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Overview

Aim of our study:

Given a Poisson-Nijenhuis Lie algebroid (A,P,N) we want ro
reduce it to a symplectic-Nijenhuis Lie algebroid (A, Ω̃, Ñ)
with Ω̃ symplectic and also Ñ nondegenerate.

Motivation:

Reduction in a more general and flexible framework than
manifolds (Magri-Morosi).

Concrete physical examples may be reducible just if seen as
Lie algebroids (e.g. Toda Lattice).



Overview Short review of Lie alg. Poisson-Nijenhuis Lie alg. Reduction of PN Lie alg. The Reduced nondeg. PN Lie alg. Refs

Overview

Aim of our study:

Given a Poisson-Nijenhuis Lie algebroid (A,P,N) we want ro
reduce it to a symplectic-Nijenhuis Lie algebroid (A, Ω̃, Ñ)
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Lie algebroids

Definition (Pradines)

A Lie algebroid is a vector bundle τA : A→ M endowed with

(i) an anchor, i.e., a vector bundle morphism ρA : A→ TM

(ii) a Lie algebra bracket on Γ(A), [ , ]A, such that

[X , fY ]A = f [X ,Y ]A + ρA(X )(f )Y ,

for all X ,Y ∈ Γ(A), f ∈ C∞(M).

We denote such a Lie algebroid by (A, [ , ]A , ρA) or simply by A.

It follows that

ρA ([X ,Y ]A) = [ρA(X ), ρA(Y )]M .
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Examples of Lie algebroids

The tangent bundle A = TM of a smooth manifold M, with
ρA = idTM and the usual Lie bracket of vector fields.

An involutive distribution A = D ⊂ TM with the inclusion
map as anchor and the usual Lie bracket of vector fields.

A Lie algebra A = g considered as a vector bundle over the
singleton M = {pt}, with trivial anchor ρA = 0.
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Cartan calculus

Associated to a given Lie algebroid (A, [ , ]A , ρA) there is a Lie
algebroid differential dA : Γ(∧•A∗)→ Γ(∧•+1A∗) defined by

(dAω)(X0, . . . ,Xk) =
k∑

i=0

(−1)iρA(Xi )
(
ω(X0, . . . , X̂i , . . . ,Xk)

)
+

∑
0≤i<j≤k

(−1)i+jω([Xi ,Xj ]A ,X0, . . . , X̂i , . . . , X̂j , . . . ,Xk),

for ω ∈ Γ(∧kA∗), X0, . . . ,Xk ∈ Γ(A).

For X ∈ Γ(A), LA
X = iX dA + dAiX .
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Properties of the Lie algebroid differential

dA is a graded derivation of degree 1, i.e.,

dA(θ ∧ ω) = dAθ ∧ ω + (−1)deg(θ)θ ∧ dAω,

dA ◦ dA = 0.

Actually, given a vector bundle τA : A→ M and a R-linear map
dA : Γ(∧•A∗)→ Γ(∧•+1A∗) with these properties, the anchor map
and the Lie bracket can be recovered.
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Schouten-Gerstenhaber algebra

The Lie algebra bracket on Γ(A) can be extended to the exterior
algebra (Γ(∧•A),∧). For X ∈ Γ (A) and P ∈ Γ (∧pA),

[X ,P]A (α1, . . . , αp) =ρA(X )(P(α1, . . . , αp))

−
p∑

i=1

P(α1, . . . ,LA
Xαi , . . . αp),

If P ∈ Γ (∧pA), Q ∈ Γ (∧qA) and R ∈ Γ (∧r A), then
[P,Q]A ∈ Γ

(
∧p+q−1A

)
and

[P,Q]A = −(−1)(p−1)(q−1) [Q,P]A

[P,Q ∧ R]A = [P,Q]A ∧ R + (−1)(p−1)qQ ∧ [P,R]A

(−1)(p−1)(r−1) [P, [Q,R]A]A + cyclic perm. = 0
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Poisson structures on Lie algebroids

Let A be a Lie algebroid and P a section of the vector bundle
∧2A→ M. We denote by P] the usual bundle map

P] : A∗ −→ A : α 7−→ P](α) = iαP.

Definition

A Poisson structure on A is a section P ∈ Γ(∧2A), such that

[P,P]A = 0.

In this case, the bracket

[α, β]P = LA
P]αβ − L

A
P]βα− dA (P(α, β)) , α, β ∈ Γ(A∗),

is a Lie bracket and A∗P = (A∗, [ , ]P , ρA ◦ P]) is a Lie algebroid.
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Nijenhuis operators

Let (A, [ , ] , ρA) be a Lie algebroid and N : A→ A a bundle map.
The torsion of N is defined by

TN(X ,Y ) := [NX ,NY ]A − N[X ,Y ]N , X ,Y ∈ Γ(A),

where
[X ,Y ]N := [NX ,Y ]A + [X ,NY ]A − N[X ,Y ]A, X ,Y ∈ Γ(A).

When TN = 0, N is called a Nijenhuis operator,
AN = (A, [ , ]N , ρN = ρA ◦N) is a new Lie algebroid and

N : AN → A

is a Lie algebroid morphism.
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Poisson-Nijenhuis Lie algebroids

On a Lie algebroid A with a Poisson structure P ∈ Γ(∧2A), we say
that a bundle map N : A→ A is compatible with P if

(i) NP] = P]N∗

(ii) C(P,N)(α, β) = [α, β]NP − [α, β]N
∗

P = 0

where [ , ]NP is the bracket defined by NP ∈ Γ(∧2A), and [ , ]N
∗

P is
the bracket obtained from [ , ]P by deformation along N∗.

Definition (Grabowski-Urbanski)

A Poisson-Nijenhuis Lie algebroid (A,P,N) is a Lie algebroid A
equipped with a Poisson structure P and a Nijenhuis operator
N : A→ A compatible with P.
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1st step: Reduction by restriction

(A, [ , ]A , ρA,P) Poisson Lie algebroid.

↓

D(x) := ρA(P](A∗x)) ⊂ TxM for x ∈ M

↓[
ρA(P]α), ρA(P]β)

]
= ρA(P] [α, β]P),

↓

D is a generalized foliation of M.
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1st step: Reduction by restriction

Let

L ⊂ M be a leaf of the foliation D

AL := P](A∗)|L ⊂ A

Hypothesis: P] : A∗ → A has constant rank on each leaf L.

↓

AL → L is a Lie subalgebroid of A→ M

with
(

[ , ]AL
, ρAL

)
given by[

P]α|L,P
]β|L

]
AL

= P] [α, β]P|L ∈ Γ(AL)

ρAL
= (ρA)|L
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1st step: Reduction by restriction

For any XL ∈ Γ(AL) there exists α ∈ Γ(A∗) such that
I ◦XL = P]α ◦ι. So, we define a section ΩL : L→ ∧2A∗L by

ΩL(XL,YL) = P(α, β) ◦ι, for any XL,YL ∈ Γ(AL)

Now, consider a Nijenhuis operator N : A→ A compatible with P.
Then, we may induce NL : AL → AL such that

I ◦NL(XL) = N(P]α) ◦ι, for any XL ∈ Γ(AL)

Theorem (A)

Let (A,P,N) be a Poisson-Nijenhuis Lie algebroid such that the
Poisson structure has constant rank in the leaves of the foliation
D = ρA(P](A∗)). Then, we have a symplectic-Nijenhuis Lie
algebroid (AL,ΩL,NL) on each leaf L of D.
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I ◦NL(XL) = N(P]α) ◦ι, for any XL ∈ Γ(AL)

Theorem (A)

Let (A,P,N) be a Poisson-Nijenhuis Lie algebroid such that the
Poisson structure has constant rank in the leaves of the foliation
D = ρA(P](A∗)). Then, we have a symplectic-Nijenhuis Lie
algebroid (AL,ΩL,NL) on each leaf L of D.
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Reduction by epimorphisms of Lie algebroids

Let τA : A→ M and τ
Ã

: Ã→ M̃ be Lie algebroids and let

A
Π //

τA

��

Ã

τ
Ã

��
M

π // M̃

be an epimorphism of Lie algebroids from A to Ã, i.e.,

π : M → M̃ is a submersion,

for each x ∈ M, Πx : Ax → Ãπ(x) is an epimorphism of vector
spaces
and

dA(Π∗α̃) = Π∗(dÃα̃) for all α̃ ∈ Γ(∧k Ã∗).
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Projectability

Let Γp(A) be the set of the Π-projectable sections X : M → A

of A, i.e., such that there exists X̃ ∈ Γ(Ã) such that
Π ◦X = X̃ ◦π.

A Poisson structure P on A is said to be Π-projectable if for
each α̃ ∈ Γ(Ã∗) we have P]Π∗α̃ ∈ Γp(A). In that case, we can

construct the 2-section P̃ ∈ Γ(∧2Ã) of Ã characterized by

(P̃]α̃) ◦π = Π(P](Π∗α̃)), for any α̃ ∈ Γ(Ã∗).

Assume that N : A→ A is a Nijenhuis structure on A. We will
say that N is Π-projectable if

N(Γp(A)) ⊆ Γp(A) and N(Γ(KerΠ)) ⊆ Γ(KerΠ).
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Reduction by epimorphisms of Lie algebroids

If N is a Π-projectable Nijenhuis operator on A, then we can
construct a new operator Ñ : Ã→ Ã as follows.

(ÑX̃ ) ◦π = Π(NX ) for any X̃ ∈ Γ(Ã),

where X ∈ Γp(A) is a projectable section such that ΠX = X̃ ◦π.

Theorem

Let (Π, π) : A→ Ã be a Lie algebroid epimorphism. Assume that
(P,N) is a Poisson-Nijenhuis structure on A such that P and N are
Π-projectable. Then, (P̃, Ñ) is a Poisson-Nijenhuis structure on Ã.
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Complete and vertical lifts

(A, [ , ]A , ρA) a Lie algebroid

X ∈ Γ(A)

The vertical lift of X : X v ∈ X(A)

(i) X v (f ◦τA) = 0, f ∈ C∞(M),

(ii) X v (α̂) = α(X ) ◦τA, α ∈ Γ(A∗).

The complete lift of X : X c ∈ X(A)

(i) X c(f ◦τA) = ρA(X )(f ) ◦τA, f ∈ C∞(M),

(ii) X c(α̂) = L̂A
Xα, α ∈ Γ(A∗).

Here, if α ∈ Γ(A∗) then α̂ : A→ R is defined by

α̂(a) = α(τA(a))(a), for all a ∈ A.
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Reduction by lifts of sections of a Lie subalgebroid

Let τA : A→ M a vector bundle and (A, [ , ]A , ρA) a Lie algebroid.
Consider a Lie subalgebroid τB : B → M of A.

Key Fact

The distributions ρA(B) and F defined by

Fa = {X c(a) + Y v (a) | X ,Y ∈ Γ(B)} ⊆ TaA, for all a ∈ A

are generalized foliations.

Now assume that ρA(B) and F are regular foliations.
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Reduction by lifts of sections of a Lie subalgebroid

We define τ
Ã

: Ã = A/F → M̃ = M/ρA(B) such that the following
diagram is commutative

A
Π //

τA

��

Ã = A/F

τ
Ã

��

M
π // M̃ = M/ρA(B)

Proposition

In the above conditions we can define a Lie algebroid structure on

τ
Ã

: Ã = A/F → M̃ = M/ρA(B)

such that the above diagram is an epimorphism of Lie algebroids.
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Reduction by lifts of sections of a Lie subalgebroid

The structure of Lie algebroid over Ã = A/F is characterized by

[X̃ , Ỹ ]
Ã
◦π = Π [X ,Y ]A , ρ

Ã
(X̃ )(f̃ ) = ρA(X )(f̃ ◦π),
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The Riesz index

Let (A,P,N) a Poisson-Nijenhuis Lie algebroid. For any x ∈ M
consider the map Nx : Ax → Ax . Recall that there exists a smallest
integer k > 0 such that the sequences

Im Nx ⊇ Im N2
x ⊇ . . .

and
ker Nx ⊆ ker N2

x ⊆ . . .

both stabilize at rank k . That is,

Im Nk
x = Im Nk+1

x = . . . , while Im Nk−1
x 6= Im Nk

x ,

and

ker Nk
x = ker Nk+1

x = . . . , while ker Nk−1
x 6= ker Nk

x .

The integer k is called the Riesz index of N at x .
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The Reduced nondegenerate PN Lie algebroid

Theorem (B)

Let (A, [ , ]A , ρA,P,N) be a Poisson-Nijenhuis Lie algebroid such
that

1) N has constant Riesz index k.

2) ρA(B) and F are regular foliations for B = ker Nk .

3) For all x ∈ M, ax − a′x ∈ ker(Nk
x ) if ax and a′x belong to the

same leaf of the foliation F .

4) P is nondegenerate.

Then, we can induce a Poisson-Nijenhuis Lie algebroid structure
([ , ]

Ã
, ρ

Ã
, P̃, Ñ) on Ã with P̃ and Ñ nondegenerate.
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Main Theorem

(Thm A + Thm B)

Let (A, [ , ]A , ρA,P,N) be a Poisson-Nijenhuis Lie algebroid s.t.

1) P has constant rank in each leaf L of D = ρA(P](A∗)).

2) NL : AL → AL has constant Riesz index k, with
AL = P](A∗)|L.

3) ρAL
(ker Nk

L ) and
(FL)a = {X c(a) + Y v (a) | X ,Y ∈ Γ(ker Nk

L )} for a ∈ AL are
regular foliations.

4) For all x ∈ M, ax − a′x ∈ ker(Nk
L ) if ax and a′x are in the same

leaf of FL.

Then, we obtain a symplectic-Nijenhuis Lie algebroid structure
([ , ]

ÃL
, ρ

ÃL
, Ω̃L, ÑL) on ÃL = AL/FL → L̃ = L/F with ÑL

nondegenerate.



Overview Short review of Lie alg. Poisson-Nijenhuis Lie alg. Reduction of PN Lie alg. The Reduced nondeg. PN Lie alg. Refs

Main Theorem

(Thm A + Thm B)

Let (A, [ , ]A , ρA,P,N) be a Poisson-Nijenhuis Lie algebroid s.t.

1) P has constant rank in each leaf L of D = ρA(P](A∗)).

2) NL : AL → AL has constant Riesz index k, with
AL = P](A∗)|L.

3) ρAL
(ker Nk

L ) and
(FL)a = {X c(a) + Y v (a) | X ,Y ∈ Γ(ker Nk

L )} for a ∈ AL are
regular foliations.

4) For all x ∈ M, ax − a′x ∈ ker(Nk
L ) if ax and a′x are in the same

leaf of FL.

Then, we obtain a symplectic-Nijenhuis Lie algebroid structure
([ , ]

ÃL
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