Reduction of Poisson-Nijenhuis Lie algebroids

Antonio De Nicola*

joint work with Juan Carlos Marrero and Edith Padrón**

* CMUC, Department of Mathematics, University of Coimbra

** Departamento de Matemática Fundamental, Universidad de La Laguna

Benasque, September 2009

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Outline

- Overview
- 2 Short review of Lie alg.
 - Lie algebroids
 - Cartan calculus
- Poisson-Nijenhuis Lie alg.
 - Poisson structures on Lie algebroids
 - Nijenhuis operators
 - Poisson-Nijenhuis Lie algebroids
- 4 Reduction of PN Lie alg.
 - 1st step: Reduction by restriction
 - 2nd step: Reduction by projection
- 5 The Reduced nondeg. PN Lie alg.
 - The Riesz index
 - The Reduced nondegenerate PN Lie algebroid

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The Main Theorem

Overview		The Reduced nondeg. PN Lie alg. 000	Refs
~			

Aim of our study:

verview

Given a Poisson-Nijenhuis Lie algebroid (A, P, N) we want ro reduce it to a symplectic-Nijenhuis Lie algebroid (A, Ω, Ñ) with Ω symplectic and also Ñ nondegenerate.

Motivation:

- Reduction in a more general and flexible framework than manifolds (Magri-Morosi).
- Concrete physical examples may be reducible just if seen as Lie algebroids (e.g. Toda Lattice).

Overview		The Reduced nondeg. PN Lie alg. 000	Refs
~			

Aim of our study:

verview

Given a Poisson-Nijenhuis Lie algebroid (A, P, N) we want ro reduce it to a symplectic-Nijenhuis Lie algebroid (A, Ω, Ñ) with Ω symplectic and also Ñ nondegenerate.

Motivation:

- Reduction in a more general and flexible framework than manifolds (Magri-Morosi).
- Concrete physical examples may be reducible just if seen as Lie algebroids (e.g. Toda Lattice).

Overview		The Reduced nondeg. PN Lie alg. 000	Refs
~			

Aim of our study:

verview

Given a Poisson-Nijenhuis Lie algebroid (A, P, N) we want ro reduce it to a symplectic-Nijenhuis Lie algebroid (A, Ω, Ñ) with Ω symplectic and also Ñ nondegenerate.

Motivation:

- Reduction in a more general and flexible framework than manifolds (Magri-Morosi).
- Concrete physical examples may be reducible just if seen as Lie algebroids (e.g. Toda Lattice).

Lie algebroids

Definition (Pradines)

A Lie algebroid is a vector bundle $\tau_A \colon A \to M$ endowed with (i) an *anchor*, i.e., a vector bundle morphism $\rho_A \colon A \to TM$ (ii) a Lie algebra bracket on $\Gamma(A)$, $[,]_A$, such that $[X, fY]_A = f[X, Y]_A + \rho_A(X)(f)Y$,

for all $X, Y \in \Gamma(A)$, $f \in C^{\infty}(M)$.

Lie algebroids

Definition (Pradines)

A Lie algebroid is a vector bundle $\tau_A \colon A \to M$ endowed with (i) an *anchor*, i.e., a vector bundle morphism $\rho_A \colon A \to TM$ (ii) a Lie algebra bracket on $\Gamma(A)$, $[,]_A$, such that

 $[X, fY]_A = f [X, Y]_A + \rho_A(X)(f)Y,$

for all $X, Y \in \Gamma(A)$, $f \in C^{\infty}(M)$.

Lie algebroids

Definition (Pradines)

A Lie algebroid is a vector bundle $\tau_A \colon A \to M$ endowed with (i) an *anchor*, i.e., a vector bundle morphism $\rho_A \colon A \to TM$ (ii) a Lie algebra bracket on $\Gamma(A)$, $[,]_A$, such that

 $[X, fY]_A = f [X, Y]_A + \rho_A(X)(f)Y,$

for all $X, Y \in \Gamma(A)$, $f \in C^{\infty}(M)$.

We denote such a Lie algebroid by $(A, [,]_A, \rho_A)$ or simply by A.

 Overview
 Short review of Lie alg. •0000
 Poisson-Nijenhuis Lie alg. 000
 Reduction of PN Lie alg. 0000000000
 The Reduced nondeg. PN Lie alg. 000
 Refs

Lie algebroids

Definition (Pradines)

A Lie algebroid is a vector bundle $\tau_A \colon A \to M$ endowed with (i) an *anchor*, i.e., a vector bundle morphism $\rho_A \colon A \to TM$ (ii) a Lie algebra bracket on $\Gamma(A)$, $[,]_A$, such that $[X, fY]_A = f [X, Y]_A + \rho_A(X)(f)Y$,

for all $X, Y \in \Gamma(A)$, $f \in C^{\infty}(M)$.

We denote such a Lie algebroid by $(A, [,]_A, \rho_A)$ or simply by A.

It follows that

$$\rho_A([X,Y]_A) = [\rho_A(X), \rho_A(Y)]_M.$$

Examples of Lie algebroids

- The tangent bundle A = TM of a smooth manifold M, with $\rho_A = id_{TM}$ and the usual Lie bracket of vector fields.
- An involutive distribution A = D ⊂ TM with the inclusion map as anchor and the usual Lie bracket of vector fields.
- A Lie algebra A = g considered as a vector bundle over the singleton M = {pt}, with trivial anchor ρ_A = 0.

Examples of Lie algebroids

- The tangent bundle A = TM of a smooth manifold M, with $\rho_A = id_{TM}$ and the usual Lie bracket of vector fields.
- An involutive distribution A = D ⊂ TM with the inclusion map as anchor and the usual Lie bracket of vector fields.
- A Lie algebra A = g considered as a vector bundle over the singleton M = {pt}, with trivial anchor ρ_A = 0.

Examples of Lie algebroids

- The tangent bundle A = TM of a smooth manifold M, with $\rho_A = id_{TM}$ and the usual Lie bracket of vector fields.
- An involutive distribution A = D ⊂ TM with the inclusion map as anchor and the usual Lie bracket of vector fields.
- A Lie algebra A = g considered as a vector bundle over the singleton M = {pt}, with trivial anchor ρ_A = 0.

Cartan calculus

Associated to a given Lie algebroid $(A, [,]_A, \rho_A)$ there is a *Lie* algebroid differential $d^A \colon \Gamma(\wedge^{\bullet}A^*) \to \Gamma(\wedge^{\bullet+1}A^*)$ defined by

$$(\mathrm{d}^{A}\omega)(X_{0},\ldots,X_{k}) = \sum_{i=0}^{k} (-1)^{i} \rho_{A}(X_{i}) \left(\omega(X_{0},\ldots,\hat{X}_{i},\ldots,X_{k}) \right)$$
$$+ \sum_{0 \leq i < j \leq k} (-1)^{i+j} \omega([X_{i},X_{j}]_{A},X_{0},\ldots,\hat{X}_{i},\ldots,\hat{X}_{j},\ldots,X_{k}),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

for $\omega \in \Gamma(\wedge^k A^*)$, $X_0, \ldots, X_k \in \Gamma(A)$.

• For $X \in \Gamma(A)$, $\mathcal{L}_X^A = i_X d^A + d^A i_X$.

Cartan calculus

Associated to a given Lie algebroid $(A, [,]_A, \rho_A)$ there is a *Lie* algebroid differential $d^A \colon \Gamma(\wedge^{\bullet}A^*) \to \Gamma(\wedge^{\bullet+1}A^*)$ defined by

$$(\mathrm{d}^{A}\omega)(X_{0},\ldots,X_{k}) = \sum_{i=0}^{k} (-1)^{i} \rho_{A}(X_{i}) \left(\omega(X_{0},\ldots,\hat{X}_{i},\ldots,X_{k}) \right)$$
$$+ \sum_{0 \leq i < j \leq k} (-1)^{i+j} \omega([X_{i},X_{j}]_{A},X_{0},\ldots,\hat{X}_{i},\ldots,\hat{X}_{j},\ldots,X_{k}),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

for $\omega \in \Gamma(\wedge^k A^*)$, $X_0, \ldots, X_k \in \Gamma(A)$.

• For
$$X \in \Gamma(A)$$
, $\mathcal{L}_X^A = i_X d^A + d^A i_X$.

Properties of the Lie algebroid differential

• d^A is a graded derivation of degree 1, i.e.,

$$\mathrm{d}^{\mathcal{A}}(\theta \wedge \omega) = \mathrm{d}^{\mathcal{A}}\theta \wedge \omega + (-1)^{\deg(\theta)}\theta \wedge \mathrm{d}^{\mathcal{A}}\omega,$$

• $d^A \circ d^A = 0.$

Properties of the Lie algebroid differential

• d^A is a graded derivation of degree 1, i.e.,

$$\mathrm{d}^{\mathcal{A}}(\theta \wedge \omega) = \mathrm{d}^{\mathcal{A}}\theta \wedge \omega + (-1)^{\operatorname{deg}(\theta)}\theta \wedge \mathrm{d}^{\mathcal{A}}\omega,$$

•
$$\mathrm{d}^{A} \circ \mathrm{d}^{A} = 0.$$

Properties of the Lie algebroid differential

• d^A is a graded derivation of degree 1, i.e.,

$$\mathrm{d}^{\mathsf{A}}(\theta \wedge \omega) = \mathrm{d}^{\mathsf{A}}\theta \wedge \omega + (-1)^{\operatorname{deg}(\theta)}\theta \wedge \mathrm{d}^{\mathsf{A}}\omega,$$

•
$$d^A \circ d^A = 0.$$

Actually, given a vector bundle $\tau_A \colon A \to M$ and a \mathbb{R} -linear map $d^A \colon \Gamma(\wedge^{\bullet}A^*) \to \Gamma(\wedge^{\bullet+1}A^*)$ with these properties, the anchor map and the Lie bracket can be recovered.

Schouten-Gerstenhaber algebra

The Lie algebra bracket on $\Gamma(A)$ can be extended to the exterior algebra $(\Gamma(\wedge^{\bullet}A), \wedge)$. For $X \in \Gamma(A)$ and $P \in \Gamma(\wedge^{p}A)$,

$$[X, P]_A(\alpha_1, \dots, \alpha_p) = \rho_A(X)(P(\alpha_1, \dots, \alpha_p))$$
$$-\sum_{i=1}^p P(\alpha_1, \dots, \mathcal{L}_X^A \alpha_i, \dots \alpha_p),$$

If $P \in \Gamma(\wedge^{p}A)$, $Q \in \Gamma(\wedge^{q}A)$ and $R \in \Gamma(\wedge^{r}A)$, then $[P,Q]_{A} \in \Gamma(\wedge^{p+q-1}A)$ and

• $[P, Q]_A = -(-1)^{(p-1)(q-1)} [Q, P]_A$

• $[P, Q \land R]_A = [P, Q]_A \land R + (-1)^{(p-1)q} Q \land [P, R]_A$

 $\bullet \ (-1)^{(p-1)(r-1)} \left[P, \left[Q, R \right]_A \right]_A + \text{cyclic perm.} = 0$

Schouten-Gerstenhaber algebra

The Lie algebra bracket on $\Gamma(A)$ can be extended to the exterior algebra $(\Gamma(\wedge^{\bullet}A), \wedge)$. For $X \in \Gamma(A)$ and $P \in \Gamma(\wedge^{p}A)$,

$$[X, P]_A(\alpha_1, \dots, \alpha_p) = \rho_A(X)(P(\alpha_1, \dots, \alpha_p))$$
$$-\sum_{i=1}^p P(\alpha_1, \dots, \mathcal{L}_X^A \alpha_i, \dots \alpha_p),$$

If $P \in \Gamma(\wedge^{p}A)$, $Q \in \Gamma(\wedge^{q}A)$ and $R \in \Gamma(\wedge^{r}A)$, then $[P,Q]_{A} \in \Gamma(\wedge^{p+q-1}A)$ and

•
$$[P,Q]_A = -(-1)^{(p-1)(q-1)} [Q,P]_A$$

• $[P, Q \land R]_A = [P, Q]_A \land R + (-1)^{(p-1)q} Q \land [P, R]_A$

• $(-1)^{(p-1)(r-1)} [P, [Q, R]_A]_A + \text{cyclic perm.} = 0$

Schouten-Gerstenhaber algebra

The Lie algebra bracket on $\Gamma(A)$ can be extended to the exterior algebra $(\Gamma(\wedge^{\bullet}A), \wedge)$. For $X \in \Gamma(A)$ and $P \in \Gamma(\wedge^{p}A)$,

$$[X, P]_A(\alpha_1, \dots, \alpha_p) = \rho_A(X)(P(\alpha_1, \dots, \alpha_p))$$
$$-\sum_{i=1}^p P(\alpha_1, \dots, \mathcal{L}_X^A \alpha_i, \dots \alpha_p),$$

If $P \in \Gamma(\wedge^{p}A)$, $Q \in \Gamma(\wedge^{q}A)$ and $R \in \Gamma(\wedge^{r}A)$, then $[P,Q]_{A} \in \Gamma(\wedge^{p+q-1}A)$ and

•
$$[P, Q]_A = -(-1)^{(p-1)(q-1)} [Q, P]_A$$

• $[P, Q \land R]_A = [P, Q]_A \land R + (-1)^{(p-1)q} Q \land [P, R]_A$

• $(-1)^{(p-1)(r-1)} [P, [Q, R]_A]_A + \text{cyclic perm.} = 0$

Schouten-Gerstenhaber algebra

The Lie algebra bracket on $\Gamma(A)$ can be extended to the exterior algebra $(\Gamma(\wedge^{\bullet}A), \wedge)$. For $X \in \Gamma(A)$ and $P \in \Gamma(\wedge^{p}A)$,

$$[X, P]_A(\alpha_1, \dots, \alpha_p) = \rho_A(X)(P(\alpha_1, \dots, \alpha_p))$$
$$-\sum_{i=1}^p P(\alpha_1, \dots, \mathcal{L}_X^A \alpha_i, \dots \alpha_p),$$

If $P \in \Gamma(\wedge^{p}A)$, $Q \in \Gamma(\wedge^{q}A)$ and $R \in \Gamma(\wedge^{r}A)$, then $[P,Q]_{A} \in \Gamma(\wedge^{p+q-1}A)$ and

•
$$[P,Q]_A = -(-1)^{(p-1)(q-1)} [Q,P]_A$$

• $[P, Q \land R]_A = [P, Q]_A \land R + (-1)^{(p-1)q} Q \land [P, R]_A$

• $(-1)^{(p-1)(r-1)} [P, [Q, R]_A]_A + \text{cyclic perm.} = 0$

 Overview
 Short review of Lie alg.
 Poisson-Nijenhuis Lie alg.
 Reduction of PN Lie alg.
 The Reduced nondeg.
 PN Lie alg.
 Refs

 00000
 000
 000
 000
 000
 000

Poisson structures on Lie algebroids

Let A be a Lie algebroid and P a section of the vector bundle $\wedge^2 A \rightarrow M$. We denote by P^{\sharp} the usual bundle map

$$P^{\sharp} \colon A^* \longrightarrow A \colon \alpha \longmapsto P^{\sharp}(\alpha) = i_{\alpha} P.$$

Definition

A Poisson structure on A is a section $P \in \Gamma(\wedge^2 A)$, such that

$$[P,P]_A=0.$$

In this case, the bracket

$$[\alpha,\beta]_{P} = \mathcal{L}^{\mathcal{A}}_{P^{\sharp}\alpha}\beta - \mathcal{L}^{\mathcal{A}}_{P^{\sharp}\beta}\alpha - \mathrm{d}^{\mathcal{A}}\left(P(\alpha,\beta)\right), \quad \alpha,\beta \in \Gamma(\mathcal{A}^{*}),$$

is a Lie bracket and $A_P^* = (A^*, [,]_P, \rho_A \circ P^{\sharp})$ is a Lie algebroid.

 Overview
 Short review of Lie alg.
 Poisson-Nijenhuis Lie alg.
 Reduction of PN Lie alg.
 The Reduced nondeg.
 PN Lie alg.
 Refs

 00000
 000
 000
 000
 000
 000

Poisson structures on Lie algebroids

Let A be a Lie algebroid and P a section of the vector bundle $\wedge^2 A \rightarrow M$. We denote by P^{\sharp} the usual bundle map

$$P^{\sharp} \colon A^* \longrightarrow A \colon \alpha \longmapsto P^{\sharp}(\alpha) = i_{\alpha} P.$$

Definition

A Poisson structure on A is a section $P \in \Gamma(\wedge^2 A)$, such that

$$[P,P]_A=0.$$

In this case, the bracket

$$[lpha,eta]_{\mathcal{P}} = \mathcal{L}^{\mathcal{A}}_{\mathcal{P}^{\sharp}lpha}eta - \mathcal{L}^{\mathcal{A}}_{\mathcal{P}^{\sharp}eta}lpha - \mathrm{d}^{\mathcal{A}}\left(\mathcal{P}(lpha,eta)
ight), \quad lpha,eta\in \Gamma(\mathcal{A}^{*}),$$

is a Lie bracket and $A_P^* = (A^*, [,]_P, \rho_A \circ P^{\sharp})$ is a Lie algebroid.

Nijenhuis operators

Let $(A, [,], \rho_A)$ be a Lie algebroid and $N : A \to A$ a bundle map. The torsion of N is defined by

$$\mathcal{T}_N(X,Y) := [NX,NY]_A - N[X,Y]_N, \quad X,Y \in \Gamma(A),$$

where $[X, Y]_N := [NX, Y]_A + [X, NY]_A - N[X, Y]_A, \quad X, Y \in \Gamma(A).$

When $T_N = 0$, N is called a Nijenhuis operator, $A_N = (A, [,]_N, \rho_N = \rho_A \circ N)$ is a new Lie algebroid and

 $N: A_N \rightarrow A$

is a Lie algebroid morphism.

Nijenhuis operators

Let $(A, [,], \rho_A)$ be a Lie algebroid and $N : A \to A$ a bundle map. The torsion of N is defined by

$$\mathcal{T}_N(X,Y) := [NX,NY]_A - N[X,Y]_N, \quad X,Y \in \Gamma(A),$$

where $[X, Y]_N := [NX, Y]_A + [X, NY]_A - N[X, Y]_A, \quad X, Y \in \Gamma(A).$

When $T_N = 0$, N is called a Nijenhuis operator, $A_N = (A, [,]_N, \rho_N = \rho_A \circ N)$ is a new Lie algebroid and

$$N: A_N \rightarrow A$$

is a Lie algebroid morphism.

Poisson-Nijenhuis Lie algebroids

On a Lie algebroid A with a Poisson structure $P \in \Gamma(\wedge^2 A)$, we say that a bundle map $N : A \to A$ is compatible with P if (i) $NP^{\sharp} = P^{\sharp}N^{*}$ (ii) $\mathcal{C}(P, N)(\alpha, \beta) = [\alpha, \beta]_{NP} - [\alpha, \beta]_{P}^{N^{*}} = 0$

Definition (Grabowski-Urbanski)

Poisson-Nijenhuis Lie algebroids

On a Lie algebroid A with a Poisson structure $P \in \Gamma(\wedge^2 A)$, we say that a bundle map $N : A \to A$ is compatible with P if

(i) $NP^{\sharp} = P^{\sharp}N^*$

(ii)
$$\mathcal{C}(P, N)(\alpha, \beta) = [\alpha, \beta]_{NP} - [\alpha, \beta]_P^{N^*} = 0$$

where $[,]_{NP}$ is the bracket defined by $NP \in \Gamma(\wedge^2 A)$, and $[,]_P^{N^*}$ is the bracket obtained from $[,]_P$ by deformation along N^* .

Definition (Grabowski-Urbanski)

Poisson-Nijenhuis Lie algebroids

On a Lie algebroid A with a Poisson structure $P \in \Gamma(\wedge^2 A)$, we say that a bundle map $N : A \to A$ is compatible with P if

(i) $NP^{\sharp} = P^{\sharp}N^*$

(ii)
$$\mathcal{C}(P, N)(\alpha, \beta) = [\alpha, \beta]_{NP} - [\alpha, \beta]_P^{N^*} = 0$$

where $[,]_{NP}$ is the bracket defined by $NP \in \Gamma(\wedge^2 A)$, and $[,]_P^{N^*}$ is the bracket obtained from $[,]_P$ by deformation along N^* .

Definition (Grabowski-Urbanski)

Poisson-Nijenhuis Lie algebroids

On a Lie algebroid A with a Poisson structure $P \in \Gamma(\wedge^2 A)$, we say that a bundle map $N : A \to A$ is compatible with P if

(i) $NP^{\sharp} = P^{\sharp}N^*$

(ii)
$$\mathcal{C}(P, N)(\alpha, \beta) = [\alpha, \beta]_{NP} - [\alpha, \beta]_P^{N^*} = 0$$

where $[,]_{NP}$ is the bracket defined by $NP \in \Gamma(\wedge^2 A)$, and $[,]_P^{N^*}$ is the bracket obtained from $[,]_P$ by deformation along N^* .

Definition (Grabowski-Urbanski)

1st step: Reduction by restriction

$$(A, [,]_A, \rho_A, P)$$
 Poisson Lie algebroid.
 \downarrow
 $D(x) := \rho_A(P^{\sharp}(A_x^*)) \subset T_x M$ for $x \in M$

・ロト ・ 日 ・ モ ・ ・ 日 ・ うへつ

D is a generalized foliation of M.

1st step: Reduction by restriction

$$(A, [,]_A, \rho_A, P) \quad \text{Poisson Lie algebroid.}$$

$$\downarrow$$

$$D(x) := \rho_A(P^{\sharp}(A_x^*)) \subset T_x M \quad \text{for } x \in M$$

$$\downarrow$$

$$\left[\rho_A(P^{\sharp}\alpha), \rho_A(P^{\sharp}\beta)\right] = \rho_A(P^{\sharp}[\alpha, \beta]_P),$$

・ロト ・ 日 ・ モ ・ ・ 日 ・ うへつ

D is a generalized foliation of M.

1^{st} step: Reduction by restriction

$$(A, [,]_A, \rho_A, P) \quad \text{Poisson Lie algebroid.}$$

$$\downarrow$$

$$D(x) := \rho_A(P^{\sharp}(A_x^*)) \subset T_x M \quad \text{for } x \in M$$

$$\downarrow$$

$$\left[\rho_A(P^{\sharp}\alpha), \rho_A(P^{\sharp}\beta)\right] = \rho_A(P^{\sharp}[\alpha, \beta]_P),$$

Э

D is a generalized foliation of M.

1st step: Reduction by restriction

Let

• $L \subset M$ be a leaf of the foliation D

•
$$A_L := P^{\sharp}(A^*)_{|L} \subset A$$

Hypothesis: $P^{\sharp}: A^* \to A$ has constant rank on each leaf L.

$$A_L \rightarrow L$$
 is a Lie subalgebroid of $A \rightarrow M$

with
$$([,]_{A_L}, \rho_{A_L})$$
 given by
• $[P^{\sharp}\alpha_{|L}, P^{\sharp}\beta_{|L}]_{A_L} = P^{\sharp}[\alpha, \beta]_{P|L} \in \Gamma(A_L)$
• $\rho_{A_L} = (\rho_A)_{|L}$

 Overview
 Short review of Lie alg.
 Poisson-Nijenhuis Lie alg.
 Reduction of PN Lie alg.
 The Reduced nondeg.
 PN Lie alg.
 Refs

 0000
 000
 000
 000
 000
 000
 000

1st step: Reduction by restriction

Let

• $L \subset M$ be a leaf of the foliation D

•
$$A_L := P^{\sharp}(A^*)_{|L} \subset A$$

Hypothesis: $P^{\sharp}: A^* \to A$ has constant rank on each leaf L.

$$A_L \to L$$
 is a Lie subalgebroid of $A \to M$
with $([,]_{A_L}, \rho_{A_L})$ given by
• $[P^{\sharp} \alpha_{|L}, P^{\sharp} \beta_{|L}]_{A_L} = P^{\sharp} [\alpha, \beta]_{P|L} \in \Gamma(A_L)$
• $\rho_{A_L} = (\rho_A)_{|L}$

1st step: Reduction by restriction

For any $X_L \in \Gamma(A_L)$ there exists $\alpha \in \Gamma(A^*)$ such that $I \circ X_L = P^{\sharp} \alpha \circ \iota$. So, we define a section $\Omega_L : L \to \wedge^2 A_L^*$ by $\Omega_L(X_L, Y_L) = P(\alpha, \beta) \circ \iota$, for any $X_L, Y_L \in \Gamma(A_L)$

Now, consider a Nijenhuis operator $N : A \rightarrow A$ compatible with P. Then, we may induce $N_L : A_L \rightarrow A_L$ such that

 $I \circ N_L(X_L) = N(P^{\sharp} lpha) \circ \iota,$ for any $X_L \in \Gamma(A_L)$

Theorem (A)

Let (A, P, N) be a Poisson-Nijenhuis Lie algebroid such that the Poisson structure has constant rank in the leaves of the foliation $D = \rho_A(P^{\sharp}(A^*))$. Then, we have a symplectic-Nijenhuis Lie algebroid (A_L, Ω_L, N_L) on each leaf L of D.

1st step: Reduction by restriction

For any $X_L \in \Gamma(A_L)$ there exists $\alpha \in \Gamma(A^*)$ such that $I \circ X_L = P^{\sharp} \alpha \circ \iota$. So, we define a section $\Omega_L : L \to \wedge^2 A_L^*$ by $\Omega_L(X_L, Y_L) = P(\alpha, \beta) \circ \iota$, for any $X_L, Y_L \in \Gamma(A_L)$

Now, consider a Nijenhuis operator $N : A \rightarrow A$ compatible with P. Then, we may induce $N_L : A_L \rightarrow A_L$ such that

$$I \circ N_L(X_L) = N(P^{\sharp} lpha) \circ \iota,$$
 for any $X_L \in \Gamma(A_L)$

Theorem (A)

Let (A, P, N) be a Poisson-Nijenhuis Lie algebroid such that the Poisson structure has constant rank in the leaves of the foliation $D = \rho_A(P^{\sharp}(A^*))$. Then, we have a symplectic-Nijenhuis Lie algebroid (A_L, Ω_L, N_L) on each leaf L of D.

1st step: Reduction by restriction

For any $X_L \in \Gamma(A_L)$ there exists $\alpha \in \Gamma(A^*)$ such that $I \circ X_L = P^{\sharp} \alpha \circ \iota$. So, we define a section $\Omega_L : L \to \wedge^2 A_L^*$ by $\Omega_I(X_I, Y_L) = P(\alpha, \beta) \circ \iota$, for any $X_L, Y_L \in \Gamma(A_L)$

Now, consider a Nijenhuis operator $N : A \rightarrow A$ compatible with P. Then, we may induce $N_L : A_L \rightarrow A_L$ such that

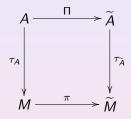
$$I \circ N_L(X_L) = N(P^{\sharp} lpha) \circ \iota,$$
 for any $X_L \in \Gamma(A_L)$

Theorem (A)

Let (A, P, N) be a Poisson-Nijenhuis Lie algebroid such that the Poisson structure has constant rank in the leaves of the foliation $D = \rho_A(P^{\sharp}(A^*))$. Then, we have a symplectic-Nijenhuis Lie algebroid (A_L, Ω_L, N_L) on each leaf L of D.

Reduction by epimorphisms of Lie algebroids

Let $\tau_A \colon A \to M$ and $\tau_{\widetilde{A}} \colon \widetilde{A} \to \widetilde{M}$ be Lie algebroids and let



be an epimorphism of Lie algebroids from A to A, i.e.,

- $\pi: M \to M$ is a submersion,
- for each $x \in M$, $\Pi_x \colon A_x \to \widetilde{A}_{\pi(x)}$ is an epimorphism of vector spaces

and

• $\mathrm{d}^{A}(\Pi^{*}\widetilde{\alpha}) = \Pi^{*}(\mathrm{d}^{\widetilde{A}}\widetilde{\alpha})$ for all $\widetilde{\alpha} \in \Gamma(\wedge^{k}_{\langle \Box \rangle}\widetilde{A}^{*})$.

Overview	Short review of Lie alg.	Poisson-Nijenhuis Lie alg.	Reduction of PN Lie alg.	The Reduced nondeg. F	PN Lie alg.	Refs
			000000000			

Projectability

- Let Γ_p(A) be the set of the Π-projectable sections X : M → A of A, i.e., such that there exists X̃ ∈ Γ(Ã) such that Π ∘ X = X̃ ∘ π.
- A Poisson structure P on A is said to be Π-projectable if for each α̃ ∈ Γ(Ã*) we have P[♯]Π*α̃ ∈ Γ_p(A). In that case, we can construct the 2-section P̃ ∈ Γ(∧²Ã) of à characterized by

$$(\widetilde{P}^{\sharp}\widetilde{lpha}) \circ \pi = \Pi(P^{\sharp}(\Pi^{*}\widetilde{lpha})), \quad \text{for any } \widetilde{lpha} \in \Gamma(\widetilde{A}^{*}).$$

• Assume that $N: A \rightarrow A$ is a Nijenhuis structure on A. We will say that N is Π -projectable if

$$N(\Gamma_p(A)) \subseteq \Gamma_p(A)$$
 and $N(\Gamma(Ker\Pi)) \subseteq \Gamma(Ker\Pi)$.

Reduction by epimorphisms of Lie algebroids

If N is a Π -projectable Nijenhuis operator on A, then we can construct a new operator $\widetilde{N} \colon \widetilde{A} \to \widetilde{A}$ as follows.

$$(\widetilde{N}\widetilde{X})\circ\pi=\Pi(NX)$$
 for any $\widetilde{X}\in\Gamma(\widetilde{A}),$

where $X \in \Gamma_p(A)$ is a projectable section such that $\Pi X = \widetilde{X} \circ \pi$.

Theorem

Let $(\Pi, \pi) : A \to \tilde{A}$ be a Lie algebroid epimorphism. Assume that (P, N) is a Poisson-Nijenhuis structure on A such that P and N are Π -projectable. Then, (\tilde{P}, \tilde{N}) is a Poisson-Nijenhuis structure on \tilde{A} .

Complete and vertical lifts

The vertical lift of $X: X^{\nu} \in \mathfrak{X}(A)$

(i)
$$X^{\nu}(f \circ \tau_A) = 0, \quad f \in \mathcal{C}^{\infty}(M),$$

(ii) $X^{\nu}(\hat{\alpha}) = \alpha(X) \circ \tau_A, \quad \alpha \in \Gamma(A^*).$

Here, if $\alpha \in \Gamma(A^*)$ then $\hat{\alpha} \colon A \to \mathbb{R}$ is defined by

 $\hat{\alpha}(a) = \alpha(\tau_A(a))(a), \quad \text{for all } a \in A.$

Complete and vertical lifts

The vertical lift of $X: X^{\nu} \in \mathfrak{X}(A)$

(i)
$$X^{\nu}(f \circ \tau_A) = 0, \quad f \in \mathcal{C}^{\infty}(M),$$

(ii) $X^{\nu}(\hat{\alpha}) = \alpha(X) \circ \tau_A, \quad \alpha \in \Gamma(A^*)$

The complete lift of $X: X^c \in \mathfrak{X}(A)$

(i)
$$X^{c}(f \circ \tau_{A}) = \rho_{A}(X)(f) \circ \tau_{A}, \quad f \in \mathcal{C}^{\infty}(M),$$

(ii) $X^{c}(\hat{\alpha}) = \widehat{\mathcal{L}_{X}^{A}}\alpha, \quad \alpha \in \Gamma(A^{*}).$

Here, if $\alpha \in \Gamma(A^*)$ then $\hat{\alpha} \colon A \to \mathbb{R}$ is defined by

$$\hat{\alpha}(a) = \alpha(\tau_A(a))(a), \quad \text{ for all } a \in A.$$

Reduction by lifts of sections of a Lie subalgebroid

Let $\tau_A \colon A \to M$ a vector bundle and $(A, [,]_A, \rho_A)$ a Lie algebroid. Consider a Lie subalgebroid $\tau_B \colon B \to M$ of A.

Key Fact

The distributions $\rho_A(B)$ and \mathcal{F} defined by

 $\mathcal{F}_{a} = \{X^{c}(a) + Y^{v}(a) \mid X, Y \in \Gamma(B)\} \subseteq T_{a}A, \text{ for all } a \in A$

are generalized foliations.

Now assume that $\rho_A(B)$ and \mathcal{F} are regular foliations.

Reduction by lifts of sections of a Lie subalgebroid

We define $\tau_{\widetilde{A}} \colon \widetilde{A} = A/\mathcal{F} \to \widetilde{M} = M/\rho_A(B)$ such that the following diagram is commutative

$$A \xrightarrow{\Pi} \widetilde{A} = A/\mathcal{F}$$

$$\downarrow^{\tau_A} \qquad \qquad \downarrow^{\tau_{\widetilde{A}}}$$

$$M \xrightarrow{\pi} \widetilde{M} = M/\rho_A(B)$$

Proposition

In the above conditions we can define a Lie algebroid structure on

$$\tau_{\widetilde{A}} \colon \widetilde{A} = A/\mathcal{F} \to \widetilde{M} = M/\rho_A(B)$$

such that the above diagram is an epimorphism of Lie algebroids.

Reduction by lifts of sections of a Lie subalgebroid

We define $\tau_{\widetilde{A}} \colon \widetilde{A} = A/\mathcal{F} \to \widetilde{M} = M/\rho_A(B)$ such that the following diagram is commutative

$$A \xrightarrow{\Pi} \widetilde{A} = A/\mathcal{F}$$

$$\downarrow^{\tau_A} \qquad \qquad \downarrow^{\tau_{\widetilde{A}}}$$

$$M \xrightarrow{\pi} \widetilde{M} = M/\rho_A(B)$$

Proposition

In the above conditions we can define a Lie algebroid structure on

$$au_{\widetilde{A}} \colon \widetilde{A} = A/\mathcal{F} \to \widetilde{M} = M/\rho_A(B)$$

such that the above diagram is an epimorphism of Lie algebroids.

Reduction by lifts of sections of a Lie subalgebroid

The structure of Lie algebroid over $\widetilde{A} = A/\mathcal{F}$ is characterized by

$$[\widetilde{X},\widetilde{Y}]_{\widetilde{A}}\circ\pi=\Pi\,[X,Y]_{A}\,,\qquad\rho_{\widetilde{A}}(\widetilde{X})(\widetilde{f})=\rho_{A}(X)(\widetilde{f}\circ\pi),$$

The Riesz index

Let (A, P, N) a Poisson-Nijenhuis Lie algebroid. For any $x \in M$ consider the map $N_x : A_x \to A_x$. Recall that there exists a smallest integer k > 0 such that the sequences

$$\operatorname{\mathsf{Im}}\nolimits N_x\supseteq\operatorname{\mathsf{Im}}\nolimits N_x^2\supseteq\ldots$$

and

$$\ker N_x \subseteq \ker N_x^2 \subseteq \dots$$

both stabilize at rank k. That is,

$$\operatorname{Im} N_x^k = \operatorname{Im} N_x^{k+1} = \dots, \qquad \text{while } \operatorname{Im} N_x^{k-1} \neq \operatorname{Im} N_x^k,$$

and

$$\ker N_x^k = \ker N_x^{k+1} = \dots, \qquad \text{while } \ker N_x^{k-1} \neq \ker N_x^k.$$

The integer k is called the Riesz index of N at x.

The Reduced nondegenerate PN Lie algebroid

Theorem (B)

Let $(A, [,]_A, \rho_A, P, N)$ be a Poisson-Nijenhuis Lie algebroid such that

- 1) N has constant Riesz index k.
- 2) $\rho_A(B)$ and ${\cal F}$ are regular foliations for $B=\ker N^k$.
- For all x ∈ M, a_x − a'_x ∈ ker(N^k_x) if a_x and a'_x belong to the same leaf of the foliation F.
- 4) P is nondegenerate.

Then, we can induce a Poisson-Nijenhuis Lie algebroid structure $([,]_{\widetilde{A}}, \rho_{\widetilde{A}}, \widetilde{P}, \widetilde{N})$ on \widetilde{A} with \widetilde{P} and \widetilde{N} nondegenerate.

The Reduced nondegenerate PN Lie algebroid

Theorem (B)

Let $(A, [,]_A, \rho_A, P, N)$ be a Poisson-Nijenhuis Lie algebroid such that

- 1) N has constant Riesz index k.
- 2) $\rho_A(B)$ and \mathcal{F} are regular foliations for $B = \ker N^k$.
- For all x ∈ M, a_x − a'_x ∈ ker(N^k_x) if a_x and a'_x belong to the same leaf of the foliation F.
- 4) P is nondegenerate.

Then, we can induce a Poisson-Nijenhuis Lie algebroid structure $([,]_{\widetilde{A}}, \rho_{\widetilde{A}}, \widetilde{P}, \widetilde{N})$ on \widetilde{A} with \widetilde{P} and \widetilde{N} nondegenerate.

The Reduced nondegenerate PN Lie algebroid

Theorem (B)

Let $(A, [,]_A, \rho_A, P, N)$ be a Poisson-Nijenhuis Lie algebroid such that

- 1) N has constant Riesz index k.
- 2) $\rho_A(B)$ and \mathcal{F} are regular foliations for $B = \ker N^k$.
- 3) For all $x \in M$, $a_x a'_x \in \ker(N_x^k)$ if a_x and a'_x belong to the same leaf of the foliation \mathcal{F} .

4) P is nondegenerate.

Then, we can induce a Poisson-Nijenhuis Lie algebroid structure $([,]_{\widetilde{A}}, \rho_{\widetilde{A}}, \widetilde{P}, \widetilde{N})$ on \widetilde{A} with \widetilde{P} and \widetilde{N} nondegenerate.

The Reduced nondegenerate PN Lie algebroid

Theorem (B)

Let $(A, [,]_A, \rho_A, P, N)$ be a Poisson-Nijenhuis Lie algebroid such that

- 1) N has constant Riesz index k.
- 2) $\rho_A(B)$ and \mathcal{F} are regular foliations for $B = \ker N^k$.
- 3) For all $x \in M$, $a_x a'_x \in \ker(N_x^k)$ if a_x and a'_x belong to the same leaf of the foliation \mathcal{F} .
- 4) P is nondegenerate.

Then, we can induce a Poisson-Nijenhuis Lie algebroid structure $([,]_{\widetilde{A}}, \rho_{\widetilde{A}}, \widetilde{P}, \widetilde{N})$ on \widetilde{A} with \widetilde{P} and \widetilde{N} nondegenerate.

The Reduced nondegenerate PN Lie algebroid

Theorem (B)

Let $(A, [,]_A, \rho_A, P, N)$ be a Poisson-Nijenhuis Lie algebroid such that

- 1) N has constant Riesz index k.
- 2) $\rho_A(B)$ and \mathcal{F} are regular foliations for $B = \ker N^k$.
- 3) For all $x \in M$, $a_x a'_x \in \ker(N_x^k)$ if a_x and a'_x belong to the same leaf of the foliation \mathcal{F} .
- 4) P is nondegenerate.

Then, we can induce a Poisson-Nijenhuis Lie algebroid structure $([,]_{\widetilde{A}}, \rho_{\widetilde{A}}, \widetilde{P}, \widetilde{N})$ on \widetilde{A} with \widetilde{P} and \widetilde{N} nondegenerate.

Main Theorem

(Thm A + Thm B)

Let $(A, [,]_A, \rho_A, P, N)$ be a Poisson-Nijenhuis Lie algebroid s.t.

1) P has constant rank in each leaf L of $D = \rho_A(P^{\sharp}(A^*))$.

- 2) $N_L: A_L \to A_L$ has constant Riesz index k, with $A_L = P^{\sharp}(A^*)_{|L}$.
- 3) $\rho_{A_L}(\ker N_L^k)$ and $(\mathcal{F}_L)_a = \{X^c(a) + Y^v(a) \mid X, Y \in \Gamma(\ker N_L^k)\}$ for $a \in A_L$ are regular foliations.
- 4) For all $x \in M$, $a_x a'_x \in \ker(N_L^k)$ if a_x and a'_x are in the same leaf of \mathcal{F}_L .

Main Theorem

(Thm A + Thm B)

Let $(A, [,]_A, \rho_A, P, N)$ be a Poisson-Nijenhuis Lie algebroid s.t.

- 1) P has constant rank in each leaf L of $D = \rho_A(P^{\sharp}(A^*))$.
- 2) $N_L: A_L \to A_L$ has constant Riesz index k, with $A_L = P^{\sharp}(A^*)_{|L}$.
- 3) $\rho_{A_L}(\ker N_L^k)$ and $(\mathcal{F}_L)_a = \{X^c(a) + Y^v(a) \mid X, Y \in \Gamma(\ker N_L^k)\}$ for $a \in A_L$ are regular foliations.
- 4) For all $x \in M$, $a_x a'_x \in \ker(N_L^k)$ if a_x and a'_x are in the same leaf of \mathcal{F}_L .

Main Theorem

(Thm A + Thm B)

Let $(A, [,]_A, \rho_A, P, N)$ be a Poisson-Nijenhuis Lie algebroid s.t.

- 1) P has constant rank in each leaf L of $D = \rho_A(P^{\sharp}(A^*))$.
- 2) $N_L: A_L \to A_L$ has constant Riesz index k, with $A_L = P^{\sharp}(A^*)_{|L}$.
- 3) $\rho_{A_L}(\ker N_L^k)$ and $(\mathcal{F}_L)_a = \{X^c(a) + Y^v(a) \mid X, Y \in \Gamma(\ker N_L^k)\}$ for $a \in A_L$ are regular foliations.
- 4) For all $x \in M$, $a_x a'_x \in \ker(N_L^k)$ if a_x and a'_x are in the same leaf of \mathcal{F}_L .

Main Theorem

(Thm A + Thm B)

Let $(A, [,]_A, \rho_A, P, N)$ be a Poisson-Nijenhuis Lie algebroid s.t.

- 1) P has constant rank in each leaf L of $D = \rho_A(P^{\sharp}(A^*))$.
- 2) $N_L: A_L \to A_L$ has constant Riesz index k, with $A_L = P^{\sharp}(A^*)_{|L}$.
- 3) $\rho_{A_L}(\ker N_L^k)$ and $(\mathcal{F}_L)_a = \{X^c(a) + Y^v(a) \mid X, Y \in \Gamma(\ker N_L^k)\}$ for $a \in A_L$ are regular foliations.
- 4) For all $x \in M$, $a_x a'_x \in \ker(N_L^k)$ if a_x and a'_x are in the same leaf of \mathcal{F}_L .

Main Theorem

(Thm A + Thm B)

Let $(A, [,]_A, \rho_A, P, N)$ be a Poisson-Nijenhuis Lie algebroid s.t.

- 1) P has constant rank in each leaf L of $D = \rho_A(P^{\sharp}(A^*))$.
- 2) $N_L: A_L \to A_L$ has constant Riesz index k, with $A_L = P^{\sharp}(A^*)_{|L}$.
- 3) $\rho_{A_L}(\ker N_L^k)$ and $(\mathcal{F}_L)_a = \{X^c(a) + Y^v(a) \mid X, Y \in \Gamma(\ker N_L^k)\}$ for $a \in A_L$ are regular foliations.
- 4) For all $x \in M$, $a_x a'_x \in \ker(N_L^k)$ if a_x and a'_x are in the same leaf of \mathcal{F}_L .

References

- F. Magri, C. Morosi, A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Quaderno S 19, University of Milan (1984).
- Y. Kosmann-Schwarzbach and F. Magri, *Poisson-Nijenhuis* structures, Ann. Inst. Henri Poincaré **53** (1990), 35–81.
- C. M. Marle, J. Nunes da Costa, *Reduction of bi-Hamiltonian manifolds and recursion operators*, DGA (Brno, 1995), 523–538, Masaryk Univ., Brno, 1996.
- J. Grabowski and P. Urbanski, *Lie algebroids and Poisson-Nijenhuis structures*, Rep. Math. Phys. 40 (1997) 195–208.
- R. Caseiro, *Modular Classes of PoissonNijenhuis Lie Algebroids*, Lett. Math. Phys. **80** (2007) 223–238.