad y=\sin t+\frac{1}{10} \sin ^{2} t$

The Original Curve

Euclidean Signature

Affine Signature

The Curve $x=\cos t+\frac{1}{5} \cos ^{2} t, \quad y=\frac{1}{2} x+\sin t+\frac{1}{10} \sin ^{2} t$

The Original Curve

Euclidean Signature

Affine Signature

Nut 1

Nut 2

Closeness: 0.137673

Hook 1

Nut 1

Closeness: 0.031217

Signature Curve Hook 1

Signature Curve Nut 1

Basic Jet Space Notation

$$
\begin{aligned}
& M \quad m=p+q \text { dimensional manifold } \\
& z=(x, u)-\text { local coordinates on } M \\
& x=\left(x^{1}, \ldots, x^{p}\right)-\text { independent variables } \\
& u=\left(u^{1}, \ldots, u^{q}\right)-\text { dependent variables } \\
& \mathrm{J}^{n}=\mathrm{J}^{n}(M, p) \quad-\text { jet space of } p \text {-dimensional submanifolds } \\
& u_{J}^{\alpha}=\partial_{J} u^{\alpha} \quad-\text { partial derivatives (jet coordinates) } \\
& F\left(x, u^{(n)}\right)=F\left(\ldots x^{k} \ldots u_{J}^{\alpha} \ldots\right)-\begin{array}{c}
\text { differential function } \\
F: J^{n} \rightarrow \mathbb{R}
\end{array}
\end{aligned}
$$

Invariantization

The process of replacing group parameters in transformation rules by their moving frame formulae is known as invariantization:
$\iota:\left\{\begin{array}{ccc}\text { Functions } & \longrightarrow & \text { Invariants } \\ \text { Forms } & \longrightarrow & \text { Invariant Forms } \\ \text { Differential } & & \text { Invariant Differential } \\ \text { Operators } & \longrightarrow & \text { Operators } \\ \vdots & & \vdots\end{array}\right.$

- The invariantization $I=\iota(F)$ is the unique invariant function that agrees with F on the cross-section: $I|K=F| K$.
- Invariantization defines an (exterior) algebra morphism.
- Invariantization does not affect invariants: $\iota(I)=I$

The Fundamental Differential Invariants

Invariantized jet coordinate functions:

$$
H^{i}\left(x, u^{(n)}\right)=\iota\left(x^{i}\right) \quad I_{J}^{\alpha}\left(x, u^{(l)}\right)=\iota\left(u_{J}^{\alpha}\right)
$$

- The constant differential invariants, as dictated by the moving frame normalizations, are known as the phantom invariants.
- The remaining non-constant differential invariants are the basic invariants and form a complete system of functionally independent differential invariants for the prolonged group action.

Invariantization of general differential functions:

$$
\iota\left[F\left(\ldots x^{i} \ldots u_{J}^{\alpha} \ldots\right)\right]=F\left(\ldots H^{i} \ldots I_{J}^{\alpha} \ldots\right)
$$

Invariantization of general differential functions:

$$
\iota\left[F\left(\ldots x^{i} \ldots u_{J}^{\alpha} \ldots\right)\right]=F\left(\ldots H^{i} \ldots I_{J}^{\alpha} \ldots\right)
$$

The Replacement Theorem:

If $I\left(x, u^{(n)}\right)$ is any differential invariant, then $\iota(I)=I$.

$$
I\left(\ldots x^{i} \ldots u_{J}^{\alpha} \ldots\right)=I\left(\ldots H^{i} \ldots I_{J}^{\alpha} \ldots\right)
$$

Invariantization of general differential functions:

$$
\iota\left[F\left(\ldots x^{i} \ldots u_{J}^{\alpha} \ldots\right)\right]=F\left(\ldots H^{i} \ldots I_{J}^{\alpha} \ldots\right)
$$

The Replacement Theorem:

If $I\left(x, u^{(n)}\right)$ is any differential invariant, then $\iota(I)=I$.

$$
I\left(\ldots x^{i} \ldots u_{J}^{\alpha} \ldots\right)=I\left(\ldots H^{i} \ldots I_{J}^{\alpha} \ldots\right)
$$

Key fact: Invariantization and differentiation do not commute:

$$
\iota\left(D_{i} F\right) \neq \mathcal{D}_{i} \iota(F)
$$

The Differential Invariant Algebra

A differential invariant is an invariant function $I: \mathrm{J}^{n} \rightarrow \mathbb{R}$ for the prolonged pseudo-group action

$$
I\left(g^{(n)} \cdot\left(x, u^{(n)}\right)\right)=I\left(x, u^{(n)}\right)
$$

$$
\Longrightarrow \text { curvature, torsion, ... }
$$

Invariant differential operators:

$$
\mathcal{D}_{1}, \ldots, \mathcal{D}_{p} \quad \Longrightarrow \text { arc length derivative }
$$

- If I is a differential invariant, so is $\mathcal{D}_{j} I$.

$$
\mathcal{I}(G) \text { - the algebra of differential invariants }
$$

Applications

- Equivalence and signatures of submanifolds
- Characterization of moduli spaces
- Invariant differential equations:

$$
H\left(\ldots \mathcal{D}_{J} I_{\kappa} \ldots\right)=0
$$

- Group splitting of PDEs and explicit solutions
- Invariant variational problems:

$$
\int L\left(\ldots \mathcal{D}_{J} I_{\kappa} \ldots\right) \boldsymbol{\omega}
$$

- Invariant geometric flows

The Basis Theorem

Theorem. The differential invariant algebra $\mathcal{I}(G)$ is locally generated by a finite number of differential invariants

$$
I_{1}, \ldots, I_{\ell}
$$

and $p=\operatorname{dim} S$ invariant differential operators

$$
\mathcal{D}_{1}, \ldots, \mathcal{D}_{p}
$$

meaning that every differential invariant can be locally expressed as a function of the generating invariants and their invariant derivatives:

$$
\mathcal{D}_{J} I_{\kappa}=\mathcal{D}_{j_{1}} \mathcal{D}_{j_{2}} \cdots \mathcal{D}_{j_{n}} I_{\kappa} .
$$

\Longrightarrow Lie groups: Lie, Ovsiannikov
\Longrightarrow Lie pseudo-groups: Tresse, Kumpera, Kruglikov-Lychagin, Muñoz-Muriel-Rodríguez, Pohjanpelto-O

Key Issues

- Minimal basis of generating invariants: I_{1}, \ldots, I_{ℓ}
- Commutation formulae for

> the invariant differential operators:

$$
\left[\mathcal{D}_{j}, \mathcal{D}_{k}\right]=\sum_{i=1}^{p} Y_{j k}^{i} \mathcal{D}_{i}
$$

\Longrightarrow Non-commutative differential algebra

- Syzygies (functional relations) among
the differentiated invariants:

$$
\Phi\left(\ldots \mathcal{D}_{J} I_{\kappa} \ldots\right) \equiv 0
$$

\Longrightarrow Codazzi relations

Computing Differential Invariants

© The infinitesimal method:

$$
\mathbf{v}(I)=0 \quad \text { for every infinitesimal generator } \quad \mathbf{v} \in \mathfrak{g}
$$

\Longrightarrow Requires solving differential equations.
\bigcirc Moving frames.

- Completely algebraic.
- Can be adapted to arbitrary group and pseudo-group actions.
- Describes the complete structure of the differential invariant algebra $\mathcal{I}(G)$ - using only linear algebra \& differentiation!
- Prescribes differential invariant signatures for equivalence and symmetry detection.

Infinitesimal Generators

Infinitesimal generators of action of G on M :

$$
\mathbf{v}_{\kappa}=\sum_{i=1}^{p} \xi_{\kappa}^{i}(x, u) \frac{\partial}{\partial x^{i}}+\sum_{\alpha=1}^{q} \varphi_{\kappa}^{\alpha}(x, u) \frac{\partial}{\partial u^{\alpha}} \quad \kappa=1, \ldots, r
$$

Prolonged infinitesimal generators on J^{n} :

$$
\mathbf{v}_{\kappa}^{(n)}=\mathbf{v}_{\kappa}+\sum_{\alpha=1}^{q} \sum_{j=\# J=1}^{n} \varphi_{J, \kappa}^{\alpha}\left(x, u^{(j)}\right) \frac{\partial}{\partial u_{J}^{\alpha}}
$$

Prolongation formula:

$$
\begin{aligned}
\varphi_{J, \kappa}^{\alpha}=D_{K}\left(\varphi_{\kappa}^{\alpha}-\right. & \left.\sum_{i=1}^{p} u_{i}^{\alpha} \xi_{\kappa}^{i}\right)+\sum_{i=1}^{p} u_{J, i}^{\alpha} \xi_{\kappa}^{i} \\
& D_{1}, \ldots, D_{p} \quad-\text { total derivatives }
\end{aligned}
$$

Recurrence Formulae

$$
\mathcal{D}_{j} \iota(F)=\iota\left(D_{j} F\right)+\sum_{\kappa=1}^{r} R_{j}^{\kappa} \iota\left(\mathbf{v}_{\kappa}^{(n)}(F)\right)
$$

$\omega^{i}=\iota\left(d x^{i}\right) \quad-\quad$ invariant coframe
$\mathcal{D}_{i}=\iota\left(D_{x^{i}}\right) \quad-\quad$ dual invariant differential operators
R_{j}^{κ} - Maurer-Cartan invariants
$\mathbf{v}_{1}, \ldots \mathbf{v}_{r} \in \mathfrak{g} \quad-\quad$ infinitesimal generators
$\mu^{1}, \ldots \mu^{r} \in \mathfrak{g}^{*} \quad$ dual Maurer-Cartan forms

The Maurer-Cartan Invariants

Invariantized Maurer-Cartan forms:

$$
\gamma^{\kappa}=\rho^{*}\left(\mu^{\kappa}\right) \equiv \sum_{j=1}^{p} R_{j}^{\kappa} \omega^{j}
$$

The Maurer-Cartan Invariants

Invariantized Maurer-Cartan forms:

$$
\gamma^{\kappa}=\rho^{*}\left(\mu^{\kappa}\right) \equiv \sum_{j=1}^{p} R_{j}^{\kappa} \omega^{j}
$$

Remark: When $G \subset \mathrm{GL}(N)$, the Maurer-Cartan invariants R_{j}^{κ} are the entries of the Frenet matrices

$$
\mathcal{D}_{i} \rho\left(x, u^{(n)}\right) \cdot \rho\left(x, u^{(n)}\right)^{-1}
$$

The Maurer-Cartan Invariants

Invariantized Maurer-Cartan forms:

$$
\gamma^{\kappa}=\rho^{*}\left(\mu^{\kappa}\right) \equiv \sum_{j=1}^{p} R_{j}^{\kappa} \omega^{j}
$$

Remark: When $G \subset \mathrm{GL}(N)$, the Maurer-Cartan invariants R_{j}^{κ} are the entries of the Frenet matrices

$$
\mathcal{D}_{i} \rho\left(x, u^{(n)}\right) \cdot \rho\left(x, u^{(n)}\right)^{-1}
$$

Theorem. (E. Hubert) The Maurer-Cartan invariants and, in the intransitive case, the order zero invariants serve to generate the differential invariant algebra $\mathcal{I}(G)$.

Recurrence Formulae

$$
\mathcal{D}_{j} \iota(F)=\iota\left(D_{j} F\right)+\sum_{\kappa=1}^{r} R_{j}^{\kappa} \iota\left(\mathbf{v}_{\kappa}^{(n)}(F)\right)
$$

Recurrence Formulae

$$
\mathcal{D}_{j} \iota(F)=\iota\left(D_{j} F\right)+\sum_{\kappa=1}^{r} R_{j}^{\kappa} \iota\left(\mathbf{v}_{\kappa}^{(n)}(F)\right)
$$

© If $\iota(F)=c$ is a phantom differential invariant, then the left hand side of the recurrence formula is zero. The collection of all such phantom recurrence formulae form a linear algebraic system of equations that can be uniquely solved for the Maurer-Cartan invariants R_{j}^{κ} !

Recurrence Formulae

$$
\mathcal{D}_{j} \iota(F)=\iota\left(D_{j} F\right)+\sum_{\kappa=1}^{r} R_{j}^{\kappa} \iota\left(\mathbf{v}_{\kappa}^{(n)}(F)\right)
$$

© If $\iota(F)=c$ is a phantom differential invariant, then the left hand side of the recurrence formula is zero. The collection of all such phantom recurrence formulae form a linear algebraic system of equations that can be uniquely solved for the Maurer-Cartan invariants R_{j}^{κ} !
\bigcirc Once the Maurer-Cartan invariants are replaced by their explicit formulae, the induced recurrence relations completely determine the structure of the differential invariant algebra $\mathcal{I}(G)$!

The Universal Recurrence Formula

Let Ω be any differential form on J^{n}.

$$
d \iota(\Omega)=\iota(d \Omega)+\sum_{\kappa=1}^{r} \gamma^{\kappa} \wedge \iota\left[\mathbf{v}_{\kappa}(\Omega)\right]
$$

$\Longrightarrow \quad$ The invariant variational bicomplex

The Universal Recurrence Formula

Let Ω be any differential form on J^{n}.

$$
d \iota(\Omega)=\iota(d \Omega)+\sum_{\kappa=1}^{r} \gamma^{\kappa} \wedge \iota\left[\mathbf{v}_{\kappa}(\Omega)\right]
$$

$$
\Longrightarrow \quad \text { The invariant variational bicomplex }
$$

Commutator invariants:

$$
\begin{aligned}
d \omega^{i}=d\left[\iota\left(d x^{i}\right)\right] & =\iota\left(d^{2} x^{i}\right)+\sum_{\kappa=1}^{r} \gamma^{\kappa} \wedge \iota\left[\mathbf{v}_{\kappa}\left(d x^{i}\right)\right] \\
& =-\sum_{j<k} Y_{j k}^{i} \omega^{j} \wedge \omega^{k}+\cdots \\
{\left[\mathcal{D}_{j}, \mathcal{D}_{k}\right] } & =\sum_{i=1}^{p} Y_{j k}^{i} \mathcal{D}_{i}
\end{aligned}
$$

The Differential Invariant Algebra

Thus, remarkably, the structure of $\mathcal{I}(G)$ can be completely determined without knowing the explicit formulae for either the moving frame, or the differential invariants, or the invariant differential operators!

The only required ingredients are the specification of the crosssection, and the standard formulae for the prolonged infinitesimal generators.

Theorem. If G acts transitively on M, or if the infinitesimal generator coefficients depend rationally in the coordinates, then all recurrence formulae are rational in the basic differential invariants and so $\mathcal{I}(G)$ is a rational, non-commutative differential algebra.

Euclidean Surfaces

$$
\begin{aligned}
M=\mathbb{R}^{3} \quad G=\mathrm{SE}(3)=\mathrm{SO}(3) \ltimes \mathbb{R}^{3} \quad \operatorname{dim} G=6 . \\
g \cdot z=R z+b, \quad R^{T} R=I, \quad z=\left(\begin{array}{l}
x \\
y \\
u
\end{array}\right) \in \mathbb{R}^{3} .
\end{aligned}
$$

Assume (for simplicity) that $S \subset \mathbb{R}^{3}$ is the graph of a function:

$$
u=f(x, y)
$$

Cross-section to prolonged action on J^{2} :

$$
x=y=u=u_{x}=u_{y}=u_{x y}=0, \quad u_{x x} \neq u_{y y} .
$$

Invariantization - differential invariants: $\quad I_{j k}=\iota\left(u_{j k}\right)$
Phantom differential invariants:

$$
\iota(x)=\iota(y)=\iota(u)=\iota\left(u_{x}\right)=\iota\left(u_{y}\right)=\iota\left(u_{x y}\right)=0
$$

Principal curvatures:

$$
\kappa_{1}=I_{20}=\iota\left(u_{x x}\right), \quad \kappa_{2}=I_{02}=\iota\left(u_{y y}\right),
$$

$\star \star$ non-umbilic point: $\kappa_{1} \neq \kappa_{2} \star \star$
Mean and Gauss curvatures:

$$
H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right), \quad K=\kappa_{1} \kappa_{2}
$$

Invariant differential operators:

$$
\mathcal{D}_{1}=\iota\left(D_{x}\right), \quad \mathcal{D}_{2}=\iota\left(D_{y}\right)
$$

\Longrightarrow diagonalizing Frenet frame

To obtain the recurrence formulae for the higher order differential invariants, we need the infinitesimal generators of $\mathfrak{g}=\mathfrak{s e}(3)$:

$$
\begin{gathered}
\mathbf{v}_{1}=-y \partial_{x}+x \partial_{y} \\
\mathbf{v}_{2}=-u \partial_{x}+x \partial_{u}, \\
\mathbf{v}_{3}=-u \partial_{y}+y \partial_{u} \\
\mathbf{w}_{1}=\partial_{x} \quad \mathbf{w}_{2}=\partial_{y} \quad \mathbf{w}_{3}=\partial_{u}
\end{gathered}
$$

- The translations will be ignored, as they play no role in the higher order recurrence formulae.

Recurrence formulae

$$
\mathcal{D}_{i} \iota\left(u_{j k}\right)=\iota\left(D_{i} u_{j k}\right)+\sum_{\nu=1}^{3} \iota\left[\varphi_{\nu}^{j k}\left(x, y, u^{(j+k)}\right)\right] R_{i}^{\nu}, \quad j+k \geq 1
$$

$$
\begin{aligned}
& \mathcal{D}_{1} I_{j k}=I_{j+1, k}+\sum_{\nu=1}^{3} \varphi_{\nu}^{j k}\left(0,0, I^{(j+k)}\right) R_{1}^{\nu} \\
& \mathcal{D}_{2} I_{j k}=I_{j, k+1}+\sum_{\nu=1}^{3} \varphi_{\nu}^{j k}\left(0,0, I^{(j+k)}\right) R_{2}^{\nu}
\end{aligned}
$$

$$
\varphi_{\nu}^{j k}\left(0,0, I^{(j+k)}\right)=\iota\left[\varphi_{\nu}^{j k}\left(x, y, u^{(j+k)}\right)\right] \quad-\quad \text { invariantized }
$$ prolonged infinitesimal generator coefficients

R_{i}^{ν} - Maurer-Cartan invariants

Phantom recurrence formulae:

$$
\begin{array}{ll}
0=\mathcal{D}_{1} I_{10}=I_{20}+R_{1}^{2} & 0=\mathcal{D}_{2} I_{10}=R_{2}^{2} \\
0=\mathcal{D}_{1} I_{01}=R_{1}^{3} & 0=\mathcal{D}_{2} I_{01}=I_{02}+R_{2}^{3} \\
0=\mathcal{D}_{1} I_{11}=I_{21}+\left(I_{20}-I_{02}\right) R_{1}^{1} & 0=\mathcal{D}_{2} I_{11}=I_{12}+\left(I_{20}-I_{02}\right) R_{2}^{1}
\end{array}
$$

Maurer-Cartan invariants:

$$
R_{1}=\left(Y_{2},-\kappa_{1}, 0\right) \quad R_{2}=\left(-Y_{1}, 0,-\kappa_{2}\right)
$$

where

$$
Y_{1}=\frac{I_{12}}{I_{20}-I_{02}}=\frac{\mathcal{D}_{1} \kappa_{2}}{\kappa_{1}-\kappa_{2}} \quad Y_{2}=\frac{I_{21}}{I_{02}-I_{20}}=\frac{\mathcal{D}_{2} \kappa_{1}}{\kappa_{2}-\kappa_{1}}
$$

are also the commutator invariants:

$$
\left[\mathcal{D}_{1}, \mathcal{D}_{2}\right]=\mathcal{D}_{1} \mathcal{D}_{2}-\mathcal{D}_{2} \mathcal{D}_{1}=Y_{2} \mathcal{D}_{1}-Y_{1} \mathcal{D}_{2}
$$

Second order recurrence formulae:

$$
\begin{array}{ll}
I_{30}=\mathcal{D}_{1} I_{20}=\kappa_{1,1} & I_{21}=\mathcal{D}_{2} I_{20}=\kappa_{1,2} \\
I_{12}=\mathcal{D}_{1} I_{02}=\kappa_{2,1} & I_{03}=\mathcal{D}_{2} I_{02}=\kappa_{2,2}
\end{array}
$$

The fourth order recurrence formulae

$$
\mathcal{D}_{2} I_{21}+\frac{I_{30} I_{12}-2 I_{12}^{2}}{\kappa_{1}-\kappa_{2}}+\kappa_{1} \kappa_{2}^{2}=I_{22}=\mathcal{D}_{1} I_{12}-\frac{I_{21} I_{03}-2 I_{21}^{2}}{\kappa_{1}-\kappa_{2}}+\kappa_{1}^{2} \kappa_{2}
$$

lead to the Codazzi syzygy

$$
\kappa_{1,22}-\kappa_{2,11}+\frac{\kappa_{1,1} \kappa_{2,1}+\kappa_{1,2} \kappa_{2,2}-2 \kappa_{2,1}^{2}-2 \kappa_{1,2}^{2}}{\kappa_{1}-\kappa_{2}}-\kappa_{1} \kappa_{2}\left(\kappa_{1}-\kappa_{2}\right)=0
$$

- The principal curvatures κ_{1}, κ_{2}, or, equivalently, the Gauss and mean curvatures H, K, form a generating system for the differential invariant algebra.

Second order recurrence formulae:

$$
\begin{array}{ll}
I_{30}=\mathcal{D}_{1} I_{20}=\kappa_{1,1} & I_{21}=\mathcal{D}_{2} I_{20}=\kappa_{1,2} \\
I_{12}=\mathcal{D}_{1} I_{02}=\kappa_{2,1} & I_{03}=\mathcal{D}_{2} I_{02}=\kappa_{2,2}
\end{array}
$$

The fourth order recurrence formulae

$$
\mathcal{D}_{2} I_{21}+\frac{I_{30} I_{12}-2 I_{12}^{2}}{\kappa_{1}-\kappa_{2}}+\kappa_{1} \kappa_{2}^{2}=I_{22}=\mathcal{D}_{1} I_{12}-\frac{I_{21} I_{03}-2 I_{21}^{2}}{\kappa_{1}-\kappa_{2}}+\kappa_{1}^{2} \kappa_{2}
$$

lead to the Codazzi syzygy

$$
\kappa_{1,22}-\kappa_{2,11}+\frac{\kappa_{1,1} \kappa_{2,1}+\kappa_{1,2} \kappa_{2,2}-2 \kappa_{2,1}^{2}-2 \kappa_{1,2}^{2}}{\kappa_{1}-\kappa_{2}}-\kappa_{1} \kappa_{2}\left(\kappa_{1}-\kappa_{2}\right)=0
$$

- The principal curvatures κ_{1}, κ_{2}, or, equivalently, the Gauss and mean curvatures H, K, form a generating system for the differential invariant algebra.
$\star \star$ Neither is a minimal generating set! $\star \star$

Codazzi syzygy:

$$
K=\kappa_{1} \kappa_{2}=-\left(\mathcal{D}_{1}+Y_{1}\right) Y_{1}-\left(\mathcal{D}_{2}+Y_{2}\right) Y_{2}
$$

Codazzi syzygy:

$$
K=\kappa_{1} \kappa_{2}=-\left(\mathcal{D}_{1}+Y_{1}\right) Y_{1}-\left(\mathcal{D}_{2}+Y_{2}\right) Y_{2}
$$

Gauss' Theorema Egregium

The Gauss curvature is intrinsic.

Codazzi syzygy:

$$
K=\kappa_{1} \kappa_{2}=-\left(\mathcal{D}_{1}+Y_{1}\right) Y_{1}-\left(\mathcal{D}_{2}+Y_{2}\right) Y_{2}
$$

Gauss' Theorema Egregium

The Gauss curvature is intrinsic.
Proof: The Frenet frome is intrinsic, hence so are the invariant differentiations and also commutator invariants.
Q.E.D.

Codazzi syzygy:

$$
K=\kappa_{1} \kappa_{2}=-\left(\mathcal{D}_{1}+Y_{1}\right) Y_{1}-\left(\mathcal{D}_{2}+Y_{2}\right) Y_{2}
$$

Gauss' Theorema Egregium

The Gauss curvature is intrinsic.
Proof: The Frenet frome is intrinsic, hence so are the invariant differentiations and also commutator invariants.
Q.E.D.

Theorem. For suitably nondegenerate surfaces, the mean curvature H is a generating differential invariant, i.e., all other Euclidean surface differential invariants can be expressed as functions of H and its invariant derivatives.

Proof: Since H, K generate the differential invariant algebra, it suffices to express the Gauss curvature K as a function of H and its derivatives. For this, the Codazzi syzygy implies that we need only express the commutator invariants in terms of H.
The commutator identity can be applied to any differential invariant. In particular,

$$
\begin{align*}
\mathcal{D}_{1} \mathcal{D}_{2} H-\mathcal{D}_{2} \mathcal{D}_{1} H & =Y_{2} \mathcal{D}_{1} H-Y_{1} \mathcal{D}_{2} H \\
\mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{j} H-\mathcal{D}_{2} \mathcal{D}_{1} \mathcal{D}_{j} H & =Y_{2} \mathcal{D}_{1} \mathcal{D}_{j} H-Y_{1} \mathcal{D}_{2} \mathcal{D}_{j} H \tag{*}
\end{align*}
$$

Provided the nondegeneracy condition

$$
\left(\mathcal{D}_{1} H\right)\left(\mathcal{D}_{2} \mathcal{D}_{j} H\right) \neq\left(\mathcal{D}_{2} H\right)\left(\mathcal{D}_{1} \mathcal{D}_{j} H\right), \quad \text { for } j=1 \text { or } 2
$$

holds, we can solve $(*)$ for the commutator invariants as rational functions of invariant derivatives of H.
Q.E.D.

Note: Constant Mean Curvature surfaces are degenerate. Are there others?

Theorem. $G=\mathrm{SA}(3)=\mathrm{SL}(3) \ltimes \mathbb{R}^{3}$ acts on $S \subset M=\mathbb{R}^{3}$: The algebra of differential invariants of generic equiaffine surfaces is generated by a single third order invariant, the Pick invariant.

Theorem. $G=\mathrm{SO}(4,1)$ acts on $S \subset M=\mathbb{R}^{3}$:
The algebra of differential invariants of generic conformal surfaces is generated by a single third order invariant.

Theorem. $G=\operatorname{PSL}(4)$ acts on $S \subset M=\mathbb{R}^{3}$:
The algebra of differential invariants of generic projective surfaces is generated by a single fourth order invariant.

Variational Problems

$\mathcal{I}[u]=\int L\left(x, u^{(n)}\right) d \mathbf{x}-\quad$ variational problem
$L\left(x, u^{(n)}\right)$ - Lagrangian
Variational derivative - Euler-Lagrange equations: $\quad \mathbf{E}(L)=0$

$$
\text { components: } \quad \mathbf{E}_{\alpha}(L)=\sum_{J}(-D)^{J} \frac{\partial L}{\partial u_{J}^{\alpha}}
$$

$$
D_{k} F=\frac{\partial F}{\partial x^{k}}+\sum_{\alpha, J} u_{J, k}^{\alpha} \frac{\partial F}{\partial u_{J}^{\alpha}}
$$

Invariant Variational Problems

According to Lie, any G-invariant variational problem can be written in terms of the differential invariants:

$$
\mathcal{I}[u]=\int L\left(x, u^{(n)}\right) d \mathbf{x}=\int P\left(\ldots \mathcal{D}_{K} I^{\alpha} \ldots\right) \boldsymbol{\omega}
$$

I^{1}, \ldots, I^{ℓ} - fundamental differential invariants
$\mathcal{D}_{1}, \ldots, \mathcal{D}_{p} \quad$ - invariant differential operators
$\mathcal{D}_{K} I^{\alpha} \quad-$ differentiated invariants
$\boldsymbol{\omega}=\omega^{1} \wedge \cdots \wedge \omega^{p} \quad-\quad$ invariant volume form

If the variational problem is G-invariant, so

$$
\mathcal{I}[u]=\int L\left(x, u^{(n)}\right) d \mathbf{x}=\int P\left(\ldots \mathcal{D}_{K} I^{\alpha} \ldots\right) \boldsymbol{\omega}
$$

then its Euler-Lagrange equations admit G as a symmetry group, and hence can also be expressed in terms of the differential invariants:

$$
\mathbf{E}(L) \simeq F\left(\ldots \mathcal{D}_{K} I^{\alpha} \ldots\right)=0
$$

Main Problem:

Construct F directly from P.
(P. Griffiths, I. Anderson)

Planar Euclidean group $\quad G=\mathrm{SE}(2)$

$$
\begin{array}{ll}
\kappa & =\frac{u_{x x}}{\left(1+u_{x}^{2}\right)^{3 / 2}} \\
d s & =\sqrt{1+u_{x}^{2}} d x \\
\mathcal{D} & =\frac{d}{d s}=\frac{1}{\sqrt{1+u_{x}^{2}}} \frac{d}{d x} \quad-\quad \text { arc length } \\
d \quad \text { arc length derivative }
\end{array}
$$

Euclidean-invariant variational problem

$$
\mathcal{I}[u]=\int L\left(x, u^{(n)}\right) d x=\int P\left(\kappa, \kappa_{s}, \kappa_{s s}, \ldots\right) d s
$$

Euler-Lagrange equations

$$
\mathbf{E}(L) \simeq F\left(\kappa, \kappa_{s}, \kappa_{s s}, \ldots\right)=0
$$

Euclidean Curve Examples

Minimal curves (geodesics):

$$
\begin{gathered}
\mathcal{I}[u]=\int d s=\int \sqrt{1+u_{x}^{2}} d x \\
\mathbf{E}(L)=-\kappa=0
\end{gathered}
$$

The Elastica (Euler):

$$
\begin{gathered}
\mathcal{I}[u]=\int \frac{1}{2} \kappa^{2} d s=\int \frac{u_{x x}^{2} d x}{\left(1+u_{x}^{2}\right)^{5 / 2}} \\
\mathbf{E}(L)=\kappa_{s s}+\frac{1}{2} \kappa^{3}=0
\end{gathered}
$$

\Longrightarrow elliptic functions

General Euclidean-invariant variational problem

$$
\mathcal{I}[u]=\int L\left(x, u^{(n)}\right) d x=\int P\left(\kappa, \kappa_{s}, \kappa_{s s}, \ldots\right) d s
$$

General Euclidean-invariant variational problem

$$
\mathcal{I}[u]=\int L\left(x, u^{(n)}\right) d x=\int P\left(\kappa, \kappa_{s}, \kappa_{s s}, \ldots\right) d s
$$

Invariantized Euler-Lagrange expression

$$
\mathcal{E}(P)=\sum_{n=0}^{\infty}(-\mathcal{D})^{n} \frac{\partial P}{\partial \kappa_{n}} \quad \mathcal{D}=\frac{d}{d s}
$$

General Euclidean-invariant variational problem

$$
\mathcal{I}[u]=\int L\left(x, u^{(n)}\right) d x=\int P\left(\kappa, \kappa_{s}, \kappa_{s s}, \ldots\right) d s
$$

Invariantized Euler-Lagrange expression

$$
\mathcal{E}(P)=\sum_{n=0}^{\infty}(-\mathcal{D})^{n} \frac{\partial P}{\partial \kappa_{n}} \quad \mathcal{D}=\frac{d}{d s}
$$

Invariantized Hamiltonian

$$
H^{i}(P)=\sum_{i>j} \kappa_{i-j}(-\mathcal{D})^{j} \frac{\partial P}{\partial \kappa_{i}}-P
$$

$$
\mathcal{I}[u]=\int L\left(x, u^{(n)}\right) d x=\int P\left(\kappa, \kappa_{s}, \kappa_{s s}, \ldots\right) d s
$$

Euclidean-invariant Euler-Lagrange formula

$$
\mathbf{E}(L)=\left(\mathcal{D}^{2}+\kappa^{2}\right) \mathcal{E}(P)+\kappa H^{i}(P)=0
$$

$$
\mathcal{I}[u]=\int L\left(x, u^{(n)}\right) d x=\int P\left(\kappa, \kappa_{s}, \kappa_{s s}, \ldots\right) d s
$$

Euclidean-invariant Euler-Lagrange formula

$$
\mathbf{E}(L)=\left(\mathcal{D}^{2}+\kappa^{2}\right) \mathcal{E}(P)+\kappa H^{i}(P)=0
$$

The Elastica: $\quad \mathcal{I}[u]=\int \frac{1}{2} \kappa^{2} d s \quad P=\frac{1}{2} \kappa^{2}$

$$
\begin{aligned}
& \mathcal{E}(P)=\kappa \quad H^{i}(P)=-P=-\frac{1}{2} \kappa^{2} \\
& \mathbf{E}(L)=\left(\mathcal{D}^{2}+\kappa^{2}\right) \kappa+\kappa\left(-\frac{1}{2} \kappa^{2}\right) \\
& =\kappa_{s s}+\frac{1}{2} \kappa^{3}=0
\end{aligned}
$$

The shape of a Möbius strip

E. L. STAROSTIN AND G. H. M. VAN DER HEIJDEN*
Cente tor Nortinear Dynaries, Department of Civi and Emirunmentsi Enyineering, Oriversity College Lendos, Londen WC1E 68T, UK +p-msil: g.hsijdantuclac.ak

The Möbius strip, obtained by taking a rectangular strip of plastic or paper, twisting one end through 180°, and then joining the ends, is the canonical example of a one-sided surface. Finding its characteristic developable shape has been an open problem ever since its first formulation in refs 1,2 . Here we use the invariant variational bicomplex formalism to derive the first equilibrium eq̣uations for a wide developable strip undergoing large deformations, thereby giving the first nontrivial demonstration of the potential of this approach. We then formulate the boundary-value problem for the Möbius strip and solve it numerically. Solutions for increasing width show the formation of creases bounding nearly flat triangular regions, a feature also familiar from fabric draping and paper crumpling ${ }^{3}$. This could give new insight into energy localization phenomena in unstretchable sheets, which might help to predict points of onset of tearing. It could also aid our understanding of the relationship between geometry and physical properties of nanoand microscopic Mübius strip structures ${ }^{\text {T }}$.

It is fair to say that the Mobbius strip is one of the few icons of mathematies that have been absorbed into wider culture. It has mathematical besuty and inspired artisis sach as Escher ${ }^{\text {. }}$. In engineeting, pulley belts are often used in the form of Mö̀nuss strips to wear 'both' sides equally. At a much smeller sale, Mäbius strips bave recently been formed in ribbon-shaped NbSe, crystals under certain erowth conditions involvine a laree temverature eradient?"

Figure 1 Photo of a paper Mixeius strip of aspect ratio 2r. The strip atepts a charater stic shape. hentersiblity of tre materal causes the surface to be dowicpabic. is stright gennaturs are crawn and te colourng vares according to the bendng enercy cersity.

 been pristed

The Infinite Jet Bundle

Jet bundles

$$
M=\mathrm{J}^{0} \longleftarrow \mathrm{~J}^{1} \longleftarrow \mathrm{~J}^{2} \longleftarrow \cdots
$$

Inverse limit

$$
\mathrm{J}^{\infty}=\lim _{n \rightarrow \infty} \mathrm{~J}^{n}
$$

Local coordinates

$$
z^{(\infty)}=\left(x, u^{(\infty)}\right)=\left(\ldots x^{i} \ldots u_{J}^{\alpha} \ldots\right)
$$

Differential Forms

Coframe - basis for the cotangent space $T^{*} \mathrm{~J}^{\infty}$:

- Horizontal one-forms

$$
d x^{1}, \ldots, d x^{p}
$$

- Contact (vertical) one-forms

$$
\theta_{J}^{\alpha}=d u_{J}^{\alpha}-\sum_{i=1}^{p} u_{J, i}^{\alpha} d x^{i}
$$

Intrinsic definition of contact form

$$
\theta \mid \mathrm{j}_{\infty} N=0 \quad \Longleftrightarrow \quad \theta=\sum A_{J}^{\alpha} \theta_{J}^{\alpha}
$$

The Variational Bicomplex

\Longrightarrow Dedecker, Vinogradov, Tsujishita, I. Anderson, ... Bigrading of the differential forms on J^{∞} :

$$
\begin{array}{ll}
\Omega^{*}=\bigoplus_{r, s} \Omega^{r, s} & r=\# \text { horizontal forms } \\
s=\# \text { contact forms }
\end{array}
$$

Vertical and Horizontal Differentials

$$
d_{H}: \Omega^{r, s} \longrightarrow \Omega^{r+1, s}
$$

$$
d=d_{H}+d_{V}
$$

$$
d_{V}: \Omega^{r, s} \longrightarrow \Omega^{r, s+1}
$$

Vertical and Horizontal Differentials

$$
\begin{aligned}
& F\left(x, u^{(n)}\right) \quad- \text { differential function } \\
& d_{H} F=\sum_{i=1}^{p}\left(D_{i} F\right) d x^{i} \quad-\quad \text { total differential } \\
& d_{V} F=\sum_{\alpha, J} \frac{\partial F}{\partial u_{J}^{\alpha}} \theta_{J}^{\alpha} \quad-\quad \text { first variation } \\
& d_{H}\left(d x^{i}\right)=d_{V}\left(d x^{i}\right)=0, \\
& d_{H}\left(\theta_{J}^{\alpha}\right)=\sum_{i=1}^{p} d x^{i} \wedge \theta_{J, i}^{\alpha} \quad d_{V}\left(\theta_{J}^{\alpha}\right)=0
\end{aligned}
$$

The Simplest Example

x - independent variable

$$
(x, u) \in M=\mathbb{R}^{2}
$$

u - dependent variable
Horizontal form

$$
d x
$$

Contact (vertical) forms

$$
\begin{aligned}
\theta & =d u-u_{x} d x \\
\theta_{x} & =d u_{x}-u_{x x} d x \\
\theta_{x x} & =d u_{x x}-u_{x x x} d x
\end{aligned}
$$

$$
\theta=d u-u_{x} d x, \quad \theta_{x}=d u_{x}-u_{x x} d x, \quad \theta_{x x}=d u_{x x}-u_{x x x} d x
$$

Differential:

$$
\begin{aligned}
d F & =\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial u} d u+\frac{\partial F}{\partial u_{x}} d u_{x}+\frac{\partial F}{\partial u_{x x}} d u_{x x}+\cdots \\
& =\left(D_{x} F\right) d x+\frac{\partial F}{\partial u} \theta+\frac{\partial F}{\partial u_{x}} \theta_{x}+\frac{\partial F}{\partial u_{x x}} \theta_{x x}+\cdots \\
& =d_{H} F+d_{V} F
\end{aligned}
$$

Total derivative:

$$
D_{x} F=\frac{\partial F}{\partial x}+\frac{\partial F}{\partial u} u_{x}+\frac{\partial F}{\partial u_{x}} u_{x x}+\frac{\partial F}{\partial u_{x x}} u_{x x x}+\cdots
$$

The Variational Bicomplex

The Variational Bicomplex

Lagrangians

The Variational Bicomplex

Lagrangians PDEs (Euler-Lagrange)

The Variational Bicomplex

Lagrangians PDEs (Euler-Lagrange) Helmholtz conditions

The Variational Bicomplex

The Variational Derivative

$$
\mathrm{E}=\pi \circ d_{V}
$$

$d_{V} \quad-\quad$ first variation
$\pi \quad$ - integration by parts $=\bmod$ out by image of d_{H}

$$
\left.\begin{array}{rlrl}
\Omega^{p, 0} & \xrightarrow{d_{V}} & \Omega^{p, 1} & \xrightarrow{\pi}
\end{array} \mathcal{F}^{1}=\Omega^{p, 1} / d_{H} \Omega^{p-1,1}\right)
$$

Variational
First
variation

Euler-Lagrange source form

The Simplest Example: $(x, u) \in M=\mathbb{R}^{2}$

Lagrangian form: $\quad \lambda=L\left(x, u^{(n)}\right) d x \in \Omega^{1,0}$

The Simplest Example: $(x, u) \in M=\mathbb{R}^{2}$

Lagrangian form: $\quad \lambda=L\left(x, u^{(n)}\right) d x \in \Omega^{1,0}$
First variation - vertical derivative:

$$
\begin{aligned}
d \lambda & =d_{V} \lambda=d_{V} L \wedge d x \\
& =\left(\frac{\partial L}{\partial u} \theta+\frac{\partial L}{\partial u_{x}} \theta_{x}+\frac{\partial L}{\partial u_{x x}} \theta_{x x}+\cdots\right) \wedge d x \in \Omega^{1,1}
\end{aligned}
$$

The Simplest Example: $(x, u) \in M=\mathbb{R}^{2}$

Lagrangian form: $\quad \lambda=L\left(x, u^{(n)}\right) d x \in \Omega^{1,0}$
First variation - vertical derivative:

$$
\begin{aligned}
d \lambda & =d_{V} \lambda=d_{V} L \wedge d x \\
& =\left(\frac{\partial L}{\partial u} \theta+\frac{\partial L}{\partial u_{x}} \theta_{x}+\frac{\partial L}{\partial u_{x x}} \theta_{x x}+\cdots\right) \wedge d x \in \Omega^{1,1}
\end{aligned}
$$

Integration by parts - compute modulo im d_{H} :

$$
\begin{aligned}
d \lambda \sim \delta \lambda & =\left(\frac{\partial L}{\partial u}-D_{x} \frac{\partial L}{\partial u_{x}}+D_{x}^{2} \frac{\partial L}{\partial u_{x x}}-\cdots\right) \theta \wedge d x \in \mathcal{F}^{1} \\
& =\mathbb{E}(L) \theta \wedge d x
\end{aligned}
$$

\Longrightarrow Euler-Lagrange source form.

To analyze invariant variational prob-

 lems, invariant conservation laws, invariant flows, etc., we apply the moving frame invariantization process to the variational bicomplex:
Differential Invariants and Invariant Differential Forms

 - invariantization associated with moving frame ρ.- Fundamental differential invariants

$$
H^{i}\left(x, u^{(n)}\right)=\iota\left(x^{i}\right) \quad I_{K}^{\alpha}\left(x, u^{(n)}\right)=\iota\left(u_{K}^{\alpha}\right)
$$

- Invariant horizontal forms

$$
\varpi^{i}=\iota\left(d x^{i}\right)
$$

- Invariant contact forms

$$
\vartheta_{J}^{\alpha}=\iota\left(\theta_{J}^{\alpha}\right)
$$

The Invariant "Quasi-Tricomplex"

Differential forms

$$
\Omega^{*}=\bigoplus_{r, s} \widehat{\Omega}^{r, s}
$$

Differential

$$
\begin{gathered}
d=d_{\mathcal{H}}+d_{\mathcal{V}}+d_{\mathcal{W}} \\
d_{\mathcal{H}}: \quad \widehat{\Omega}^{r, s} \longrightarrow \longrightarrow \widehat{\Omega}^{r+1, s} \\
d_{\mathcal{V}}: \quad \widehat{\Omega}^{r, s} \longrightarrow \longrightarrow \widehat{\Omega}^{r, s+1} \\
d_{\mathcal{W}}: \quad \widehat{\Omega}^{r, s} \longrightarrow \longrightarrow \widehat{\Omega}^{r-1, s+2}
\end{gathered}
$$

Key fact: invariantization and differentiation do not commute:

$$
d \iota(\Omega) \neq \iota(d \Omega)
$$

The Universal Recurrence Formula

$$
d \iota(\Omega)=\iota(d \Omega)+\sum_{\kappa=1}^{r} \nu^{\kappa} \wedge \iota\left[\mathbf{v}_{\kappa}(\Omega)\right]
$$

$\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}-\quad$ basis for $\mathfrak{g}-$ infinitesimal generators
$\nu^{1}, \ldots, \nu^{r}-\quad$ invariantized dual Maurer-Cartan forms
\Longrightarrow uniquely determined by the recurrence formulae for the phantom differential invariants

$$
d \iota(\Omega)=\iota(d \Omega)+\sum_{\kappa=1}^{r} \nu^{\kappa} \wedge \iota\left[\mathbf{v}_{\kappa}(\Omega)\right]
$$

$\star \star \star$ All identities, commutation formulae, syzygies, etc., among differential invariants and, more generally, the invariant variational bicomplex follow from this universal formula by letting Ω range over the basic functions and differential forms!
$\star \star \star$ Moreover, determining the structure of the differential invariant algebra and invariant variational bicomplex requires only linear differential algebra, and not any explicit formulas for the moving frame, the differential invariants, the invariant differential forms, or the group transformations!

Euclidean plane curves

Fundamental normalized differential invariants

$$
\begin{gathered}
\left.\begin{array}{c}
\iota(x)=H=0 \\
\iota(u)=I_{0}=0 \\
\iota\left(u_{x}\right)=I_{1}=0
\end{array}\right\} \quad \text { phantom diff. invs. } \\
\iota\left(u_{x x}\right)=I_{2}=\kappa \quad \iota\left(u_{x x x}\right)=I_{3}=\kappa_{s} \quad \iota\left(u_{x x x x}\right)=I_{4}=\kappa_{s s}+3 \kappa^{3}
\end{gathered}
$$

In general:

$$
\iota\left(F\left(x, u, u_{x}, u_{x x}, u_{x x x}, u_{x x x x}, \ldots\right)\right)=F\left(0,0,0, \kappa, \kappa_{s}, \kappa_{s s}+3 \kappa^{3}, \ldots\right)
$$

Invariant arc length form

$$
\begin{aligned}
d y & =\left(\cos \phi-u_{x} \sin \phi\right) d x-(\sin \phi) \theta \\
\varpi=\iota(d x) & =\omega+\eta \\
& =\sqrt{1+u_{x}^{2}} d x+\frac{u_{x}}{\sqrt{1+u_{x}^{2}}} \theta
\end{aligned}
$$

$$
\Longrightarrow \quad \theta=d u-u_{x} d x
$$

Invariant contact forms

$$
\vartheta=\iota(\theta)=\frac{\theta}{\sqrt{1+u_{x}^{2}}} \quad \vartheta_{1}=\iota\left(\theta_{x}\right)=\frac{\left(1+u_{x}^{2}\right) \theta_{x}-u_{x} u_{x x} \theta}{\left(1+u_{x}^{2}\right)^{2}}
$$

Prolonged infinitesimal generators
$\mathbf{v}_{1}=\partial_{x}, \quad \mathbf{v}_{2}=\partial_{u}, \quad \mathbf{v}_{3}=-u \partial_{x}+x \partial_{u}+\left(1+u_{x}^{2}\right) \partial_{u_{x}}+3 u_{x} u_{x x} \partial_{u_{x x}}+\cdots$
Basic recurrence formula

$$
d \iota(F)=\iota(d F)+\iota\left(\mathbf{v}_{1}(F)\right) \nu^{1}+\iota\left(\mathbf{v}_{2}(F)\right) \nu^{2}+\iota\left(\mathbf{v}_{3}(F)\right) \nu^{3}
$$

Use phantom invariants

$$
\begin{aligned}
& 0=d H=\iota(d x)+\iota\left(\mathbf{v}_{1}(x)\right) \nu^{1}+\iota\left(\mathbf{v}_{2}(x)\right) \nu^{2}+\iota\left(\mathbf{v}_{3}(x)\right) \nu^{3}=\varpi+\nu^{1} \\
& 0=d I_{0}=\iota(d u)+\iota\left(\mathbf{v}_{1}(u)\right) \nu^{1}+\iota\left(\mathbf{v}_{2}(u)\right) \nu^{2}+\iota\left(\mathbf{v}_{3}(u)\right) \nu^{3}=\vartheta+\nu^{2} \\
& 0=d I_{1}=\iota\left(d u_{x}\right)+\iota\left(\mathbf{v}_{1}\left(u_{x}\right)\right) \nu^{1}+\iota\left(\mathbf{v}_{2}\left(u_{x}\right)\right) \nu^{2}+\iota\left(\mathbf{v}_{3}\left(u_{x}\right)\right) \nu^{3}=\kappa \varpi+\vartheta_{1}+\nu^{3}
\end{aligned}
$$

to solve for the Maurer-Cartan forms:

$$
\nu^{1}=-\varpi, \quad \nu^{2}=-\vartheta, \quad \nu^{3}=-\kappa \varpi-\vartheta_{1}
$$

$$
\nu^{1}=-\varpi, \quad \nu^{2}=-\vartheta, \quad \nu^{3}=-\kappa \varpi-\vartheta_{1}
$$

Recurrence formulae:

$$
\begin{aligned}
d \kappa & =d \iota\left(u_{x x}\right)=\iota\left(d u_{x x}\right)+\iota\left(\mathbf{v}_{1}\left(u_{x x}\right)\right) \nu^{1}+\iota\left(\mathbf{v}_{2}\left(u_{x x}\right)\right) \nu^{2}+\iota\left(\mathbf{v}_{3}\left(u_{x x}\right)\right) \nu^{3} \\
& =\iota\left(u_{x x x} d x+\theta_{x x}\right)-\iota\left(3 u_{x} u_{x x}\right)\left(\kappa \varpi+\vartheta_{1}\right)=I_{3} \varpi+\vartheta_{2}
\end{aligned}
$$

Therefore,

$$
\mathcal{D} \kappa=\kappa_{s}=I_{3}, \quad d_{\mathcal{V}} \kappa=\vartheta_{2}=\left(\mathcal{D}^{2}+\kappa^{2}\right) \vartheta
$$

where the final formula follows from the contact form recurrence formulae

$$
d \vartheta=d \iota\left(\theta_{x}\right)=\varpi \wedge \vartheta_{1}, \quad d \vartheta_{1}=d \iota(\theta)=\varpi \wedge\left(\vartheta_{2}-\kappa^{2} \vartheta\right)-\kappa \vartheta_{1} \wedge \vartheta
$$

which imply

$$
\vartheta_{1}=\mathcal{D} \vartheta, \quad \vartheta_{2}=\mathcal{D} \vartheta_{1}+\kappa^{2} \vartheta=\left(\mathcal{D}^{2}+\kappa^{2}\right) \vartheta
$$

Similarly,

$$
\begin{aligned}
d \varpi & =\iota\left(d^{2} x\right)+\nu^{1} \wedge \iota\left(\mathbf{v}_{1}(d x)\right)+\nu^{2} \wedge \iota\left(\mathbf{v}_{2}(d x)\right)+\nu^{3} \wedge \iota\left(\mathbf{v}_{3}(d x)\right) \\
& =\left(\kappa \varpi+\vartheta_{1}\right) \wedge \iota\left(u_{x} d x+\theta\right)=\kappa \varpi \wedge \vartheta+\vartheta_{1} \wedge \vartheta
\end{aligned}
$$

In particular,

$$
d_{\mathcal{V}} \varpi=-\kappa \vartheta \wedge \varpi
$$

Key recurrence formulae:

$$
d_{\mathcal{V}} \kappa=\left(\mathcal{D}^{2}+\kappa^{2}\right) \vartheta
$$

$$
d_{\mathcal{V}} \varpi=-\kappa \vartheta \wedge \varpi
$$

Plane Curves

Invariant Lagrangian:

$$
\tilde{\lambda}=L\left(x, u^{(n)}\right) d x=P\left(\kappa, \kappa_{s}, \ldots\right) \varpi
$$

Euler-Lagrange form:

$$
d_{\mathcal{V}} \tilde{\lambda} \sim \mathbf{E}(L) \vartheta \wedge \varpi
$$

Invariant Integration by Parts Formula

$$
F d_{\mathcal{V}}(\mathcal{D} H) \wedge \varpi \sim-(\mathcal{D} F) d_{\mathcal{V}} H \wedge \varpi-(F \cdot \mathcal{D} H) d_{\mathcal{V}} \varpi
$$

$$
\begin{aligned}
d_{\mathcal{V}} \widetilde{\lambda} & =d_{\mathcal{V}} P \wedge \varpi+P d_{\mathcal{V}} \varpi \\
& =\sum_{n} \frac{\partial P}{\partial \kappa_{n}} d_{\mathcal{V}} \kappa_{n} \wedge \varpi+P d_{\mathcal{V}} \varpi \\
& \sim \mathcal{E}(P) d_{\mathcal{V}} \kappa \wedge \varpi+H^{i}(P) d_{\mathcal{V}} \varpi
\end{aligned}
$$

Vertical differentiation formulae

$$
\begin{array}{ll}
d_{\mathcal{V}} \kappa=\mathcal{A}(\vartheta) & \mathcal{A}-\text { "Eulerian operator" } \\
d_{\mathcal{V}} \varpi=\mathcal{B}(\vartheta) \wedge \varpi & \mathcal{B}-\text { "Hamiltonian operator" }
\end{array}
$$

$$
\begin{aligned}
d_{\mathcal{V}} \tilde{\lambda} & \sim \mathcal{E}(P) \mathcal{A}(\vartheta) \wedge \varpi+H^{i}(P) \mathcal{B}(\vartheta) \wedge \varpi \\
& \sim\left[\mathcal{A}^{*} \mathcal{E}(P)-\mathcal{B}^{*} H^{i}(P)\right] \vartheta \wedge \varpi
\end{aligned}
$$

Invariant Euler-Lagrange equation

$$
\mathcal{A}^{*} \mathcal{E}(P)-\mathcal{B}^{*} H^{i}(P)=0
$$

Euclidean Plane Curves

$$
d_{\mathcal{V}} \kappa=\left(\mathcal{D}^{2}+\kappa^{2}\right) \vartheta
$$

Eulerian operator

$$
\mathcal{A}=\mathcal{D}^{2}+\kappa^{2} \quad \mathcal{A}^{*}=\mathcal{D}^{2}+\kappa^{2}
$$

$$
d_{\mathcal{V}} \varpi=-\kappa \vartheta \wedge \varpi
$$

Hamiltonian operator

$$
\mathcal{B}=-\kappa \quad \mathcal{B}^{*}=-\kappa
$$

Euclidean-invariant Euler-Lagrange formula

$$
\mathbf{E}(L)=\mathcal{A}^{*} \mathcal{E}(P)-\mathcal{B}^{*} H^{i}(P)=\left(\mathcal{D}^{2}+\kappa^{2}\right) \mathcal{E}(P)+\kappa H^{i}(P)
$$

Invariant Plane Curve Flows

G — Lie group acting on \mathbb{R}^{2}
$C(t)$ - parametrized family of plane curves
G-invariant curve flow:

$$
\frac{d C}{d t}=\mathbf{V}=I \mathbf{t}+J \mathbf{n}
$$

- I, J - differential invariants
- t - "unit tangent"
- n - "unit normal"
\mathbf{t}, \mathbf{n} - basis of the invariant vector fields dual to the invariant one-forms:

$$
\begin{array}{ll}
\langle\mathbf{t} ; \varpi\rangle=1, & \langle\mathbf{n} ; \varpi\rangle=0 \\
\langle\mathbf{t} ; \vartheta\rangle=0, & \langle\mathbf{n} ; \vartheta\rangle=1 .
\end{array}
$$

$$
C_{t}=\mathbf{V}=I \mathbf{t}+J \mathbf{n}
$$

- The tangential component I t only affects the underlying parametrization of the curve. Thus, we can set I to be anything we like without affecting the curve evolution.
- There are two principal choices of tangential component:

Normal Curve Flows

$$
C_{t}=J \mathbf{n}
$$

Examples - Euclidean-invariant curve flows

- $C_{t}=\mathbf{n} \quad-\quad$ geometric optics or grassfire flow;
- $C_{t}=\kappa \mathbf{n} \quad-\quad$ curve shortening flow;
- $C_{t}=\kappa^{1 / 3} \mathbf{n}-\quad$ equi-affine invariant curve shortening flow:

$$
C_{t}=\mathbf{n}_{\text {equi-affine }} ;
$$

- $C_{t}=\kappa_{s} \mathbf{n} \quad$ - modified Korteweg-deVries flow;
- $C_{t}=\kappa_{s s} \mathbf{n} \quad$ - thermal grooving of metals.

Intrinsic Curve Flows

Theorem. The curve flow generated by

$$
\mathbf{v}=I \mathbf{t}+J \mathbf{n}
$$

preserves arc length if and only if

$$
\mathcal{B}(J)+\mathcal{D} I=0 .
$$

\mathcal{D} - invariant arc length derivative

$$
d_{\mathcal{V}} \varpi=\mathcal{B}(\vartheta) \wedge \varpi
$$

\mathcal{B} - invariant Hamiltonian operator

Normal Evolution of Differential Invariants

Theorem. Under a normal flow $C_{t}=J \mathbf{n}$,

$$
\frac{\partial \kappa}{\partial t}=\mathcal{A}_{\kappa}(J), \quad \frac{\partial \kappa_{s}}{\partial t}=\mathcal{A}_{\kappa_{s}}(J)
$$

Invariant variations:

$$
d_{\mathcal{V}} \kappa=\mathcal{A}_{\kappa}(\vartheta), \quad d_{\mathcal{V}} \kappa_{s}=\mathcal{A}_{\kappa_{s}}(\vartheta) .
$$

$\mathcal{A}_{\kappa}=\mathcal{A}$ - invariant linearization operator of curvature;
$\mathcal{A}_{\kappa_{s}}=\mathcal{D} \mathcal{A}_{\kappa}+\kappa \kappa_{s}$ — invariant linearization operator of κ_{s}.

Euclidean-invariant Curve Evolution

Normal flow: $\quad C_{t}=J \mathbf{n}$

$$
\begin{aligned}
& \frac{\partial \kappa}{\partial t}=\mathcal{A}_{\kappa}(J) \\
&=\left(\mathcal{D}^{2}+\kappa^{2}\right) J \\
& \frac{\partial \kappa_{s}}{\partial t}=\mathcal{A}_{\kappa_{s}}(J)
\end{aligned}=\left(\mathcal{D}^{3}+\kappa^{2} \mathcal{D}+3 \kappa \kappa_{s}\right) J . ~ \$
$$

Warning: For non-intrinsic flows, ∂_{t} and ∂_{s} do not commute!

Grassfire flow: $J=1$

$$
\frac{\partial \kappa}{\partial t}=\kappa^{2}, \quad \frac{\partial \kappa_{s}}{\partial t}=3 \kappa \kappa_{s},
$$

\Longrightarrow caustics

Euclidean Signature Evolution

Evolution of the Euclidean signature curve

$$
\kappa_{s}=\Phi(t, \kappa) .
$$

Grassfire flow:

$$
\frac{\partial \Phi}{\partial t}=3 \kappa \Phi-\kappa^{2} \frac{\partial \Phi}{\partial \kappa} .
$$

Curve shortening flow:

$$
\frac{\partial \Phi}{\partial t}=\Phi^{2} \Phi_{\kappa \kappa}-\kappa^{3} \Phi_{\kappa}+4 \kappa^{2} \Phi .
$$

Modified Korteweg-deVries flow:

$$
\frac{\partial \Phi}{\partial t}=\Phi^{3} \Phi_{\kappa \kappa \kappa}+3 \Phi^{2} \Phi_{\kappa} \Phi_{\kappa \kappa}+3 \kappa \Phi^{2} .
$$

Canine Left Ventricle Signature

Original Canine Heart MRI Image

Boundary of Left Ventricle

Smoothed Ventricle Signature

Intrinsic Evolution of Differential Invariants

Theorem.

Under an arc-length preserving flow,

$$
\begin{equation*}
\kappa_{t}=\mathcal{R}(J) \quad \text { where } \quad \mathcal{R}=\mathcal{A}-\kappa_{s} \mathcal{D}^{-1} \mathcal{B} \tag{*}
\end{equation*}
$$

In surprisingly many situations, $(*)$ is a well-known integrable evolution equation, and \mathcal{R} is its recursion operator!
\Longrightarrow Hasimoto
\Longrightarrow Langer, Singer, Perline
\Longrightarrow Marí-Beffa, Sanders, Wang
$\Longrightarrow \mathrm{Qu}$, Chou, and many more ...

Euclidean plane curves

$$
\begin{gathered}
G=\operatorname{SE}(2)=\mathrm{SO}(2) \ltimes \mathbb{R}^{2} \\
d_{\mathcal{V}} \kappa=\left(\mathcal{D}^{2}+\kappa^{2}\right) \vartheta, \quad d_{\mathcal{V}} \varpi=-\kappa \vartheta \wedge \varpi \\
\Longrightarrow \quad \mathcal{A}=\mathcal{D}^{2}+\kappa^{2}, \quad \mathcal{B}=-\kappa \\
\mathcal{R}=\mathcal{A}-\kappa_{s} \mathcal{D}^{-1} \mathcal{B}=\mathcal{D}^{2}+\kappa^{2}+\kappa_{s} \mathcal{D}^{-1} \cdot \kappa
\end{gathered}
$$

$$
\kappa_{t}=\mathcal{R}\left(\kappa_{s}\right)=\kappa_{s s s}+\frac{3}{2} \kappa^{2} \kappa_{s}
$$

\Longrightarrow modified Korteweg-deVries equation

Equi-affine plane curves

$$
\begin{gathered}
G=\mathrm{SA}(2)=\mathrm{SL}(2) \ltimes \mathbb{R}^{2} \\
d_{\mathcal{V}} \kappa=\mathcal{A}(\vartheta), \quad d_{\mathcal{V}} \varpi=\mathcal{B}(\vartheta) \wedge \varpi \\
\mathcal{A}=\mathcal{D}^{4}+\frac{5}{3} \kappa \mathcal{D}^{2}+\frac{5}{3} \kappa_{s} \mathcal{D}+\frac{1}{3} \kappa_{s s}+\frac{4}{9} \kappa^{2}, \\
\mathcal{B}=\frac{1}{3} \mathcal{D}^{2}-\frac{2}{9} \kappa, \\
\mathcal{R}=\mathcal{A}-\kappa_{s} \mathcal{D}^{-1} \mathcal{B} \\
=\mathcal{D}^{4}+\frac{5}{3} \kappa \mathcal{D}^{2}+\frac{4}{3} \kappa_{s} \mathcal{D}+\frac{1}{3} \kappa_{s s}+\frac{4}{9} \kappa^{2}+\frac{2}{9} \kappa_{s} \mathcal{D}^{-1} \cdot \kappa
\end{gathered}
$$

$$
\kappa_{t}=\mathcal{R}\left(\kappa_{s}\right)=\kappa_{5 s}+2 \kappa \kappa_{s s}+\frac{4}{3} \kappa_{s}^{2}++\frac{5}{9} \kappa^{2} \kappa_{s}
$$

\Longrightarrow Sawada-Kotera equation

Euclidean space curves

$$
\begin{gathered}
G=\mathrm{SE}(3)=\mathrm{SO}(3) \ltimes \mathbb{R}^{3} \\
\mathcal{A}=\binom{d_{\mathcal{V}} \kappa}{d_{\mathcal{V}} \tau}=\mathcal{A}\binom{\vartheta_{1}}{\vartheta_{2}} \quad d_{\mathcal{V}} \varpi=\mathcal{B}\binom{\vartheta_{1}}{\vartheta_{2}} \wedge \varpi \\
\frac{2 \tau}{\kappa} D_{s}^{2}+\left(\kappa^{2}-\tau^{2}\right) \\
\kappa^{2} \\
\frac{3 \kappa \tau_{s}-2 \kappa_{s} \tau}{} D_{s}+\frac{\kappa \tau_{s s}-\kappa_{s} \tau_{s}+2 \kappa^{3} \tau}{\kappa^{2}} \\
-2 \tau D_{s}-\tau_{s} \\
\mathcal{B}=\left(\begin{array}{ll}
\kappa & 0
\end{array}\right)
\end{gathered}
$$

Recursion operator:

$$
\begin{gathered}
\mathcal{R}=\mathcal{A}-\binom{\kappa_{s}}{\tau_{s}} \mathcal{D}^{-1} \mathcal{B} \\
\binom{\kappa_{t}}{\tau_{t}}=\mathcal{R}\binom{\kappa_{s}}{\tau_{s}}
\end{gathered}
$$

\Longrightarrow vortex filament flow
\Longrightarrow nonlinear Schrödinger equation (Hasimoto)

Moving Frames for Lie Pseudo-Groups

Peter J. Olver
University of Minnesota
http://www.math.umn.edu/ ~olver

Sur la théorie, si importante sans doute, mais pour nous si obscure, des <groupes de Lie infinis», nous ne savons rien que ce qui trouve dans les mémoires de Cartan, première exploration à travers une jungle presque impénétrable; mais celle-ci menace de se refermer sur les sentiers déjà tracés, si l'on ne procède bientôt à un indispensable travail de défrichement.

What's the Deal with Infinite-Dimensional Groups?

- Lie invented Lie groups to study symmetry and solution of differential equations.
\diamond In Lie's time, there were no abstract Lie groups. All groups were realized by their action on a space.
© Therefore, Lie saw no essential distinction between finitedimensional and infinite-dimensional group actions.

However, with the advent of abstract Lie groups, the two subjects have gone in radically different directions.
\bigcirc The general theory of finite-dimensional Lie groups has been rigorously formalized and applied.
\& But there is still no generally accepted abstract object that represents an infinite-dimensional Lie pseudo-group!

Ehresmann's Trinity

1953:

Ehresmann's Trinity

1953:

- Lie Pseudo-groups

Ehresmann's Trinity

1953:

- Lie Pseudo-groups
- Jets

Ehresmann's Trinity

1953:

- Lie Pseudo-groups
- Jets
- Groupoids

Lie Pseudo-groups in Action

- Lie - Medolaghi - Vessiot
- Cartan
- Ehresmann
- Kuranishi, Spencer, Goldschmidt, Guillemin, Sternberg, Kumpera, ...

Lie Pseudo-groups in Action

- Lie - Medolaghi - Vessiot
- Cartan
- Ehresmann
- Kuranishi, Spencer, Goldschmidt, Guillemin, Sternberg, Kumpera, ...
- Relativity
- Noether's (Second) Theorem
- Gauge theory and field theories: Maxwell, Yang-Mills, conformal, string, ...
- Fluid mechanics, metereology: Navier-Stokes, Euler, boundary layer, quasi-geostropic, ...
- Solitons (in $2+1$ dimensions):

K-P, Davey-Stewartson, ...

- Kac-Moody
- Morphology and shape recognition
- Control theory
- Linear and linearizable PDEs
- Geometric numerical integration
- Lie groups!

Moving Frames

In collaboration with Juha Pohjanpelto and Jeongoo Cheh, I have recently established a moving frame theory for infinite-dimensional Lie pseudo-groups mimicking the earlier equivariant approach for finite-dimensional Lie groups developed with Mark Fels and others.

The finite-dimensional theory and algorithms have had a very wide range of significant applications, including differential geometry, differential equations, calculus of variations, computer vision, Poisson geometry and solitons, numerical methods, relativity, classical invariant theory, ...

What's New?

In the infinite-dimensional case, the moving frame approach provides new constructive algorithms for:

- Invariant Maurer-Cartan forms
- Structure equations
- Moving frames
- Differential invariants
- Invariant differential operators
- Basis Theorem
- Syzygies and recurrence formulae
- Further applications:
\Longrightarrow Symmetry groups of differential equations
\Longrightarrow Vessiot group splitting; explicit solutions
\Longrightarrow Gauge theories
\Longrightarrow Calculus of variations
\Longrightarrow Invariant geometric flows

Symmetry Groups - Review

System of differential equations:

$$
\Delta_{\nu}\left(x, u^{(n)}\right)=0, \quad \nu=1,2, \ldots, k
$$

By a symmetry, we mean a transformation that maps solutions to solutions.

Lie: To find the symmetry group of the differential equations, work infinitesimally.
The vector field

$$
\mathbf{v}=\sum_{i=1}^{p} \xi^{i}(x, u) \frac{\partial}{\partial x^{i}}+\sum_{\alpha=1}^{q} \varphi_{\alpha}(x, u) \frac{\partial}{\partial u^{\alpha}}
$$

is an infinitesimal symmetry if its flow $\exp (t \mathbf{v})$ is a oneparameter symmetry group of the differential equation.

To find the infinitesimal symmetry conditions, we prolong \mathbf{v} to the jet space whose coordinates are the derivatives appearing in the differential equation:

$$
\mathbf{v}^{(n)}=\sum_{i=1}^{p} \xi^{i} \frac{\partial}{\partial x^{i}}+\sum_{\alpha=1}^{q} \sum_{\# J=0}^{n} \varphi_{\alpha}^{J} \frac{\partial}{\partial u_{J}^{\alpha}}
$$

where

$$
\varphi_{\alpha}^{J}=D_{J}\left(\varphi^{\alpha}-\sum_{i=1}^{p} u_{i}^{\alpha} \xi^{i}\right)+\sum_{i=1}^{p} u_{J, i}^{\alpha} \xi^{i}
$$

Infinitesimal invariance criterion:

$$
\mathbf{v}^{(n)}\left(\Delta_{\nu}\right)=0 \quad \text { whenever } \quad \Delta=0
$$

Infinitesimal determining equations:

$$
\mathcal{L}\left(x, u ; \xi^{(n)}, \varphi^{(n)}\right)=0
$$

The Heat Equation

$$
u_{t}=u_{x x}
$$

Symmetry generator:

$$
\mathbf{v}=\tau(t, x, u) \frac{\partial}{\partial t}+\xi(t, x, u) \frac{\partial}{\partial x}+\varphi(t, x, u) \frac{\partial}{\partial u}
$$

Prolongation:

$$
\begin{gathered}
\mathbf{v}^{(2)}=\mathbf{v}+\varphi^{t} \frac{\partial}{\partial u_{t}}+\varphi^{x} \frac{\partial}{\partial u_{x}}+\varphi^{x x} \frac{\partial}{\partial u_{x x}}+\cdots \\
\varphi^{t}=\varphi_{t}+u_{t} \varphi_{u}-u_{t} \tau_{t}-u_{t}^{2} \tau_{u}-u_{x} \xi_{t}-u_{t} u_{x} \xi_{u} \\
\varphi^{x}=\varphi_{x}+u_{x} \varphi_{u}-u_{t} \tau_{x}-u_{t} u_{x} \tau_{u}-u_{x} \xi_{x}-u_{x}^{2} \xi_{u} \\
\varphi^{x x}=\varphi_{x x}+u_{x}\left(2 \varphi_{x u}-\xi_{x x}\right)-u_{t} \tau_{x x}+u_{x}^{2}\left(\varphi_{u u}-2 \xi_{x u}\right) \\
\quad-2 u_{x} u_{t} \tau_{x u}-u_{x}^{3} \xi_{u u}-u_{x}^{2} u_{t} \tau_{u u}+u_{x x} \varphi_{u}-u_{x} u_{x x} \xi_{u}-u_{t} u_{x x} \tau_{u}
\end{gathered}
$$

Infinitesimal invariance:

$$
\mathbf{v}^{(3)}\left(u_{t}-u_{x x}\right)=\varphi^{t}-\varphi^{x x}=0 \quad \text { whenever } \quad u_{t}=u_{x x}
$$

Determining equations:

$$
\begin{array}{rlr}
\frac{\text { Coefficient }}{0}=-2 \tau_{u} & \frac{\text { Monomial }}{} \\
0 & u_{x} u_{x t} \\
0 & =-2 \tau_{x} & u_{x t} \\
-\xi_{u} & =-2 \tau_{x u}-3 \xi_{u} & u_{x}^{2} u_{x x} \\
\varphi_{u}-\tau_{t} & =-\tau_{x x}+\varphi_{u}-2 \xi_{x} & u_{x} u_{x x} \\
0 & =-\xi_{u u} & u_{x x} \\
0 & =\varphi_{u u}-2 \xi_{x u} & u_{x}^{3} \\
-\xi_{t} & =2 \varphi_{x u}-\xi_{x x} & u_{x}^{2} \\
\varphi_{t} & =\varphi_{x x} & u_{x} \\
& 1
\end{array}
$$

General solution:

$$
\begin{aligned}
& \xi=c_{1}+c_{4} x+2 c_{5} t+4 c_{6} x t \\
& \tau=c_{2}+2 c_{4} t+4 c_{6} t^{2} \\
& \varphi=\left(c_{3}-c_{5} x-2 c_{6} t-c_{6} x^{2}\right) u+\alpha(x, t)
\end{aligned}
$$

where $\alpha_{t}=\alpha_{x x}$ is an arbitrary solution to the heat equation.
Basis for the (infinite-dimensional) symmetry algebra:

$$
\begin{aligned}
& \mathbf{v}_{1}=\partial_{x}, \quad \mathbf{v}_{2}=\partial_{t}, \quad \mathbf{v}_{3}=u \partial_{u}, \quad \mathbf{v}_{4}=x \partial_{x}+2 t \partial_{t}, \\
& \mathbf{v}_{5}=2 t \partial_{x}-x u \partial_{u}, \quad \mathbf{v}_{6}=4 x t \partial_{x}+4 t^{2} \partial_{t}-\left(x^{2}+2 t\right) u \partial_{u}, \\
& \mathbf{v}_{\alpha}=\alpha(x, t) \partial_{u}, \quad \text { where } \quad \alpha_{t}=\alpha_{x x} .
\end{aligned}
$$

- x and t translations, scalings: λu, and $\left(\lambda x, \lambda^{2} t\right)$, Galilean boosts, inversions, and the addition of solutions stemming from the linearity of the equation.

The Korteweg-deVries equation

$$
u_{t}+u_{x x x}+u u_{x}=0
$$

Symmetry generator:

$$
\mathbf{v}=\tau(t, x, u) \frac{\partial}{\partial t}+\xi(t, x, u) \frac{\partial}{\partial x}+\varphi(t, x, u) \frac{\partial}{\partial u}
$$

Prolongation:

$$
\mathbf{v}^{(3)}=\mathbf{v}+\varphi^{t} \frac{\partial}{\partial u_{t}}+\varphi^{x} \frac{\partial}{\partial u_{x}}+\cdots+\varphi^{x x x} \frac{\partial}{\partial u_{x x x}}
$$

where

$$
\begin{aligned}
\varphi^{t} & =\varphi_{t}+u_{t} \varphi_{u}-u_{t} \tau_{t}-u_{t}^{2} \tau_{u}-u_{x} \xi_{t}-u_{t} u_{x} \xi_{u} \\
\varphi^{x} & =\varphi_{x}+u_{x} \varphi_{u}-u_{t} \tau_{x}-u_{t} u_{x} \tau_{u}-u_{x} \xi_{x}-u_{x}^{2} \xi_{u} \\
\varphi^{x x x} & =\varphi_{x x x}+3 u_{x} \varphi_{u}+\cdots
\end{aligned}
$$

Infinitesimal invariance:

$$
\mathbf{v}^{(3)}\left(u_{t}+u_{x x x}+u u_{x}\right)=\varphi^{t}+\varphi^{x x x}+u \varphi^{x}+u_{x} \varphi=0
$$

on solutions

Infinitesimal determining equations:

$$
\begin{gathered}
\tau_{x}=\tau_{u}=\xi_{u}=\varphi_{t}=\varphi_{x}=0 \\
\varphi=\xi_{t}-\frac{2}{3} u \tau_{t} \quad \varphi_{u}=-\frac{2}{3} \tau_{t}=-2 \xi_{x} \\
\tau_{t t}=\tau_{t x}=\tau_{x x}=\cdots=\varphi_{u u}=0
\end{gathered}
$$

General solution:

$$
\tau=c_{1}+3 c_{4} t, \quad \xi=c_{2}+c_{3} t+c_{4} x, \quad \varphi=c_{3}-2 c_{4} u
$$

Basis for symmetry algebra $\mathfrak{g}_{K d V}$:

$$
\begin{aligned}
& \mathbf{v}_{1}=\partial_{t} \\
& \mathbf{v}_{2}=\partial_{x} \\
& \mathbf{v}_{3}=t \partial_{x}+\partial_{u}, \\
& \mathbf{v}_{4}=3 t \partial_{t}+x \partial_{x}-2 u \partial_{u} .
\end{aligned}
$$

The symmetry group $\mathcal{G}_{K d V}$ is four-dimensional

$$
(x, t, u) \longmapsto\left(\lambda^{3} t+a, \lambda x+c t+b, \lambda^{-2} u+c\right)
$$

$$
\begin{array}{ll}
\mathbf{v}_{1}=\partial_{t}, & \mathbf{v}_{2}=\partial_{x} \\
\mathbf{v}_{3}=t \partial_{x}+\partial_{u}, & \mathbf{v}_{4}=3 t \partial_{t}+x \partial_{x}-2 u \partial_{u}
\end{array}
$$

Commutator table:

	\mathbf{v}_{1}	\mathbf{v}_{2}	\mathbf{v}_{3}	\mathbf{v}_{4}
\mathbf{v}_{1}	0	0	0	\mathbf{v}_{1}
\mathbf{v}_{2}	0	0	\mathbf{v}_{1}	$3 \mathbf{v}_{2}$
\mathbf{v}_{3}	0	$-\mathbf{v}_{1}$	0	$-2 \mathbf{v}_{3}$
\mathbf{v}_{4}	$-\mathbf{v}_{1}$	$-3 \mathbf{v}_{2}$	$2 \mathbf{v}_{3}$	0

Entries: $\quad\left[\mathbf{v}_{i}, \mathbf{v}_{j}\right]=\sum_{k} C_{i j}^{k} \mathbf{v}_{k} . \quad C_{i j}^{k}-$ structure constants of \mathfrak{g}

Navier-Stokes Equations

$$
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}=-\nabla p+\nu \Delta \mathbf{u}, \quad \nabla \cdot \mathbf{u}=0
$$

Symmetry generators:

$$
\begin{aligned}
\mathbf{v}_{\boldsymbol{\alpha}} & =\boldsymbol{\alpha}(t) \cdot \partial_{\mathbf{x}}+\boldsymbol{\alpha}^{\prime}(t) \cdot \partial_{\mathbf{u}}-\boldsymbol{\alpha}^{\prime \prime}(t) \cdot \mathbf{x} \partial_{p} \\
\mathbf{v}_{0} & =\partial_{t} \\
\mathbf{s} & =\mathbf{x} \cdot \partial_{\mathbf{x}}+2 t \partial_{t}-\mathbf{u} \cdot \partial_{\mathbf{u}}-2 p \partial_{p} \\
\mathbf{r} & =\mathbf{x} \wedge \partial_{\mathbf{x}}+\mathbf{u} \wedge \partial_{\mathbf{u}} \\
\mathbf{w}_{h} & =h(t) \partial_{p}
\end{aligned}
$$

Kadomtsev-Petviashvili (KP) Equation

$$
\left(u_{t}+\frac{3}{2} u u_{x}+\frac{1}{4} u_{x x x}\right)_{x} \pm \frac{3}{4} u_{y y}=0
$$

Symmetry generators:

$$
\begin{aligned}
& \mathbf{v}_{f}= f(t) \partial_{t}+\frac{2}{3} y f^{\prime}(t) \partial_{y}+\left(\frac{1}{3} x f^{\prime}(t) \mp \frac{2}{9} y^{2} f^{\prime \prime}(t)\right) \partial_{x} \\
&+\left(-\frac{2}{3} u f^{\prime}(t)+\frac{2}{9} x f^{\prime \prime}(t) \mp \frac{4}{27} y^{2} f^{\prime \prime \prime}(t)\right) \partial_{u} \\
& \mathbf{w}_{g}= g(t) \partial_{y} \mp \\
& \frac{2}{3} y g^{\prime}(t) \partial_{x} \mp \frac{4}{9} y g^{\prime \prime}(t) \partial_{u} \\
& \mathbf{z}_{h}=h(t) \partial_{x}+ \frac{2}{3} h^{\prime}(t) \partial_{u} .
\end{aligned}
$$

\Longrightarrow Kac-Moody loop algebra $A_{4}^{(1)}$

Main Goals

Given a system of partial differential equations:

Main Goals

Given a system of partial differential equations:

- Find the structure of its symmetry (pseudo-) group \mathcal{G} directly from the determining equations.

Main Goals

Given a system of partial differential equations:

- Find the structure of its symmetry (pseudo-) group \mathcal{G} directly from the determining equations.
- Find and classify its differential invariants.

Main Goals

Given a system of partial differential equations:

- Find the structure of its symmetry (pseudo-) group \mathcal{G} directly from the determining equations.
- Find and classify its differential invariants.
- Use symmetry reduction or group splitting to construct explicit solutions.

Pseudo-groups

$M \quad$ - smooth (analytic) manifold

Definition. A pseudo-group is a collection of
local diffeomorphisms $\varphi: M \rightarrow M$ such that

- Identity: $\mathbf{1}_{M} \in \mathcal{G}$,
- Inverses: $\varphi^{-1} \in \mathcal{G}$,
- Restriction: $U \subset \operatorname{dom} \varphi \Longrightarrow \varphi \mid U \in \mathcal{G}$,
- Continuation: $\operatorname{dom} \varphi=\bigcup U_{\kappa}$ and $\varphi \mid U_{\kappa} \in \mathcal{G} \Longrightarrow \varphi \in \mathcal{G}$,
- Composition $: \operatorname{im} \varphi \subset \operatorname{dom} \psi \Longrightarrow \psi \circ \varphi \in \mathcal{G}$.

Lie Pseudo-groups

Definition. A Lie pseudo-group \mathcal{G} is a pseudo-group whose transformations are the solutions to an involutive system of partial differential equations:

$$
F\left(z, \varphi^{(n)}\right)=0 .
$$

called the nonlinear determining equations.

$$
\Longrightarrow \text { analytic (Cartan-Kähler) }
$$

$\star \star$ Key complication: \nexists abstract object $\mathcal{G} \star \star$

A Non-Lie Pseudo-group

Acting on $M=\mathbb{R}^{2}$:

$$
X=\varphi(x) \quad Y=\varphi(y)
$$

where $\varphi \in \mathcal{D}(\mathbb{R})$ is any local diffeomorphism.

- Cannot be characterized by a system of partial differential equations

$$
\Delta\left(x, y, X^{(n)}, Y^{(n)}\right)=0
$$

Theorem. Any regular non-Lie pseudo-group can be completed to a Lie pseudo-group with the same differential invariants.

Completion of previous example:

$$
X=\varphi(x), \quad Y=\psi(y)
$$

$$
\text { where } \varphi, \psi \in \mathcal{D}(\mathbb{R}) \text {. }
$$

Infinitesimal Generators

\mathfrak{g} - Lie algebra of infinitesimal generators of the pseudo-group \mathcal{G}
$z=(x, u)$ - local coordinates on M
Vector field:

$$
\mathbf{v}=\sum_{a=1}^{m} \zeta^{a}(z) \frac{\partial}{\partial z^{a}}=\sum_{i=1}^{p} \xi^{i} \frac{\partial}{\partial x^{i}}+\sum_{\alpha=1}^{q} \varphi^{\alpha} \frac{\partial}{\partial u^{\alpha}}
$$

Vector field jet:

$$
\begin{aligned}
\mathrm{j}_{n} \mathbf{v} \longmapsto \zeta^{(n)} & =\left(\ldots \zeta_{A}^{b} \ldots\right) \\
\zeta_{A}^{b} & =\frac{\partial^{\# A} \zeta^{b}}{\partial z^{A}}=\frac{\partial^{k} \zeta^{b}}{\partial z^{a_{1}} \cdots \partial z^{a_{k}}}
\end{aligned}
$$

The infinitesimal generators of \mathcal{G} are the solutions to the Infinitesimal (Linearized) Determining Equations

$$
\begin{equation*}
\mathcal{L}\left(z, \zeta^{(n)}\right)=0 \tag{*}
\end{equation*}
$$

Remark: If \mathcal{G} is the symmetry group of a system of differential equations $\Delta\left(x, u^{(n)}\right)=0$, then $(*)$ is the (involutive completion of) the usual Lie determining equations for the symmetry group.

The Diffeomorphism Pseudo-group

$M \quad-\quad$ smooth m-dimensional manifold
$\mathcal{D}=\mathcal{D}(M) \quad-\quad$ pseudo-group of all local diffeomorphisms

$$
\begin{gathered}
Z=\varphi(z) \\
\left\{\begin{array}{c}
z=\left(z^{1}, \ldots, z^{m}\right)-\text { source coordinates } \\
Z=\left(Z^{1}, \ldots, Z^{m}\right)-\text { target coordinates }
\end{array}\right.
\end{gathered}
$$

Jets

For $0 \leq n \leq \infty$:
Given a smooth map $\varphi: M \rightarrow M$, written in local coordinates as

$$
Z=\varphi(z), \text { let }\left.\mathrm{j}_{n} \varphi\right|_{z} \text { denote its } n \text {-jet at } z \in M \text {, i.e., its } n^{\text {th }}
$$ order Taylor polynomial or series based at z.

$\mathrm{J}^{n}(M, M)$ is the $n^{\text {th }}$ order jet bundle, whose points are the jets.
Local coordinates on $\mathrm{J}^{n}(M, M)$:

$$
\left(z, Z^{(n)}\right)=\left(\ldots z^{a} \ldots Z_{A}^{b} \ldots\right), \quad Z_{A}^{b}=\frac{\partial^{k} Z^{b}}{\partial z^{a_{1}} \cdots \partial z^{a_{k}}}
$$

Diffeomorphism Jets

The $n^{\text {th }}$ order diffeomorphism jet bundle is the subbundle

$$
\mathcal{D}^{(n)}=\mathcal{D}^{(n)}(M) \subset \mathrm{J}^{n}(M, M)
$$

consisting of $n^{\text {th }}$ order jets of local diffeomorphisms $\varphi: M \rightarrow M$.

The Inverse Function Theorem tells us that $\mathcal{D}^{(n)}$ is defined by the non-vanishing of the Jacobian determinant:

$$
\operatorname{det}\left(Z_{b}^{a}\right)=\operatorname{det}\left(\partial Z^{a} / \partial z^{b}\right) \neq 0
$$

Pseudo-group Jets

A Lie pseudo-group $\mathcal{G} \subset \mathcal{D}$ defines the subbundle

$$
\mathcal{G}^{(n)}=\left\{F\left(z, Z^{(n)}\right)=0\right\} \subset \mathcal{D}^{(n)}
$$

consisting of the jets of pseudo-group diffeomorphisms, and therefore characterized by the pseudo-group's nonlinear determining equations.

Pseudo-group Jets

A Lie pseudo-group $\mathcal{G} \subset \mathcal{D}$ defines the subbundle

$$
\mathcal{G}^{(n)}=\left\{F\left(z, Z^{(n)}\right)=0\right\} \subset \mathcal{D}^{(n)}
$$

consisting of the jets of pseudo-group diffeomorphisms, and therefore characterized by the pseudo-group's nonlinear determining equations.
\bigcirc Local coordinates on $\mathcal{G}^{(n)}$, e.g., the restricted diffeomorphism jet coordinates z^{c}, Z_{B}^{a}, are viewed as the pseudo-group parameters, playing the same role as the local coordinates on a Lie group G.

Pseudo-group Jets

A Lie pseudo-group $\mathcal{G} \subset \mathcal{D}$ defines the subbundle

$$
\mathcal{G}^{(n)}=\left\{F\left(z, Z^{(n)}\right)=0\right\} \subset \mathcal{D}^{(n)}
$$

consisting of the jets of pseudo-group diffeomorphisms, and therefore characterized by the pseudo-group's nonlinear determining equations.
\bigcirc Local coordinates on $\mathcal{G}^{(n)}$, e.g., the restricted diffeomorphism jet coordinates z^{c}, Z_{B}^{a}, are viewed as the pseudo-group parameters, playing the same role as the local coordinates on a Lie group G.
^ The pseudo-group jet bundle $\mathcal{G}^{(n)}$ does not form a group, but rather a groupoid under composition of Taylor polynomials/series.

Groupoid Structure

Double fibration:

$$
\begin{array}{ccc}
\boldsymbol{\sigma}^{(n)} & \mathcal{G}^{(n)} & \boldsymbol{\tau}^{(n)} \\
M & M \\
\boldsymbol{\sigma}^{(n)}\left(z, Z^{(n)}\right)=z & - & \text { source map } \\
\boldsymbol{\tau}^{(n)}\left(z, Z^{(n)}\right)=Z & - & \text { target map }
\end{array}
$$

You are only allowed to multiply $h^{(n)} \cdot g^{(n)}$ if

$$
\boldsymbol{\sigma}^{(n)}\left(h^{(n)}\right)=\boldsymbol{\tau}^{(n)}\left(g^{(n)}\right)
$$

* \star Composition of Taylor polynomials/series is well-defined only when the source of the second matches the target of the first.

One-dimensional case: $\quad M=\mathbb{R}$

Source coordinate: $x \quad$ Target coordinate: X
Local coordinates on $\mathcal{D}^{(n)}(\mathbb{R})$

$$
g^{(n)}=\left(x, X, X_{x}, X_{x x}, X_{x x x}, \ldots, X_{n}\right)
$$

Diffeomorphism jet:

$$
X \llbracket h \rrbracket=X+X_{x} h+\frac{1}{2} X_{x x} h^{2}+\frac{1}{6} X_{x x x} h^{3}+\cdots
$$

\Longrightarrow Taylor polynomial/series at a source point x

Groupoid multiplication of diffeomorphism jets:

$$
\begin{aligned}
& \left(X, \mathbf{X}, \mathbf{X}_{X}, \mathbf{X}_{X X}, \ldots\right) \cdot\left(x, X, X_{x}, X_{x x}, \ldots\right) \\
& \quad=\left(x, \mathbf{X}, \mathbf{X}_{X} X_{x}, \mathbf{X}_{X} X_{x x}+\mathbf{X}_{X X} X_{x}^{2}, \ldots\right) \\
& \quad \Longrightarrow \text { Composition of Taylor polynomials/series }
\end{aligned}
$$

The higher order terms are expressed in terms of Bell polynomials according to the general Fàa-di-Bruno formula.

- The groupoid multiplication (or Taylor composition) is only defined when the source coordinate X of the first multiplicand matches the target coordinate X of the second.

Structure of Lie Pseudo-groups

The structure of a finite-dimensional Lie group G is specified by its Maurer-Cartan forms - a basis μ^{1}, \ldots, μ^{r} for the right-invariant one-forms:

$$
d \mu^{k}=\sum_{i<j} C_{i j}^{k} \mu^{i} \wedge \mu^{j}
$$

What should be the Maurer-Cartan forms of a Lie pseudo-group?

What should be the Maurer-Cartan forms of a Lie pseudo-group?
Cartan: Use exterior differential systems and prolongation to determine the structure equations.

What should be the Maurer-Cartan forms of a Lie pseudo-group?
Cartan: Use exterior differential systems and prolongation to determine the structure equations.

I propose a direct approach based on the following observation:

What should be the Maurer-Cartan forms of a Lie pseudo-group?
Cartan: Use exterior differential systems and prolongation to determine the structure equations.

I propose a direct approach based on the following observation:

The Maurer-Cartan forms for a pseudo-group can be identified with the right-invariant one-forms on the jet groupoid $\mathcal{G}^{(\infty)}$.

What should be the Maurer-Cartan forms of a Lie pseudo-group?
Cartan: Use exterior differential systems and prolongation to determine the structure equations.

I propose a direct approach based on the following observation:

The Maurer-Cartan forms for a pseudo-group can be identified with the right-invariant one-forms on the jet groupoid $\mathcal{G}^{(\infty)}$.
The structure equations can be determined immediately from the infinitesimal determining equations.

The Variational Bicomplex

* The differential one-forms on an infinite jet bundle split into two types:
- horizontal forms
- contact forms
* Consequently, the exterior derivative

$$
d=d_{M}+d_{G}
$$

on $\mathcal{D}^{(\infty)}$ splits into horizontal (manifold) and contact (group) components, leading to the variational bicomplex structure on the algebra of differential forms on $\mathcal{D}^{(\infty)}$.

For the diffeomorphism jet bundle

$$
\mathcal{D}^{(\infty)} \subset \mathrm{J}^{\infty}(M, M)
$$

Local coordinates:

Horizontal forms:

$$
d z^{1}, \ldots, d z^{m}
$$

Basis contact forms:

$$
\Theta_{A}^{b}=d_{G} Z_{A}^{b}=d Z_{A}^{b}-\sum_{a=1}^{m} Z_{A, a}^{a} d z^{a}
$$

One-dimensional case: $\quad M=\mathbb{R}$

Local coordinates on $\mathcal{D}^{(\infty)}(\mathbb{R})$

$$
\left(x, X, X_{x}, X_{x x}, X_{x x x}, \ldots, X_{n}, \ldots\right)
$$

Horizontal form:

$$
d x
$$

Contact forms:

$$
\begin{aligned}
\Theta & =d X-X_{x} d x \\
\Theta_{x} & =d X_{x}-X_{x x} d x \\
\Theta_{x x} & =d X_{x x}-X_{x x x} d x \\
& \vdots
\end{aligned}
$$

Maurer-Cartan Forms

The Maurer-Cartan forms for the diffeomorphism pseudo-group are the right-invariant one-forms on the diffeomorphism jet groupoid $\mathcal{D}^{(\infty)}$.

Key observation:
The target coordinate functions Z^{a} are right-invariant.
Thus, when we decompose

$$
d Z^{a}=\sigma^{a} \quad+\quad \mu^{a}
$$

horizontal contact
the two constituents are also right-invariant.

Invariant horizontal forms:

$$
\sigma^{a}=d_{M} Z^{a}=\sum_{b=1}^{m} Z_{b}^{a} d z^{b}
$$

Invariant total differentiation (dual operators):

$$
\mathbb{D}_{Z^{a}}=\sum_{b=1}^{m}\left(Z_{b}^{a}\right)^{-1} \mathbb{D}_{z^{b}}
$$

Thus, the invariant contact forms are obtained by invariant differentiation of the order zero contact forms:

$$
\begin{aligned}
& \mu^{b}=d_{G} Z^{b}=\Theta^{b}=d Z^{b}-\sum_{a=1}^{m} Z_{a}^{b} d z^{a} \\
& \mu_{A}^{b}=\mathbb{D}_{Z}^{A} \mu^{b}=\mathbb{D}_{Z^{a_{1}}} \cdots \mathbb{D}_{Z^{a_{n}}} \mu^{b}
\end{aligned}
$$

$$
b=1, \ldots, m, \# A \geq 0
$$

One-dimensional case: $\quad M=\mathbb{R}$

Contact forms:

$$
\begin{aligned}
\Theta & =d X-X_{x} d x \\
\Theta_{x} & =\mathbb{D}_{x} \Theta=d X_{x}-X_{x x} d x \\
\Theta_{x x} & =\mathbb{D}_{x}^{2} \Theta=d X_{x x}-X_{x x x} d x
\end{aligned}
$$

Right-invariant horizontal form:

$$
\sigma=d_{M} X=X_{x} d x
$$

Invariant differentiation:

$$
\mathbb{D}_{X}=\frac{1}{X_{x}} \mathbb{D}_{x}
$$

Invariant contact forms:

$$
\begin{aligned}
\mu=\Theta & =d X-X_{x} d x \\
\mu_{X}= & \mathbb{D}_{X} \mu=\frac{\Theta_{x}}{X_{x}}=\frac{d X_{x}-X_{x x} d x}{X_{x}} \\
\mu_{X X}=\mathbb{D}_{X}^{2} \mu= & \frac{X_{x} \Theta_{x x}-X_{x x} \Theta_{x}}{X_{x}^{3}} \\
& =\frac{X_{x} d X_{x x}-X_{x x} d X_{x}+\left(X_{x x}^{2}-X_{x} X_{x x x}\right) d x}{X_{x}^{3}} \\
& \vdots \\
\mu_{n} & =\mathbb{D}_{X}^{n} \mu
\end{aligned}
$$

The Structure Equations for the Diffeomorphism Pseudo-group

$$
d \mu_{A}^{b}=\sum C_{A, c, d}^{b, B, C} \mu_{B}^{c} \wedge \mu_{C}^{d}
$$

The Structure Equations for the Diffeomorphism Pseudo-group

$$
d \mu_{A}^{b}=\sum C_{A, c, d}^{b, B, C} \mu_{B}^{c} \wedge \mu_{C}^{d}
$$

Maurer-Cartan series:

$$
\begin{aligned}
& \mu^{b} \llbracket H \rrbracket=\sum_{A} \frac{1}{A!} \mu_{A}^{b} H^{A} \\
& H=\left(H^{1}, \ldots, H^{m}\right)-\text { formal parameters }
\end{aligned}
$$

$$
\begin{aligned}
d \mu \llbracket H \rrbracket & =\nabla \mu \llbracket H \rrbracket \wedge(\mu \llbracket H \rrbracket-d Z) \\
d \sigma & =-d \mu \llbracket 0 \rrbracket=\nabla \mu \llbracket 0 \rrbracket \wedge \sigma
\end{aligned}
$$

One-dimensional case: $\quad M=\mathbb{R}$

Structure equations:

$$
d \sigma=\mu_{X} \wedge \sigma \quad d \mu \llbracket H \rrbracket=\frac{d \mu}{d H} \llbracket H \rrbracket \wedge(\mu \llbracket H \rrbracket-d Z)
$$

where

$$
\begin{aligned}
\sigma & =X_{x} d x=d X-\mu \\
\mu \llbracket H \rrbracket & =\mu+\mu_{X} H+\frac{1}{2} \mu_{X X} H^{2}+\cdots \\
\mu \llbracket H \rrbracket-d Z & =-\sigma+\mu_{X} H+\frac{1}{2} \mu_{X X} H^{2}+\cdots \\
\frac{d \mu \llbracket H \rrbracket}{d H} & =\mu_{X}+\mu_{X X} H+\frac{1}{2} \mu_{X X X} H^{2}+\cdots
\end{aligned}
$$

In components:

$$
\begin{aligned}
d \sigma & =\mu_{1} \wedge \sigma \\
d \mu_{n} & =-\mu_{n+1} \wedge \sigma+\sum_{i=0}^{n-1}\binom{n}{i} \mu_{i+1} \wedge \mu_{n-i} \\
& =\sigma \wedge \mu_{n+1}-\sum_{j=1}^{\left[\frac{n+1}{2}\right]} \frac{n-2 j+1}{n+1}\binom{n+1}{j} \mu_{j} \wedge \mu_{n+1-j} .
\end{aligned}
$$

The Maurer-Cartan Forms for a Lie Pseudo-group

The Maurer-Cartan forms for \mathcal{G} are obtained by restricting the diffeomorphism Maurer-Cartan forms σ^{a}, μ_{A}^{b} to $\mathcal{G}^{(\infty)} \subset \mathcal{D}^{(\infty)}$.

The Maurer-Cartan Forms for a Lie Pseudo-group

The Maurer-Cartan forms for \mathcal{G} are obtained by restricting the diffeomorphism Maurer-Cartan forms σ^{a}, μ_{A}^{b} to $\mathcal{G}^{(\infty)} \subset \mathcal{D}^{(\infty)}$.
$\star \star$ The resulting one-forms are no longer linearly independent.

Theorem. The Maurer-Cartan forms on $\mathcal{G}^{(\infty)}$ satisfy the invariant infinitesimal determining equations

$$
\mathcal{L}\left(\ldots Z^{a} \ldots \mu_{A}^{b} \ldots\right)=0
$$

obtained from the infinitesimal determining equations

$$
\mathcal{L}\left(\ldots z^{a} \ldots \zeta_{A}^{b} \ldots\right)=0
$$

by replacing

- source variables z^{a} by target variables Z^{a}
- derivatives of vector field coefficients ζ_{A}^{b} by right-invariant Maurer-Cartan forms μ_{A}^{b}

The Structure Equations for a Lie Pseudo-group

Theorem. The structure equations for the pseudo-group \mathcal{G} are obtained by restricting the universal diffeomorphism structure equations

$$
d \mu \llbracket H \rrbracket=\nabla \mu \llbracket H \rrbracket \wedge(\mu \llbracket H \rrbracket-d Z)
$$

to the solution space of the linearized involutive system

$$
\mathcal{L}\left(\ldots Z^{a}, \ldots \mu_{A}^{b}, \ldots\right)=0 .
$$

The Korteweg-deVries Equation

$$
u_{t}+u_{x x x}+u u_{x}=0
$$

Diffeomorphism Maurer-Cartan forms:

$$
\mu^{t}, \mu^{x}, \mu^{u}, \mu_{T}^{t}, \mu_{X}^{t}, \mu_{U}^{t}, \mu_{T}^{x}, \ldots, \mu_{U}^{u}, \mu_{T T}^{t}, \mu_{T X}^{T}, \ldots
$$

Infinitesimal determining equations:

$$
\begin{gathered}
\tau_{x}=\tau_{u}=\xi_{u}=\varphi_{t}=\varphi_{x}=0 \\
\varphi=\xi_{t}-\frac{2}{3} u \tau_{t} \quad \varphi_{u}=-\frac{2}{3} \tau_{t}=-2 \xi_{x} \\
\tau_{t t}=\tau_{t x}=\tau_{x x}=\cdots=\varphi_{u u}=0
\end{gathered}
$$

Maurer-Cartan determining equations:

$$
\begin{aligned}
& \mu_{X}^{t}=\mu_{U}^{t}=\mu_{U}^{x}=\mu_{T}^{u}=\mu_{X}^{u}=0 \\
& \mu^{u}=\mu_{T}^{x}-\frac{2}{3} U \mu_{T}^{t}, \quad \mu_{U}^{u}=-\frac{2}{3} \mu_{T}^{t}=-2 \mu_{X}^{x} \\
& \mu_{T T}^{t}=\mu_{T X}^{t}=\mu_{X X}^{t}=\cdots=\mu_{U U}^{u}=\ldots=0
\end{aligned}
$$

Basis $\left(\operatorname{dim} \mathcal{G}_{K d V}=4\right)$:

$$
\mu^{1}=\mu^{t}, \quad \mu^{2}=\mu^{x}, \quad \mu^{3}=\mu^{u}, \quad \mu^{4}=\mu_{T}^{t}
$$

Substituting into the full diffeomorphism structure equations yields the structure equations for $\mathfrak{g}_{K d V}$:

$$
\begin{aligned}
& d \mu^{1}=-\mu^{1} \wedge \mu^{4} \\
& d \mu^{2}=-\mu^{1} \wedge \mu^{3}-\frac{2}{3} U \mu^{1} \wedge \mu^{4}-\frac{1}{3} \mu^{2} \wedge \mu^{4}, \\
& d \mu^{3}=\frac{2}{3} \mu^{3} \wedge \mu^{4}, \\
& d \mu^{4}=0
\end{aligned}
$$

$$
d \mu^{i}=C_{j k}^{i} \mu^{j} \wedge \mu^{k}
$$

$$
\begin{aligned}
& d \mu^{1}=-\mu^{1} \wedge \mu^{4} \\
& d \mu^{2}=-\mu^{1} \wedge \mu^{3}-\frac{2}{3} U \mu^{1} \wedge \mu^{4}-\frac{1}{3} \mu^{2} \wedge \mu^{4} \\
& d \mu^{3}=\frac{2}{3} \mu^{3} \wedge \mu^{4} \\
& d \mu^{4}=0
\end{aligned}
$$

In general, the pseudo-group structure equations live on the principal bundle $\mathcal{G}^{(\infty)}$; if G is a finite-dimensional Lie group, then $\mathcal{G}^{(\infty)} \simeq M \times G$, and the usual Lie group structure equations are found by restriction to the target fibers $\{Z=c\} \simeq G$. Note that the constructed basis μ^{1}, \ldots, μ^{r} of \mathfrak{g}^{*} might vary from fiber to fiber.

Lie-Kumpera Example

$$
X=f(x) \quad U=\frac{u}{f^{\prime}(x)}
$$

Linearized determining system

$$
\xi_{x}=-\frac{\varphi}{u} \quad \xi_{u}=0 \quad \varphi_{u}=\frac{\varphi}{u}
$$

Maurer-Cartan forms:

$$
\begin{aligned}
\sigma & =\frac{u}{U} d x=f_{x} d x, \quad \tau=U_{x} d x+\frac{U}{u} d u=\frac{-u f_{x x} d x+f_{x} d u}{f_{x}{ }^{2}} \\
\mu & =d X-\frac{U}{u} d x=d f-f_{x} d x, \quad \nu=d U-U_{x} d x-\frac{U}{u} d u=-\frac{u}{f_{x}{ }^{2}}\left(d f_{x}-f_{x x} d x\right) \\
\mu_{X} & =\frac{d u}{u}-\frac{d U-U_{x} d x}{U}=\frac{d f_{x}-f_{x x} d x}{f_{x}}, \quad \mu_{U}=0 \\
\nu_{X} & =\frac{U}{u}\left(d U_{x}-U_{x x} d x\right)-\frac{U_{x}}{u}\left(d U-U_{x} d x\right) \\
& =-\frac{u}{f_{x}^{3}}\left(d f_{x x}-f_{x x x} d x\right)+\frac{u f_{x x}}{f_{x}^{4}}\left(d f_{x}-f_{x x} d x\right) \\
\nu_{U} & =-\frac{d u}{u}+\frac{d U-U_{x} d x}{U}=-\frac{d f_{x}-f_{x x} d x}{f_{x}}
\end{aligned}
$$

First order linearized determining equations:

$$
\xi_{x}=-\frac{\varphi}{u} \quad \xi_{u}=0 \quad \varphi_{u}=\frac{\varphi}{u}
$$

First order Maurer-Cartan determining equations:

$$
\mu_{X}=-\frac{\nu}{U} \quad \mu_{U}=0 \quad \nu_{U}=\frac{\nu}{U}
$$

First order structure equations:

$$
\begin{gathered}
d \mu=-d \sigma=\frac{\nu \wedge \sigma}{U}, \quad d \nu=-\nu_{X} \wedge \sigma-\frac{\nu \wedge \tau}{U} \\
d \nu_{X}=-\nu_{X X} \wedge \sigma-\frac{\nu_{X} \wedge(\tau+2 \nu)}{U}
\end{gathered}
$$

Comparison of Structure Equations

If the action is transitive, then our structure equations are isomorphic to Cartan's. However, this is not true for intransitive pseudo-groups. Which are "right"?

Comparison of Structure Equations

If the action is transitive, then our structure equations are isomorphic to Cartan's. However, this is not true for intransitive pseudo-groups. Which are "right"?

- To find the Cartan structure equations, one first needs to work in an adapted coordinate chart, which requires identification of the invariants on M. Ours can be found in any system of local coordinates.

Comparison of Structure Equations

If the action is transitive, then our structure equations are isomorphic to Cartan's. However, this is not true for intransitive pseudo-groups. Which are "right"?

- To find the Cartan structure equations, one first needs to work in an adapted coordinate chart, which requires identification of the invariants on M. Ours can be found in any system of local coordinates.
- Cartan's procedure for identifying the invariant forms is recursive, and not easy to implement. Ours follow immediately from the structure equations for the diffeomorphism pseudo-group using merely linear algebra.

Comparison of Structure Equations

If the action is transitive, then our structure equations are isomorphic to Cartan's. However, this is not true for intransitive pseudo-groups. Which are "right"?

- To find the Cartan structure equations, one first needs to work in an adapted coordinate chart, which requires identification of the invariants on M. Ours can be found in any system of local coordinates.
- Cartan's procedure for identifying the invariant forms is recursive, and not easy to implement. Ours follow immediately from the structure equations for the diffeomorphism pseudo-group using merely linear algebra.
- For finite-dimensional intransitive Lie group actions, Cartan's pseudo-group structure equations do not coincide with the standard Maurer-Cartan equations. Ours do (upon restriction to a source fiber).

Comparison of Structure Equations

If the action is transitive, then our structure equations are isomorphic to Cartan's. However, this is not true for intransitive pseudo-groups. Which are "right"?

- To find the Cartan structure equations, one first needs to work in an adapted coordinate chart, which requires identification of the invariants on M. Ours can be found in any system of local coordinates.
- Cartan's procedure for identifying the invariant forms is recursive, and not easy to implement. Ours follow immediately from the structure equations for the diffeomorphism pseudo-group using merely linear algebra.
- For finite-dimensional intransitive Lie group actions, Cartan's pseudo-group structure equations do not coincide with the standard Maurer-Cartan equations. Ours do (upon restriction to a source fiber).
- Cartan's structure equations for isomorphic pseudo-groups can be nonisomorphic. Ours are always isomorphic.

Action of Pseudo-groups on Submanifolds a.k.a. Solutions of Differential Equations

\mathcal{G} - Lie pseudo-group acting on p-dimensional submanifolds:

$$
N=\{u=f(x)\} \subset M
$$

For example, \mathcal{G} may be the symmetry group of a system of differential equations

$$
\Delta\left(x, u^{(n)}\right)=0
$$

and the submanifolds the graphs of solutions $u=f(x)$.

Prolongation

$\mathrm{J}^{n}=\mathrm{J}^{n}(M, p) \quad-n^{\text {th }}$ order submanifold jet bundle
Local coordinates :

$$
z^{(n)}=\left(x, u^{(n)}\right)=\left(\ldots x^{i} \ldots u_{J}^{\alpha} \ldots\right)
$$

Prolonged action of $\mathcal{G}^{(n)}$ on submanifolds:

$$
\left(x, u^{(n)}\right) \quad \longmapsto \quad\left(X, \widehat{U}^{(n)}\right)
$$

Coordinate formulae:

$$
\hat{U}_{J}^{\alpha}=F_{J}^{\alpha}\left(x, u^{(n)}, g^{(n)}\right)
$$

\Longrightarrow Implicit differentiation.

Differential Invariants

A differential invariant is an invariant function $I: \mathrm{J}^{n} \rightarrow \mathbb{R}$ for the prolonged pseudo-group action

$$
I\left(g^{(n)} \cdot\left(x, u^{(n)}\right)\right)=I\left(x, u^{(n)}\right)
$$

$$
\Longrightarrow \text { curvature, torsion, ... }
$$

Invariant differential operators:

$$
\mathcal{D}_{1}, \ldots, \mathcal{D}_{p} \quad \Longrightarrow \text { arc length derivative }
$$

- If I is a differential invariant, so is $\mathcal{D}_{j} I$.
$\mathbb{I}(\mathcal{G})$ - the algebra of differential invariants

The Basis Theorem

Theorem. The differential invariant algebra $\mathbb{I}(\mathcal{G})$ is locally generated by a finite number of differential invariants

$$
I_{1}, \ldots, I_{\ell}
$$

and $p=\operatorname{dim} S$ invariant differential operators

$$
\mathcal{D}_{1}, \ldots, \mathcal{D}_{p}
$$

meaning that every differential invariant can be locally expressed as a function of the generating invariants and their invariant derivatives:

$$
\mathcal{D}_{J} I_{\kappa}=\mathcal{D}_{j_{1}} \mathcal{D}_{j_{2}} \cdots \mathcal{D}_{j_{n}} I_{\kappa} .
$$

\Longrightarrow Lie groups: Lie, Ovsiannikov
\Longrightarrow Lie pseudo-groups: Tresse, Kumpera, Kruglikov-Lychagin, Muñoz-Muriel-Rodríguez, Pohjanpelto-O

Key Issues

- Minimal basis of generating invariants: I_{1}, \ldots, I_{ℓ}
- Commutation formulae for

> the invariant differential operators:

$$
\left[\mathcal{D}_{j}, \mathcal{D}_{k}\right]=\sum_{i=1}^{p} Y_{j k}^{i} \mathcal{D}_{i}
$$

\Longrightarrow Non-commutative differential algebra

- Syzygies (functional relations) among
the differentiated invariants:

$$
\Phi\left(\ldots \mathcal{D}_{J} I_{\kappa} \ldots\right) \equiv 0
$$

\Longrightarrow Codazzi relations

Computing Differential Invariants

© The infinitesimal method:

$$
\mathbf{v}(I)=0 \quad \text { for every infinitesimal generator } \quad \mathbf{v} \in \mathfrak{g}
$$

\Longrightarrow Requires solving differential equations.
\bigcirc Moving frames.

- Completely algebraic.
- Can be adapted to arbitrary group and pseudo-group actions.
- Describes the complete structure of the differential invariant algebra $\mathbb{I}(\mathcal{G})$ - using only linear algebra \& differentiation!
- Prescribes differential invariant signatures for equivalence and symmetry detection.

Moving Frames

In the finite-dimensional Lie group case, a moving frame is defined as an equivariant map

$$
\rho^{(n)}: \mathrm{J}^{n} \longrightarrow G
$$

However, we do not have an appropriate abstract object to represent our pseudo-group \mathcal{G}.

Consequently, the moving frame will be an equivariant section

$$
\rho^{(n)}: \mathrm{J}^{n} \longrightarrow \mathcal{H}^{(n)}
$$

of the pulled-back pseudo-group jet groupoid:

Moving Frames for Pseudo-Groups

Definition. A (right) moving frame of order n is a rightequivariant section $\rho^{(n)}: V^{n} \rightarrow \mathcal{H}^{(n)}$ defined on an open subset $V^{n} \subset \mathrm{~J}^{n}$.
\Longrightarrow Groupoid action.

Proposition. A moving frame of order n exists if and only if $\mathcal{G}^{(n)}$ acts freely and regularly.

Freeness

For Lie group actions, freeness means no isotropy. For infinitedimensional pseudo-groups, this definition cannot work, and one must restrict to the transformation jets of order n, using the $n^{\text {th }}$ order isotropy subgroup:

$$
\mathcal{G}_{z^{(n)}}^{(n)}=\left\{g^{(n)} \in \mathcal{G}_{z}^{(n)} \mid g^{(n)} \cdot z^{(n)}=z^{(n)}\right\}
$$

Definition. At a jet $z^{(n)} \in \mathrm{J}^{n}$, the pseudo-group \mathcal{G} acts

- freely if $\mathcal{G}_{z^{(n)}}^{(n)}=\left\{\mathbf{1}_{z}^{(n)}\right\}$
- locally freely if
- $\mathcal{G}_{z^{(n)}}^{(n)}$ is a discrete subgroup of $\mathcal{G}_{z}^{(n)}$
- the orbits have $\operatorname{dim}=r_{n}=\operatorname{dim} \mathcal{G}_{z}^{(n)}$

Persistence of Freeness

Theorem. If $n \geq 1$ and $\mathcal{G}^{(n)}$ acts locally freely at $z^{(n)} \in \mathrm{J}^{n}$, then it acts locally freely at any $z^{(k)} \in \mathrm{J}^{k}$ with $\widetilde{\pi}_{n}^{k}\left(z^{(k)}\right)=z^{(n)}$ for all $k>n$.

The Normalization Algorithm

To construct a moving frame :

I. Compute the prolonged pseudo-group action

$$
u_{K}^{\alpha} \quad \longmapsto \quad U_{K}^{\alpha}=F_{K}^{\alpha}\left(x, u^{(n)}, g^{(n)}\right)
$$

by implicit differentiation.
II. Choose a cross-section to the pseudo-group orbits:

$$
u_{J_{\kappa}}^{\alpha_{\kappa}}=c_{\kappa}, \quad \kappa=1, \ldots, r_{n}=\text { fiber } \operatorname{dim} \mathcal{G}^{(n)}
$$

III. Solve the normalization equations

$$
U_{J_{\kappa}}^{\alpha_{\kappa}}=F_{J_{\kappa}}^{\alpha_{\kappa}}\left(x, u^{(n)}, g^{(n)}\right)=c_{\kappa}
$$

for the $n^{\text {th }}$ order pseudo-group parameters

$$
g^{(n)}=\rho^{(n)}\left(x, u^{(n)}\right)
$$

IV. Substitute the moving frame formulas into the unnormalized jet coordinates $u_{K}^{\alpha}=F_{K}^{\alpha}\left(x, u^{(n)}, g^{(n)}\right)$.
The resulting functions form a complete system of $n^{\text {th }}$ order differential invariants

$$
I_{K}^{\alpha}\left(x, u^{(n)}\right)=F_{K}^{\alpha}\left(x, u^{(n)}, \rho^{(n)}\left(x, u^{(n)}\right)\right)
$$

Invariantization

A moving frame induces an invariantization process, denoted ι, that projects functions to invariants, differential operators to invariant differential operators; differential forms to invariant differential forms, etc.

Geometrically, the invariantization of an object is the unique invariant version that has the same cross-section values.

Algebraically, invariantization amounts to replacing the group parameters in the transformed object by their moving frame formulas.

Invariantization

In particular, invariantization of the jet coordinates leads to a complete system of functionally independent differential invariants:

$$
\iota\left(x^{i}\right)=H^{i} \quad \iota\left(u_{J}^{\alpha}\right)=I_{J}^{\alpha}
$$

- Phantom differential invariants: $I_{J_{\kappa}}^{\alpha_{\kappa}}=c_{\kappa}$
- The non-constant invariants form a functionally independent generating set for the differential invariant algebra $\mathcal{I}(\mathcal{G})$
- Replacement Theorem

$$
\begin{aligned}
I\left(\ldots x^{i} \ldots u_{J}^{\alpha} \ldots\right) & =\iota\left(I\left(\ldots x^{i} \ldots u_{J}^{\alpha} \ldots\right)\right) \\
& =I\left(\ldots H^{i} \ldots I_{J}^{\alpha} \ldots\right)
\end{aligned}
$$

\diamond Differential forms \Longrightarrow invariant differential forms

$$
\iota\left(d x^{i}\right)=\omega^{i} \quad i=1, \ldots, p
$$

\diamond Differential operators \Longrightarrow invariant differential operators

$$
\iota\left(\mathrm{D}_{x^{i}}\right)=\mathcal{D}_{i} \quad i=1, \ldots, p
$$

Recurrence Formulae

$$
\star \star
$$

Invariantization and differentiation do not commute

The recurrence formulae connect the differentiated invariants with their invariantized counterparts:

$$
\mathcal{D}_{i} I_{J}^{\alpha}=I_{J, i}^{\alpha}+M_{J, i}^{\alpha}
$$

$\Longrightarrow M_{J, i}^{\alpha}$ - correction terms
\bigcirc Once established, the recurrence formulae completely prescribe the structure of the differential invariant algebra $\mathbb{I}(\mathcal{G})$ - thanks to the functional independence of the non-phantom normalized differential invariants.

* \star The recurrence formulae can be explicitly determined using only the infinitesimal generators and linear differential algebra!

Korteweg-deVries Equation

Prolonged Symmetry Group Action:

$$
\begin{aligned}
T & =e^{3 \lambda_{4}}\left(t+\lambda_{1}\right) \\
X & =e^{\lambda_{4}}\left(\lambda_{3} t+x+\lambda_{1} \lambda_{3}+\lambda_{2}\right) \\
U & =e^{-2 \lambda_{4}}\left(u+\lambda_{3}\right) \\
U_{T} & =e^{-5 \lambda_{4}}\left(u_{t}-\lambda_{3} u_{x}\right) \\
U_{X} & =e^{-3 \lambda_{4}} u_{x} \\
U_{T T} & =e^{-8 \lambda_{4}}\left(u_{t t}-2 \lambda_{3} u_{t x}+\lambda_{3}{ }^{2} u_{x x}\right) \\
U_{T X} & =D_{X} D_{T} U=e^{-6 \lambda_{4}}\left(u_{t x}-\lambda_{3} u_{x x}\right) \\
U_{X X} & =e^{-4 \lambda_{4}} u_{x x}
\end{aligned}
$$

Cross Section:

$$
\begin{aligned}
T & =e^{3 \lambda_{4}}\left(t+\lambda_{1}\right)=0 \\
X & =e^{\lambda_{4}}\left(\lambda_{3} t+x+\lambda_{1} \lambda_{3}+\lambda_{2}\right)=0 \\
U & =e^{-2 \lambda_{4}}\left(u+\lambda_{3}\right)=0 \\
U_{T} & =e^{-5 \lambda_{4}}\left(u_{t}-\lambda_{3} u_{x}\right)=1
\end{aligned}
$$

Moving Frame:

$$
\lambda_{1}=-t, \quad \lambda_{2}=-x, \quad \lambda_{3}=-u, \quad \lambda_{4}=\frac{1}{5} \log \left(u_{t}+u u_{x}\right)
$$

Moving Frame:

$$
\lambda_{1}=-t, \quad \lambda_{2}=-x, \quad \lambda_{3}=-u, \quad \lambda_{4}=\frac{1}{5} \log \left(u_{t}+u u_{x}\right)
$$

Invariantization:

$$
\iota\left(u_{K}\right)=\left.U_{K}\right|_{\lambda_{1}=-t, \lambda_{2}=-x, \lambda_{3}=-u, \lambda_{4}=\log \left(u_{t}+u u_{x}\right) / 5}
$$

Phantom Invariants:

$$
\begin{aligned}
& H^{1}=\iota(t)=0 \\
& H^{2}=\iota(x)=0 \\
& I_{00}=\iota(u)=0 \\
& I_{10}=\iota\left(u_{t}\right)=1
\end{aligned}
$$

Normalized differential invariants:

$$
\begin{aligned}
& I_{01}=\iota\left(u_{x}\right)=\frac{u_{x}}{\left(u_{t}+u u_{x}\right)^{3 / 5}} \\
& I_{20}=\iota\left(u_{t t}\right)=\frac{u_{t t}+2 u u_{t x}+u^{2} u_{x x}}{\left(u_{t}+u u_{x}\right)^{8 / 5}} \\
& I_{11}=\iota\left(u_{t x}\right)=\frac{u_{t x}+u u_{x x}}{\left(u_{t}+u u_{x}\right)^{6 / 5}} \\
& I_{02}=\iota\left(u_{x x}\right)=\frac{u_{x x}}{\left(u_{t}+u u_{x}\right)^{4 / 5}} \\
& I_{03}=\iota\left(u_{x x x}\right)=\frac{u_{x x x}}{u_{t}+u u_{x}} \\
& \quad \vdots
\end{aligned}
$$

Invariantization:

$$
\begin{aligned}
& \iota\left(F\left(t, x, u, u_{t}, u_{x}, u_{t t}, u_{t x}, u_{x x}, \ldots\right)\right) \\
& \quad=F\left(\iota(t), \iota(x), \iota(u), \iota\left(u_{t}\right), \iota\left(u_{x}\right), \iota\left(u_{t t}\right), \iota\left(u_{t x}\right), \iota\left(u_{x x}\right), \ldots\right) \\
& \quad=F\left(H^{1}, H^{2}, I_{00}, I_{10}, I_{01}, I_{20}, I_{11}, I_{02}, \ldots\right) \\
& \quad=F\left(0,0,0,1, I_{01}, I_{20}, I_{11}, I_{02}, \ldots\right)
\end{aligned}
$$

Replacement Theorem:

$$
0=\iota\left(u_{t}+u u_{x}+u_{x x x}\right)=1+I_{03}=\frac{u_{t}+u u_{x}+u_{x x x}}{u_{t}+u u_{x}} .
$$

Invariant horizontal one-forms:

$$
\begin{aligned}
& \omega^{1}=\iota(d t)=\left(u_{t}+u u_{x}\right)^{3 / 5} d t \\
& \omega^{2}=\iota(d x)=-u\left(u_{t}+u u_{x}\right)^{1 / 5} d t+\left(u_{t}+u u_{x}\right)^{1 / 5} d x
\end{aligned}
$$

Invariant differential operators:

$$
\begin{aligned}
& \mathcal{D}_{1}=\iota\left(D_{t}\right)=\left(u_{t}+u u_{x}\right)^{-3 / 5} D_{t}+u\left(u_{t}+u u_{x}\right)^{-3 / 5} D_{x} \\
& \mathcal{D}_{2}=\iota\left(D_{x}\right)=\left(u_{t}+u u_{x}\right)^{-1 / 5} D_{x}
\end{aligned}
$$

Commutation formula:

$$
\left[\mathcal{D}_{1}, \mathcal{D}_{2}\right]=I_{01} \mathcal{D}_{1}
$$

Recurrence formulae:

$$
\begin{array}{ll}
\mathcal{D}_{1} I_{01}=I_{11}-\frac{3}{5} I_{01}^{2}-\frac{3}{5} I_{01} I_{20}, & \mathcal{D}_{2} I_{01}=I_{02}-\frac{3}{5} I_{01}^{3}-\frac{3}{5} I_{01} I_{11}, \\
\mathcal{D}_{1} I_{20}=I_{30}+2 I_{11}-\frac{8}{5} I_{01} I_{20}-\frac{8}{5} I_{20}^{2}, & \mathcal{D}_{2} I_{20}=I_{21}+2 I_{01} I_{11}-\frac{8}{5} I_{01}^{2} I_{20}-\frac{8}{5} I_{11} I_{20}, \\
\mathcal{D}_{1} I_{11}=I_{21}+I_{02}-\frac{6}{5} I_{01} I_{11}-\frac{6}{5} I_{11} I_{20}, & \mathcal{D}_{2} I_{11}=I_{12}+I_{01} I_{02}-\frac{6}{5} I_{01}^{2} I_{11}-\frac{6}{5} I_{11}^{2}, \\
\mathcal{D}_{1} I_{02}=I_{12}-\frac{4}{5} I_{01} I_{02}-\frac{4}{5} I_{02} I_{20}, & \mathcal{D}_{2} I_{02}=I_{03}-\frac{4}{5} I_{01}^{2} I_{02}-\frac{4}{5} I_{02} I_{11},
\end{array}
$$

Generating differential invariants:

$$
I_{01}=\iota\left(u_{x}\right)=\frac{u_{x}}{\left(u_{t}+u u_{x}\right)^{3 / 5}}, \quad I_{20}=\iota\left(u_{t t}\right)=\frac{u_{t t}+2 u u_{t x}+u^{2} u_{x x}}{\left(u_{t}+u u_{x}\right)^{8 / 5}}
$$

Fundamental syzygy:

$$
\begin{aligned}
\mathcal{D}_{1}^{2} I_{01}+\frac{3}{5} I_{01} & \mathcal{D}_{1} I_{20}-\mathcal{D}_{2} I_{20}+\left(\frac{1}{5} I_{20}+\frac{19}{5} I_{01}\right) \mathcal{D}_{1} I_{01} \\
& \quad-\mathcal{D}_{2} I_{01}-\frac{6}{25} I_{01} I_{20}^{2}-\frac{7}{25} I_{01}^{2} I_{20}+\frac{24}{25} I_{01}^{3}=0
\end{aligned}
$$

Lie-Tresse-Kumpera Example

$$
X=f(x), \quad Y=y, \quad U=\frac{u}{f^{\prime}(x)}
$$

Horizontal coframe

$$
d_{H} X=f_{x} d x, \quad d_{H} Y=d y
$$

Implicit differentiations

$$
\mathrm{D}_{X}=\frac{1}{f_{x}} \mathrm{D}_{x}, \quad \mathrm{D}_{Y}=\mathrm{D}_{y} .
$$

Prolonged pseudo-group transformations on surfaces $S \subset \mathbb{R}^{3}$

$$
\begin{array}{lc}
X=f & Y=y \\
U_{X}=\frac{u_{x}}{f_{x}^{2}}-\frac{u f_{x x}}{f_{x}^{3}} & U=\frac{u}{f_{x}} \\
U_{X X}=\frac{u_{x x}}{f_{x}^{3}}-\frac{3 u_{x} f_{x x}}{f_{x}^{4}}-\frac{u f_{x x x}}{f_{x}^{4}}+\frac{3 u f_{x x}^{2}}{f_{x}^{5}} \\
U_{X Y}=\frac{u_{x y}}{f_{x}^{2}}-\frac{u_{y} f_{x x}}{f_{x}^{3}} & U_{Y Y}=\frac{u_{y y}}{f_{x}}
\end{array}
$$

\Longrightarrow action is free at every order.
Coordinate cross-section
$X=f=0, \quad U=\frac{u}{f_{x}}=1, \quad U_{X}=\frac{u_{x}}{f_{x}^{2}}-\frac{u f_{x x}}{f_{x}^{3}}=0, \quad U_{X X}=\cdots=0$.

Moving frame

$$
f=0, \quad f_{x}=u, \quad f_{x x}=u_{x}, \quad f_{x x x}=u_{x x}
$$

Differential invariants

$$
\begin{gathered}
U_{Y} \longmapsto J=\frac{u_{y}}{u} \\
U_{X Y} \longmapsto J_{1}=\frac{u u_{x y}-u_{x} u_{y}}{u^{3}} \quad U_{Y Y} \longmapsto J_{2}=\frac{u_{y y}}{u}
\end{gathered}
$$

Invariant horizontal forms

$$
d_{H} X=f_{x} d x \longmapsto u d x, \quad d_{H} Y=d y \longmapsto d y
$$

Invariant differentiations

$$
\mathcal{D}_{1}=\frac{1}{u} \mathrm{D}_{x} \quad \mathcal{D}_{2}=\mathrm{D}_{y}
$$

Higher order differential invariants: $\mathcal{D}_{1}^{m} \mathcal{D}_{2}^{n} J$

$$
\begin{aligned}
& J_{, 1}=\mathcal{D}_{1} J=\frac{u u_{x y}-u_{x} u_{y}}{u^{3}}=J_{1}, \\
& J_{, 2}=\mathcal{D}_{2} J=\frac{u u_{y y}-u_{y}^{2}}{u^{2}}=J_{2}-J^{2}
\end{aligned}
$$

Recurrence formulae:

$$
\begin{aligned}
\mathcal{D}_{1} J=J_{1}, & \mathcal{D}_{2} J=J_{2}-J^{2}, \\
\mathcal{D}_{1} J_{1}=J_{3}, & \mathcal{D}_{2} J_{1}=J_{4}-3 J J_{1}, \\
\mathcal{D}_{1} J_{2}=J_{4}, & \mathcal{D}_{2} J_{2}=J_{5}-J J_{2},
\end{aligned}
$$

The Master Recurrence Formula

$$
d_{H} I_{J}^{\alpha}=\sum_{i=1}^{p}\left(\mathcal{D}_{i} I_{J}^{\alpha}\right) \omega^{i}=\sum_{i=1}^{p} I_{J, i}^{\alpha} \omega^{i}+\widehat{\psi}_{J}^{\alpha}
$$

where

$$
\widehat{\psi}_{J}^{\alpha}=\iota\left(\hat{\varphi}_{J}^{\alpha}\right)=\Phi_{J}^{\alpha}\left(\ldots H^{i} \ldots I_{J}^{\alpha} \ldots ; \ldots \gamma_{A}^{b} \ldots\right)
$$

are the invariantized prolonged vector field coefficients, which are particular linear combinations of
$\gamma_{A}^{b}=\iota\left(\zeta_{A}^{b}\right) \quad-\quad$ invariantized Maurer-Cartan forms prescribed by the invariantized prolongation map.

- The invariantized Maurer-Cartan forms are subject to the invariantized determining equations:

$$
\mathcal{L}\left(H^{1}, \ldots, H^{p}, I^{1}, \ldots, I^{q}, \ldots, \gamma_{A}^{b}, \ldots\right)=0
$$

$$
d_{H} I_{J}^{\alpha}=\sum_{i=1}^{p} I_{J, i}^{\alpha} \omega^{i}+\widehat{\psi}_{J}^{\alpha}\left(\ldots \gamma_{A}^{b} \ldots\right)
$$

Step 1: Solve the phantom recurrence formulas

$$
0=d_{H} I_{J}^{\alpha}=\sum_{i=1}^{p} I_{J, i}^{\alpha} \omega^{i}+\hat{\psi}_{J}^{\alpha}\left(\ldots \gamma_{A}^{b} \ldots\right)
$$

for the invariantized Maurer-Cartan forms:

$$
\begin{equation*}
\gamma_{A}^{b}=\sum_{i=1}^{p} J_{A, i}^{b} \omega^{i} \tag{*}
\end{equation*}
$$

Step 2: Substitute (*) into the non-phantom recurrence formulae to obtain the explicit correction terms.
\diamond Only uses linear differential algebra based on the specification of cross-section.
\bigcirc Does not require explicit formulas for the moving frame, the differential invariants, the invariant differential operators, or even the Maurer-Cartan forms!

The Korteweg-deVries Equation (continued)

Recurrence formula:

$$
d I_{j k}=I_{j+1, k} \omega^{1}+I_{j, k+1} \omega^{2}+\iota\left(\varphi^{j k}\right)
$$

Invariantized Maurer-Cartan forms:

$$
\iota(\tau)=\lambda, \quad \iota(\xi)=\mu, \quad \iota(\varphi)=\psi=\nu, \quad \iota\left(\tau_{t}\right)=\psi^{t}=\lambda_{t}, \quad \ldots
$$

Invariantized determining equations:

$$
\begin{gathered}
\lambda_{x}=\lambda_{u}=\mu_{u}=\nu_{t}=\nu_{x}=0 \\
\nu=\mu_{t} \quad \nu_{u}=-2 \mu_{x}=-\frac{2}{3} \lambda_{t} \\
\lambda_{t t}=\lambda_{t x}=\lambda_{x x}=\cdots=\nu_{u u}=\cdots=0
\end{gathered}
$$

Invariantizations of prolonged vector field coefficients:

$$
\begin{aligned}
& \iota(\tau)=\lambda, \quad \iota(\xi)=\mu, \quad \iota(\varphi)=\nu, \quad \iota\left(\varphi^{t}\right)=-I_{01} \nu-\frac{5}{3} \lambda_{t} \\
& \iota\left(\varphi^{x}\right)=-I_{01} \lambda_{t}, \quad \iota\left(\varphi^{t t}\right)=-2 I_{11} \nu-\frac{8}{3} I_{20} \lambda_{t}, \quad \ldots
\end{aligned}
$$

Phantom recurrence formulae:

$$
\begin{aligned}
& 0=d_{H} H^{1}=\omega^{1}+\lambda, \\
& 0=d_{H} H^{2}=\omega^{2}+\mu, \\
& 0=d_{H} I_{00}=I_{10} \omega^{1}+I_{01} \omega^{2}+\psi=\omega^{1}+I_{01} \omega^{2}+\nu \\
& 0=d_{H} I_{10}=I_{20} \omega^{1}+I_{11} \omega^{2}+\psi^{t}=I_{20} \omega^{1}+I_{11} \omega^{2}-I_{01} \nu-\frac{5}{3} \lambda_{t},
\end{aligned}
$$

\Longrightarrow Solve for $\lambda=-\omega^{1}, \quad \mu=-\omega^{2}, \quad \nu=-\omega^{1}-I_{01} \omega^{2}$,

$$
\lambda_{t}=\frac{3}{5}\left(I_{20}+I_{01}\right) \omega^{1}+\frac{3}{5}\left(I_{11}+I_{01}^{2}\right) \omega^{2} .
$$

Non-phantom recurrence formulae:

$$
\begin{aligned}
d_{H} I_{01} & =I_{11} \omega^{1}+I_{02} \omega^{2}-I_{01} \lambda_{t} \\
d_{H} I_{20} & =I_{30} \omega^{1}+I_{21} \omega^{2}-2 I_{11} \nu-\frac{8}{3} I_{20} \lambda_{t} \\
d_{H} I_{11} & =I_{21} \omega^{1}+I_{12} \omega^{2}-I_{02} \nu-2 I_{11} \lambda_{t} \\
d_{H} I_{02} & =I_{12} \omega^{1}+I_{03} \omega^{2}-\frac{4}{3} I_{02} \lambda_{t}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathcal{D}_{1} I_{01}=I_{11}-\frac{3}{5} I_{01}^{2}-\frac{3}{5} I_{01} I_{20}, & \mathcal{D}_{2} I_{01}=I_{02}-\frac{3}{5} I_{01}^{3}-\frac{3}{5} I_{01} I_{11}, \\
\mathcal{D}_{1} I_{20}=I_{30}+2 I_{11}-\frac{8}{5} I_{01} I_{20}-\frac{8}{5} I_{20}^{2}, & \mathcal{D}_{2} I_{20}=I_{21}+2 I_{01} I_{11}-\frac{8}{5} I_{01}^{2} I_{20}-\frac{8}{5} I_{11} I_{20}, \\
\mathcal{D}_{1} I_{11}=I_{21}+I_{02}-\frac{6}{5} I_{01} I_{11}-\frac{6}{5} I_{11} I_{20}, & \mathcal{D}_{2} I_{11}=I_{12}+I_{01} I_{02}-\frac{6}{5} I_{01}^{2} I_{11}-\frac{6}{5} I_{11}^{2}, \\
\mathcal{D}_{1} I_{02}=I_{12}-\frac{4}{5} I_{01} I_{02}-\frac{4}{5} I_{02} I_{20}, & \mathcal{D}_{2} I_{02}=I_{03}-\frac{4}{5} I_{01}^{2} I_{02}-\frac{4}{5} I_{02} I_{11},
\end{array}
$$

Lie-Tresse-Kumpera Example (continued)

$$
X=f(x), \quad Y=y, \quad U=\frac{u}{f^{\prime}(x)}
$$

Phantom recurrence formulae:

$$
\begin{array}{ll}
0=d H=\varpi^{1}+\gamma, & 0=d I_{10}=J_{1} \varpi^{2}+\vartheta_{1}-\gamma_{2} \\
0=d I_{00}=J \varpi^{2}+\vartheta-\gamma_{1}, & 0=d I_{20}=J_{3} \varpi^{2}+\vartheta_{3}-\gamma_{3}
\end{array}
$$

Solve for pulled-back Maurer-Cartan forms:

$$
\begin{array}{ll}
\gamma=-\varpi^{1}, & \gamma_{2}=J_{1} \varpi^{2}+\vartheta_{1}, \\
\gamma_{1}=J \varpi^{2}+\vartheta, & \gamma_{3}=J_{3} \varpi^{2}+\vartheta_{3},
\end{array}
$$

Recurrence formulae: $\quad d y=\varpi^{2}$

$$
\begin{aligned}
d J & =J_{1} \varpi^{1}+\left(J_{2}-J^{2}\right) \varpi^{2}+\vartheta_{2}-J \vartheta, \\
d J_{1} & =J_{3} \varpi^{1}+\left(J_{4}-3 J J_{1}\right) \varpi^{2}+\vartheta_{4}-J \vartheta_{1}-J_{1} \vartheta, \\
d J_{2} & =J_{4} \varpi^{1}+\left(J_{5}-J J_{2}\right) \varpi^{2}+\vartheta_{5}-J_{2} \vartheta,
\end{aligned}
$$

Gröbner Basis Approach

Identify the cross-section variables with the complementary monomials to a certain algebraic module \mathcal{J}, which is the pull-back of the symbol module of the pseudo-group under a certain explicit linear map.
\Longrightarrow Compatible term ordering.
\Longrightarrow Algebraic specification of compatible moving frames of all orders $n>n^{\star}$.

Theorem. Suppose \mathcal{G} acts freely at order n^{\star}. Then a system of generating differential invariants is contained in the non-phantom normalized differential invariants of order n^{\star} and those differential invariants corresponding to a Gröbner basis for the module $\mathcal{J}^{>n^{\star}}$.

The Symbol Module

Linearized determining equations

$$
\begin{gathered}
\mathcal{L}\left(z, \zeta^{(n)}\right)=0 \\
t=\left(t_{1}, \ldots, t_{m}\right), \quad T=\left(T_{1}, \ldots, T_{m}\right) \\
\mathcal{T}=\left\{P(t, T)=\sum_{a=1}^{m} P_{a}(t) T_{a}\right\} \simeq \mathbb{R}[t] \otimes \mathbb{R}^{m} \subset \mathbb{R}[t, T] \\
\mathcal{I} \subset \mathcal{T} \quad-\quad \text { symbol module } \\
s=\left(s_{1}, \ldots, s_{p}\right), \quad S=\left(S_{1}, \ldots, S_{q}\right), \\
\hat{\mathcal{S}}=\left\{T(s, S)=\sum_{\alpha=1}^{q} T_{\alpha}(s) S_{\alpha}\right\} \simeq \mathbb{R}[s] \otimes \mathbb{R}^{q} \subset \mathbb{R}[s, S]
\end{gathered}
$$

Define the linear map

$$
\begin{array}{ll}
s_{i}=\beta_{i}(t)=t_{i}+\sum_{\alpha=1}^{q} u_{i}^{\alpha} t_{p+\alpha}, & i=1, \ldots, p \\
S_{\alpha}=B_{\alpha}(T)=T_{p+\alpha}-\sum_{i=1}^{p} u_{i}^{\alpha} T_{i}, & \alpha=1, \ldots, q
\end{array}
$$

Prolonged symbol module:

$$
\mathcal{J}=\left(\boldsymbol{\beta}^{*}\right)^{-1}(\mathcal{I})
$$

$\mathcal{N} \quad$ - leading monomials $s^{J} S_{\alpha}$
\Longrightarrow normalized differential invariants I_{J}^{α}
\mathcal{K} - complementary monomials $s^{K} S_{\beta}$
\Longrightarrow phantom differential invariants I_{K}^{β}

The Symbol Module

Vector field:

$$
\mathbf{v}=\sum_{a=1}^{m} \zeta^{b}(z) \frac{\partial}{\partial z^{b}}
$$

Vector field jet:

$$
\begin{aligned}
\mathrm{j}_{\infty} \mathbf{v} & \Longleftrightarrow \zeta^{(\infty)}=\left(\ldots \zeta_{A}^{b} \ldots\right) \\
\zeta_{A}^{b} & =\frac{\partial^{\# A} \zeta^{b}}{\partial z^{A}}=\frac{\partial^{k} \zeta^{b}}{\partial z^{a_{1}} \cdots \partial z^{a_{k}}}
\end{aligned}
$$

Determining Equations for $\mathbf{v} \in \mathfrak{g}$

$$
\begin{equation*}
\mathcal{L}\left(z ; \ldots \zeta_{A}^{b} \ldots\right)=0 \tag{*}
\end{equation*}
$$

Duality

$$
t=\left(t_{1}, \ldots, t_{m}\right) \quad T=\left(T_{1}, \ldots, T_{m}\right)
$$

Polynomial module:

$$
\begin{gathered}
\mathcal{T}=\left\{P(t, T)=\sum_{a=1}^{m} P_{a}(t) T_{a}\right\} \simeq \mathbb{R}[t] \otimes \mathbb{R}^{m} \subset \mathbb{R}[t, T] \\
\mathcal{T} \simeq\left(\left.\mathrm{J}^{\infty} T M\right|_{z}\right)^{*}
\end{gathered}
$$

Dual pairing:

$$
\left\langle\mathrm{j}_{\infty} \mathbf{v} ; t^{A} T_{b}\right\rangle=\zeta_{A}^{b} .
$$

Each polynomial

$$
\tau(z ; t, T)=\sum_{b=1}^{m} \sum_{\# A \leq n} h_{A}^{b}(z) t^{A} T_{b} \in \mathcal{T}
$$

induces a linear partial differential equation

$$
\begin{aligned}
L\left(z, \zeta^{(n)}\right) & =\left\langle\mathrm{j}_{\infty} \mathbf{v} ; \tau(z ; t, T)\right\rangle \\
& =\sum_{b=1}^{m} \sum_{\# A \leq n} h_{A}^{b}(z) \zeta_{A}^{b}=0
\end{aligned}
$$

The Linear Determining Equations

Annihilator:

$$
\mathcal{L}=\left(J^{\infty} \mathfrak{g}\right)^{\perp}
$$

Determining Equations

$$
\left\langle\mathrm{j}_{\infty} \mathbf{v} ; \tau\right\rangle=0 \quad \text { for all } \quad \eta \in \mathcal{L} \quad \Longleftrightarrow \quad \mathbf{v} \in \mathfrak{g}
$$

Symbol $=$ highest degree terms:

$$
\boldsymbol{\Sigma}\left[L\left(z, \zeta^{(n)}\right)\right]=\boldsymbol{\Lambda}[\tau(z ; t, T)]=\sum_{b=1}^{m} \sum_{\# A=n} h_{A}^{b}(z) t^{A} T_{b}
$$

Symbol submodule:

$$
\mathcal{I}=\boldsymbol{\Lambda}(\mathcal{L})
$$

\Longrightarrow Formal integrability (involutivity)

Prolonged Duality

Prolonged vector field:

$$
\mathbf{v}^{(\infty)}=\sum_{i=1}^{p} \xi^{i}(x, u) \frac{\partial}{\partial x^{i}}+\sum_{\alpha, J} \hat{\varphi}_{J}^{\alpha}\left(x, u^{(k)}\right) \frac{\partial}{\partial u_{J}^{\alpha}}
$$

$$
\widetilde{s}=\left(\widetilde{s}_{1}, \ldots, \widetilde{s}_{p}\right), \quad s=\left(s_{1}, \ldots, s_{p}\right), \quad S=\left(S_{1}, \ldots, S_{q}\right)
$$

"Prolonged" polynomial module:

$$
\widehat{\mathcal{S}}=\left\{\sigma(s, S, \tilde{s})=\sum_{i=1}^{p} c_{i} \tilde{s}_{i}+\sum_{\alpha=1}^{q} \widehat{\sigma}_{\alpha}(s) S_{\alpha}\right\} \simeq \mathbb{R}^{p} \oplus\left(\mathbb{R}[s] \otimes \mathbb{R}^{q}\right)
$$

$$
\left.\widehat{\mathcal{S}} \simeq T^{*} \mathrm{~J}^{\infty}\right|_{z^{(\infty)}}
$$

Dual pairing:

$$
\begin{aligned}
& \left\langle\mathbf{v}^{(\infty)} ; \widetilde{s}_{i}\right\rangle=\xi^{i} \\
& \left\langle\mathbf{v}^{(\infty)} ; S^{\alpha}\right\rangle=Q^{\alpha}=\varphi^{\alpha}-\sum_{i=1}^{p} u_{i}^{\alpha} \xi^{i} \\
& \left\langle\mathbf{v}^{(\infty)} ; s^{J} S_{\alpha}\right\rangle=\hat{\varphi}_{J}^{\alpha}=\Phi_{J}^{\alpha}\left(u^{(n)} ; \zeta^{(n)}\right)
\end{aligned}
$$

Algebraic Prolongation

Prolongation of vector fields:

$$
\begin{aligned}
\mathbf{p}: \mathrm{J}^{\infty} \mathfrak{g} & \longmapsto \mathfrak{g}^{(\infty)} \\
\mathrm{j}_{\infty} \mathbf{v} & \longmapsto \mathbf{v}^{(\infty)}
\end{aligned}
$$

Dual prolongation map:

$$
\mathbf{p}^{*}: \mathcal{S} \longrightarrow \mathcal{T}
$$

$$
\left\langle\mathrm{j}_{\infty} \mathbf{v} ; \mathbf{p}^{*}(\sigma)\right\rangle=\left\langle\mathbf{p}\left(\mathrm{j}_{\infty} \mathbf{v}\right) ; \sigma\right\rangle=\left\langle\mathbf{v}^{(\infty)} ; \sigma\right\rangle
$$

$\star \star$ On the symbol level, \mathbf{p}^{*} is algebraic $\star \star$

Prolongation Symbols

Define the linear map $\boldsymbol{\beta}: \mathbb{R}^{2 m} \longrightarrow \mathbb{R}^{m}$

$$
\begin{array}{rlr}
s_{i}=\beta_{i}(t)=t_{i}+\sum_{\alpha=1}^{q} u_{i}^{\alpha} t_{p+\alpha}, & i=1, \ldots, p \\
S_{\alpha}=B_{\alpha}(T)=T_{p+\alpha}-\sum_{i=1}^{p} u_{i}^{\alpha} T_{i}, & \alpha=1, \ldots, q
\end{array}
$$

Pull-back map

$$
\begin{aligned}
& \boldsymbol{\beta}^{*}\left[\sigma\left(s_{1}, \ldots, s_{p}, S_{1}, \ldots, S_{q}\right)\right] \\
& \quad=\sigma\left(\beta_{1}(t), \ldots, \beta_{p}(t), B_{1}(T) \ldots, B_{q}(T)\right)
\end{aligned}
$$

Lemma. The symbols of the prolonged vector field coefficients are

$$
\begin{aligned}
\boldsymbol{\Sigma}\left(\xi^{i}\right) & =T^{i} \quad \boldsymbol{\Sigma}\left(\widehat{\varphi}^{\alpha}\right)=T^{\alpha+p} \\
\boldsymbol{\Sigma}\left(Q^{\alpha}\right) & =\boldsymbol{\beta}^{*}\left(S_{\alpha}\right)=B_{\alpha}(T) \\
\boldsymbol{\Sigma}\left(\widehat{\varphi}_{J}^{\alpha}\right)=\boldsymbol{\beta}^{*}\left(s^{J} S_{\alpha}\right) & =\boldsymbol{\beta}^{*}\left(s_{j_{1}} \cdots s_{j_{n}} S^{\alpha}\right) \\
& =\beta_{j_{1}}(t) \cdots \beta_{j_{n}}(t) B_{\alpha}(T)
\end{aligned}
$$

Prolonged annihilator:

$$
\begin{gathered}
\mathcal{Z}=\left(\mathbf{p}^{*}\right)^{-1} \mathcal{L}=\left(\mathfrak{g}^{(\infty)}\right)^{\perp} \\
\left\langle\mathbf{v}^{(\infty)} ; \sigma\right\rangle=0 \quad \text { for all } \quad \mathbf{v} \in \mathfrak{g} \Longleftrightarrow \sigma \in \mathcal{Z}
\end{gathered}
$$

Prolonged symbol subbundle:

$$
\mathcal{U}=\boldsymbol{\Lambda}(\mathcal{Z}) \subset \mathrm{J}^{\infty}(M, p) \times \mathcal{S}
$$

Prolonged symbol module:

$$
\mathcal{J}=\left(\boldsymbol{\beta}^{*}\right)^{-1}(\mathcal{I})
$$

Warning: :

$$
\mathcal{U} \subseteq \mathcal{J}
$$

But

$$
\begin{array}{ll}
\mathcal{U}^{n}=\mathcal{J}^{n} \quad \text { when } \quad & n>n^{\star} \\
& n^{\star}-\text { order of freeness. }
\end{array}
$$

Algebraic Recurrence

Polynomial:

$$
\sigma\left(\mathbf{I}^{(k)} ; s, S\right)=\sum_{\alpha, J} h_{J}^{a}\left(\mathbf{I}^{(k)}\right) s^{J} S_{\alpha} \in \hat{\mathcal{S}}
$$

Differential invariant:

$$
I_{\sigma}=\sum_{\alpha, J} h_{J}^{a}\left(\mathbf{I}^{(k)}\right) I_{J}^{\alpha}
$$

Recurrence:

$$
\mathcal{D}_{i} I_{\sigma}=I_{\mathcal{D}_{i} \sigma} \equiv I_{s_{i} \sigma}+R_{i, \sigma}
$$

$$
\sigma \in \widetilde{\mathcal{J}}^{n}, n>n^{\star} \quad \Longrightarrow \quad \text { order } I_{\mathcal{D}_{i} \sigma}=n+1
$$

$$
\text { order } R_{i, \sigma} \leq n
$$

Algebra \Longrightarrow Invariants

I - symbol module

- determining equations for \mathfrak{g}
$\mathcal{M} \simeq \mathcal{T} / \mathcal{I} \quad-\quad$ complementary monomials $t^{A} T_{b}$
- pseudo-group parameters
- Maurer-Cartan forms
$\mathcal{N} \quad$ - leading monomials $s^{J} S_{\alpha}$
- normalized differential invariants I_{J}^{α}

$$
\mathcal{K}=\mathcal{S} / \mathcal{N} \quad-\quad \text { complementary monomials } s^{K} S_{\beta}
$$

- cross-section coordinates $u_{K}^{\beta}=c_{K}^{\beta}$
- phantom differential invariants I_{K}^{β}

$$
\mathcal{J}=\left(\boldsymbol{\beta}^{*}\right)^{-1}(\mathcal{I})
$$

Freeness:

$$
\beta^{*}: \mathcal{K} \simeq \mathcal{M}
$$

Generating Differential Invariants

Theorem. The differential invariant algebra is generated by differential invariants that are in one-to-one correspondence with the Gröbner basis elements of the prolonged symbol module plus, possibly, a finite number of differential invariants of order $\leq n^{\star}$.

Syzygies

Theorem. Every differential syzygy among the generating differential invariants is either a syzygy among those of order $\leq n^{\star}$, or arises from an algebraic syzygy among the Gröbner basis polynomials in $\widetilde{\mathcal{J}}$.

