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Universidad de Zaragoza

XVIII Int. Fall Workshop on Geometry and Physics – p.1/21



Branes in Poisson sigma models
Fernando Falceto

Depto. Fı́sica Teórica
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Poisson sigma model.

N. Ikeda: Non linear gauge theories, applications to 2d
gravity.

P. Schaller and T. Strobl: put the model into the right
geometric setup and coined its name, applications to
gravity, BF theory, Yang-Mills...

A. Cattaneo and G. Felder: relation to Kontsevich’s
deformation quantization, to symplectic groupoids,
AKSZ formalism...

Cattaneo and Felder: coisotropic branes.

More general branes?
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Poisson sigma model

The target: (M, { , })

- { , } a Poisson bracket in C∞(M).
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Poisson sigma model

The target: (M, { , })

- { , } a Poisson bracket in C∞(M).

- In coordinates X = (X1, . . . , Xn) for M

Πij(X) = {Xi, Xj}(X)
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Poisson sigma model

The target: (M, { , }) Πij(X) = {Xi, Xj}(X)

The fields:
- Σ two dimensional space-time (worldsheet).

- The fields are given by the bundle map

(X, η) : TΣ → T ∗M

i.e. X : Σ → M , η ∈ Ω1(Σ, X∗T ∗M)

with coordinates σ = (σ1, σ2) for Σ

η = ηκi(σ)dσκdXi = ηidXi
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Poisson sigma model

The target: (M, { , }) Πij(X) = {Xi, Xj}(X)

The fields: X : Σ → M , η = ηκi(σ)dσκdXi = ηidXi

The action:

S(X, η) =

∫

Σ
ηi ∧ dXi +

1

2
Πij(X)ηi ∧ ηj
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Poisson sigma model

The target: (M, { , }) Πij(X) = {Xi, Xj}(X)

The fields: X : Σ → M , η = ηκi(σ)dσκdXi = ηidXi

The action:

S(X, η) =

∫

Σ
ηi ∧ dXi +

1

2
Πij(X)ηi ∧ ηj

The equations of motion:

dX − Π♯(X)η = 0 (Π♯η)j = Πijηi

dηi +
1

2
∂iΠ

jk(X)ηj ∧ ηk = 0

i. e. (X, η) : TΣ → T ∗M Lie algebroid homomorphism.
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The Gauge symmetry:

Under the transformations

δβX = Π♯(X)β β = βi(σ)dXi ∈ Γ(X∗T ∗M)

δβηi = dβi + ∂iΠ
jkηjβk,
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The Gauge symmetry:

Under the transformations

δβX = Π♯(X)β β = βi(σ)dXi ∈ Γ(X∗T ∗M)

δβηi = dβi + ∂iΠ
jkηjβk,

δβS =

∫

Σ
d(dXiβi).
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The Gauge symmetry:

Under the transformations

δβX = Π♯(X)β β = βi(σ)dXi ∈ Γ(X∗T ∗M)

δβηi = dβi + ∂iΠ
jkηjβk,

δβS =

∫

Σ
d(dXiβi).

[δβ, δβ′ ]Xi = δ[β,β′]X
i

[δβ, δβ′ ]ηi = δ[β,β′]ηi−βkβ
′
l∂i∂jΠ

kl(dXj − Πsjηs)

With [β, β′]k = βiβ
′
j∂kΠ

ij(X)

XVIII Int. Fall Workshop on Geometry and Physics – p.6/21



Examples

R2 gravity in two dimensions

- dim(M)=3

- (η1, η2, η3) ≡ (e1, e2, ω) (zweibein and connection)
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Examples
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- (η1, η2, η3) ≡ (e1, e2, ω) (zweibein and connection)

Π23(X) = X1, Π31(X) = X2

Π12(X) = −(X3)2 + Λ

XVIII Int. Fall Workshop on Geometry and Physics – p.7/21



Examples

R2 gravity in two dimensions

- dim(M)=3

- (η1, η2, η3) ≡ (e1, e2, ω) (zweibein and connection)

Π23(X) = X1, Π31(X) = X2

Π12(X) = −(X3)2 + Λ

- Then the Poisson sigma model in (M, {., .}) upon
integration of X-fields, leads to 2-d R2 gravity.

SR2 =

∫

Σ

(

1

4
R2 + Λ

)√
g d2σ
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Examples

BF theories.

- (g, [., .]) any Lie algebra, M = g
∗.
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Examples

BF theories.

- (g, [., .]) any Lie algebra, M = g
∗.

- A,B ∈ g viewed as linear functions on g
∗.

- Then {A,B} = [A,B] defines the Kostant-Kirillov-Souriau
Poisson bracket in g

∗
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Examples

BF theories.

- (g, [., .]) any Lie algebra, M = g
∗.

- A,B ∈ g viewed as linear functions on g
∗.

- Then {A,B} = [A,B] defines the Kostant-Kirillov-Souriau
Poisson bracket in g

∗

The action in this case is equivalent to

SBF =

∫

Σ
XiFi

with X(σ) ∈ g
∗ and F = dη + [η, η] ∈ Ω2(M) ⊗ g
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Examples

Poisson-Lie sigma models.
For any Poisson-Lie group (G, {., .}) we can define its
Poisson-sigma model.
It has several interesting properties:
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Examples

Poisson-Lie sigma models.
For any Poisson-Lie group (G, {., .}) we can define its
Poisson-sigma model.
It has several interesting properties:

Generalizes the BF-theory.
The gauge group is the dual Poisson-Lie group
(G∗, {., .}∗), acting by dressing transformation.
Duality in the Hamiltonian formulation.
With group (G∗, {., .}∗) it is equivalent to G/G WZW
model.
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Boundary conditions

Take a worldsheet with boundary. ι : ∂Σ →֒ Σ

Put a brane N ⊂ M . i.e. X : Σ → M s.t. ι∗X : ∂Σ → N
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Boundary conditions

Take a worldsheet with boundary. ι : ∂Σ →֒ Σ

Put a brane N ⊂ M . i.e. X : Σ → M s.t. ι∗X : ∂Σ → N

δXS = −
∫

∂Σ
δXiηi +

∫

Σ
δXi(dηi +

1

2
∂iΠ

jkηj ∧ ηk)

We must have (ι∗X, ι∗η) : T∂Σ → TN◦ TN◦ ⊂ T ∗
NM

TN◦
p = {ξ ∈ T ∗

p M |ξ(v) = 0 ∀v ∈ TpN}
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Boundary conditions

Take a worldsheet with boundary. ι : ∂Σ →֒ Σ

Put a brane N ⊂ M . i.e. X : Σ → M s.t. ι∗X : ∂Σ → N

δXS = −
∫

∂Σ
δXiηi +

∫

Σ
δXi(dηi +

1

2
∂iΠ

jkηj ∧ ηk)

We must have (ι∗X, ι∗η) : T∂Σ → TN◦ TN◦ ⊂ T ∗
NM

From the equations of motion, ( dX − Π♯η = 0 )

ι∗dX = Π♯(ι∗X)ι∗η ⇒

⇒ Π♯(ι∗X)ι∗η ∈ Ω1(∂Σ, ι∗X∗TN)
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Boundary conditions

The boundary conditions (B.C.) for a brane N ⊂ M are:

(ι∗X, ι∗η) : T∂Σ → AN AN := TN◦ ∩ Π♯−1
(TN) ⊂ T ∗

NM
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Boundary conditions

The boundary conditions (B.C.) for a brane N ⊂ M are:

(ι∗X, ι∗η) : T∂Σ → AN AN := TN◦ ∩ Π♯−1
(TN) ⊂ T ∗

NM

We assume AN of constant rank.
(regular brane or pre-Poisson)
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Boundary conditions

The boundary conditions (B.C.) for a brane N ⊂ M are:

(ι∗X, ι∗η) : T∂Σ → AN AN := TN◦ ∩ Π♯−1
(TN) ⊂ T ∗

NM

We assume AN of constant rank.
(regular brane or pre-Poisson)

Then:
- AN is a Lie subalgebroid of T ∗M .
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Boundary conditions

The boundary conditions (B.C.) for a brane N ⊂ M are:

(ι∗X, ι∗η) : T∂Σ → AN AN := TN◦ ∩ Π♯−1
(TN) ⊂ T ∗

NM

We assume AN of constant rank.
(regular brane or pre-Poisson)

Then:
- AN is a Lie subalgebroid of T ∗M .
- The gauge transformation δβ subject to the same B. C.

ι∗β ∈ Γ(ι∗X∗AN)

preserves B.C. and is a symmetry.
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Pre-Poisson branes (examples)

Free Boundary Conditions:
AN := TN◦ ∩ Π♯−1

(TN)

N = M then AN = 0.
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Free Boundary Conditions:
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N = M then AN = 0.

Coisotropic brane: Dirac’s first class constraints.
Π♯(TN◦) ⊂ TN ⇔ AN = TN◦.
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Coisotropic brane: Dirac’s first class constraints.
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Reduction of symplectic groupoids (M. Crainic, R. L.
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Pre-Poisson branes (examples)

Free Boundary Conditions:
AN := TN◦ ∩ Π♯−1

(TN)

N = M then AN = 0.

Coisotropic brane: Dirac’s first class constraints.
Π♯(TN◦) ⊂ TN ⇔ AN = TN◦.

Constant rank Poisson-Dirac: AN ⊂ Ker(Π♯).
Reduction of symplectic groupoids (M. Crainic, R. L.
Fernandes)

Cosymplectic brane: Dirac’s second class constraints.
AN = 0.

Theorem: Every pre-Poisson submanifold can be embedded

coisotropically in a cosymplectic submanifold.
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Quantization

Batalin-Vilkoviski quantization
Poisson sigma model has a gauge symmetry of the
open type (its algebra closes only on-shell).

XVIII Int. Fall Workshop on Geometry and Physics – p.13/21



Quantization

The fields
Xi, ηi the original fields.

βi, γ
i the ghost and antighosts.

λi the auxiliary field (Lagrange multiplier)
Lorenz gauge d ∗ ηi = 0 ∗ Hodge star operator
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Quantization

The fields
Xi, ηi the original fields.

βi, γ
i the ghost and antighosts.

λi the auxiliary field (Lagrange multiplier)
Lorenz gauge d ∗ ηi = 0 ∗ Hodge star operator

The gauge fixed action

Sgf =

∫

Σ
ηi ∧ dXi +

1

2
Πij(X)ηi ∧ ηj − λid ∗ ηi−

− ∗ dγi ∧ (dβi + ∂iΠ
kl(X)ηkβl)−

−1

4
∗ dγi ∧ ∗dγj∂i∂jΠ

kl(X)βkβl
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Quantization

The fields
Xi, ηi the original fields.

βi, γ
i the ghost and antighosts.

λi the auxiliary field (Lagrange multiplier)
Lorenz gauge d ∗ ηi = 0 ∗ Hodge star operator

The gauge fixed action

Sgf =

∫

Σ
ηi ∧ dXi +

1

2
Πij(X)ηi ∧ ηj −λid ∗ ηi−

− ∗ dγi∧ (dβi + ∂iΠ
kl(X)ηkβl)−

−1

4
∗ dγi ∧ ∗dγj∂i∂jΠ

kl(X)βkβl

Perturbative expansion.
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Free B. C. N = M

Σ = D the unit disk. Pick three points at the boundary
0, 1,∞.

8

0

1
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Free B. C. N = M

Σ = D the unit disk. Pick three points at the boundary
0, 1,∞.

8

f
0

1

g

δx

Then the perturbative expansion of
∫

e
i

~
Sgff(X(0))g(X(1))δ(X(∞)− x)

gives the Kontsevich’s star product.

f ⋆ g(x) = f(x)g(x) + i~

2{f, g}(x) + . . .
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Free B. C. N = M

Σ = D the unit disk. Pick three points at the boundary
0, 1,∞.

8

f
0

1

g

δx

Then the perturbative expansion of
∫

e
i

~
Sgff(X(0))g(X(1))δ(X(∞)− x)

gives the Kontsevich’s star product.

f ⋆ g(x) = f(x)g(x) + i~

2{f, g}(x) + . . .

f

g

h

δx

= f h

δx

g
f

g

h

δx

(f ⋆ g) ⋆ h = f ⋆ (g ⋆ h)
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Coisotropic brane.

Adapted coordinates X = (Xa, Xµ), N = {(Xa, Xµ = 0)}
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Coisotropic brane.

Adapted coordinates X = (Xa, Xµ), N = {(Xa, Xµ = 0)}

B. C.







ι∗Xa = free, ι∗ηa = 0
a
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Coisotropic brane.

Adapted coordinates X = (Xa, Xµ), N = {(Xa, Xµ = 0)}

B. C.







ι∗Xa = free, ι∗ηa = 0
a

ι∗Xµ = 0, ι∗ηµ = free
µ
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Coisotropic brane.

Adapted coordinates X = (Xa, Xµ), N = {(Xa, Xµ = 0)}

B. C.







ι∗Xa = free, ι∗ηa = 0
a

ι∗Xµ = 0, ι∗ηµ = free
µ

The perturbative expansion of
∫

ι∗X∈N

e
i

~
Sgff(X(0))g(X(1))δ(X(∞) − x)

0

1

δx

g

f
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Coisotropic brane.

Adapted coordinates X = (Xa, Xµ), N = {(Xa, Xµ = 0)}

B. C.







ι∗Xa = free, ι∗ηa = 0
a

ι∗Xµ = 0, ι∗ηµ = free
µ

The perturbative expansion of
∫

ι∗X∈N

e
i

~
Sgff(X(0))g(X(1))δ(X(∞) − x)

0

1

δx

g

f

defines an associative ⋆ product in

A~

N ≡ {f ∈ C∞(N)[[~]] s.t. δ~(N)f = 0},

if anomaly vanishes. δ~(N)Xi = Πµi(X)βµ + ...
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Coisotropic branes. Bimodules.

N0, N1 coisotropic branes with vanishing anomaly.

δ~(N0, N1)X
i = Πiνβν + . . . (dXν) a basis of TN◦

0 ∩ TN◦
1 .

A~

N0N1
≡ {f ∈ C∞(N0 ∩ N1)[[~]] s.t. δ~(N0, N1)f = 0}
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Coisotropic branes. Bimodules.

N0, N1 coisotropic branes with vanishing anomaly.

δ~(N0, N1)X
i = Πiνβν + . . . (dXν) a basis of TN◦

0 ∩ TN◦
1 .

A~

N0N1
≡ {f ∈ C∞(N0 ∩ N1)[[~]] s.t. δ~(N0, N1)f = 0}

We define the action of A~

N0
and A~

N1
on A~

N0N1

f ◮ Ψ(x) = f

δx

N0 1N
Ψ

Ψ ◭ g(x) =

δx

N0 1N
Ψ

g

Which makes A~

N0N1
a A~

N0
-bimodule-A~

N1
.
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Coisotropic branes. Bimodules.

N0, N1 coisotropic branes with vanishing anomaly.

δ~(N0, N1)X
i = Πiνβν + . . . (dXν) a basis of TN◦

0 ∩ TN◦
1 .

A~

N0N1
≡ {f ∈ C∞(N0 ∩ N1)[[~]] s.t. δ~(N0, N1)f = 0}

We define the action of A~

N0
and A~

N1
on A~

N0N1

f ◮ Ψ(x) = f

δx

N0 1N
Ψ

Ψ ◭ g(x) =

δx

N0 1N
Ψ

g

Which makes A~

N0N1
a A~

N0
-bimodule-A~

N1
.

Quantization of Poisson maps.
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Cosymplectic brane

Adapted coordinates X = (Xa, XA), N = {(Xa, XA = 0)}
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Cosymplectic brane

Adapted coordinates X = (Xa, XA), N = {(Xa, XA = 0)}

B. C.











ι∗Xa = free, ι∗ηa = 0
a

XVIII Int. Fall Workshop on Geometry and Physics – p.17/21



Cosymplectic brane

Adapted coordinates X = (Xa, XA), N = {(Xa, XA = 0)}

B. C.











ι∗Xa = free, ι∗ηa = 0
a

ι∗XA = 0, ι∗ηA = 0
A
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Cosymplectic brane

Adapted coordinates X = (Xa, XA), N = {(Xa, XA = 0)}

B. C.











ι∗Xa = free, ι∗ηa = 0
a

ι∗XA = 0, ι∗ηA = 0
A

1st idea. Sgf =

∫

Σ
ηi ∧ dXi +

1

2
Πij(X)ηi ∧ ηj − λid ∗ ηi−

− ∗ dγi ∧ (dβi + ∂iΠ
kl(X)ηkβl)−

−1

4
∗ dγi ∧ ∗dγj∂i∂jΠ

kl(X)βkβl

det ΠAB(x) 6= 0, perform the Gaussian integration in ηA
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Cosymplectic brane

Adapted coordinates X = (Xa, XA), N = {(Xa, XA = 0)}

B. C.











ι∗Xa = free, ι∗ηa = 0
a

ι∗XA = 0, ι∗ηA = 0
A

1st idea. Sgf =

∫

Σ
ηi ∧ dXi +

1

2
Πij(X)ηi ∧ ηj − λid ∗ ηi−

− ∗ dγi ∧ (dβi + ∂iΠ
kl(X)ηkβl)−

−1

4
∗ dγi ∧ ∗dγj∂i∂jΠ

kl(X)βkβl

det ΠAB(x) 6= 0, perform the Gaussian integration in ηA

Effective action has a well defined pert. expansion.
It is hard to compute and relate to star product.
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Cosymplectic brane

2nd idea
Change gauge fixing: d ∗ ηa = 0, XA = 0

for cosymplectic branes only: δβXA = ΠABβB + ΠAaβa.

λa and λA new Lagrange multipliers.
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Cosymplectic brane

2nd idea
Change gauge fixing: d ∗ ηa = 0, XA = 0

for cosymplectic branes only: δβXA = ΠABβB + ΠAaβa.

λa and λA new Lagrange multipliers.

Sgf =

∫

Σ
ηi ∧ dXi +

1

2
Πij(X)ηi ∧ ηj − λad ∗ ηa − λAXA−

− ∗ dγa ∧ (dβa + ∂aΠ
ij(X)ηiβj) − γAΠAi(X)βi−

−1

4
∗ dγa ∧ ∗dγb∂a∂bΠ

ij(X)βiβj
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Cosymplectic brane

2nd idea
Change gauge fixing: d ∗ ηa = 0, XA = 0

for cosymplectic branes only: δβXA = ΠABβB + ΠAaβa.

λa and λA new Lagrange multipliers.

Sgf =

∫

Σ
ηi ∧ dXi +

1

2
Πij(X)ηi ∧ ηj − λad ∗ ηa − λAXA−

− ∗ dγa ∧ (dβa + ∂aΠ
ij(X)ηiβj) − γAΠAi(X)βi−

−1

4
∗ dγa ∧ ∗dγb∂a∂bΠ

ij(X)βiβj

Integrating in λA, γA (linear) and in ηA (quadratic). One ob-

tains the effective action
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Cosymplectic brane

Seff
gf =

∫

Σ
ηa ∧ dXa +

1

2
Πab
D (X)ηa ∧ ηb − λad ∗ ηa

− ∗ dγa ∧ (dβa + ∂aΠ
cd
D (X)ηcβd)−

−1

4
∗ dγa ∧ ∗dγb∂a∂bΠ

cd
D (X)βcβd

Πab
D

= Πab − ΠaAΠABΠBb, the Dirac bracket in N .
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Cosymplectic brane

Seff
gf =

∫

Σ
ηa ∧ dXa +

1

2
Πab
D (X)ηa ∧ ηb − λad ∗ ηa

− ∗ dγa ∧ (dβa + ∂aΠ
cd
D (X)ηcβd)−

−1

4
∗ dγa ∧ ∗dγb∂a∂bΠ

cd
D (X)βcβd

Πab
D

= Πab − ΠaAΠABΠBb, the Dirac bracket in N .
∫

ι∗X∈N

e
i

~
Sgff(X(0))g(X(1))δ(X(∞)− x) = f ⋆

D
g

defines an associative product in A~

N = C∞(N)[[h]].
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Pre-Poisson brane

Adapted coordinates X = (Xa, Xµ, XA) = (Xp, XA).

B. C.











ι∗Xa = free, ι∗ηa = 0. brane

ι∗Xµ = 0, ι∗ηµ = free. 1st class

ι∗XA = 0, ι∗ηA = 0. 2nd class

Gauge fixing: d ∗ ηp = 0, XA = 0.
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Pre-Poisson brane

Adapted coordinates X = (Xa, Xµ, XA) = (Xp, XA).

B. C.











ι∗Xa = free, ι∗ηa = 0. brane

ι∗Xµ = 0, ι∗ηµ = free. 1st class

ι∗XA = 0, ι∗ηA = 0. 2nd class

Gauge fixing: d ∗ ηp = 0, XA = 0.

Seff
gf =

∫

Σ
ηp ∧ dXp +

1

2
Πpq
D

(X)ηp ∧ ηq − λpd ∗ ηp

− ∗ dγp ∧ (dβp + ∂pΠ
qr
D

(X)ηqβr)−
−1

4
∗ dγp ∧ ∗dγq∂p∂qΠ

rs
D (X)βrβs
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Pre-Poisson brane

Adapted coordinates X = (Xa, Xµ, XA) = (Xp, XA).

B. C.











ι∗Xa = free, ι∗ηa = 0. brane

ι∗Xµ = 0, ι∗ηµ = free. 1st class

ι∗XA = 0, ι∗ηA = 0. 2nd class

Gauge fixing: d ∗ ηp = 0, XA = 0.

Seff
gf =

∫

Σ
ηp ∧ dXp +

1

2
Πpq
D

(X)ηp ∧ ηq − λpd ∗ ηp

− ∗ dγp ∧ (dβp + ∂pΠ
qr
D

(X)ηqβr)−
−1

4
∗ dγp ∧ ∗dγq∂p∂qΠ

rs
D (X)βrβs

i. e. it defines an effective Poisson sigma model

in M ′ = {(Xa, Xµ, XA = 0)} with brane N ′ = {(Xa, Xµ = 0)}.
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Final remarks

Unlike the coisotropic branes, the cosymplectic ones do
always lead to associative star products.

XVIII Int. Fall Workshop on Geometry and Physics – p.21/21



Final remarks

Unlike the coisotropic branes, the cosymplectic ones do
always lead to associative star products.

Cosymplectic branes redefine the perturbative
expansion.

XVIII Int. Fall Workshop on Geometry and Physics – p.21/21



Final remarks

Unlike the coisotropic branes, the cosymplectic ones do
always lead to associative star products.

Cosymplectic branes redefine the perturbative
expansion.

Deformation of branes, from cosymplectic to
coisotropic.

XVIII Int. Fall Workshop on Geometry and Physics – p.21/21



Final remarks

Unlike the coisotropic branes, the cosymplectic ones do
always lead to associative star products.

Cosymplectic branes redefine the perturbative
expansion.

Deformation of branes, from cosymplectic to
coisotropic.

Quantization with several branes?

XVIII Int. Fall Workshop on Geometry and Physics – p.21/21



Final remarks

Unlike the coisotropic branes, the cosymplectic ones do
always lead to associative star products.

Cosymplectic branes redefine the perturbative
expansion.

Deformation of branes, from cosymplectic to
coisotropic.

Quantization with several branes?

XVIII Int. Fall Workshop on Geometry and Physics – p.21/21



Final remarks

Unlike the coisotropic branes, the cosymplectic ones do
always lead to associative star products.

Cosymplectic branes redefine the perturbative
expansion.

Deformation of branes, from cosymplectic to
coisotropic.

Quantization with several branes?

XVIII Int. Fall Workshop on Geometry and Physics – p.21/21


	Poisson sigma model.
	Plan
	Poisson sigma model
	
	Examples
	Examples
	Examples
	Boundary conditions
	Boundary conditions
	Pre-Poisson branes (examples)
	Quantization
	Free B. C. $N=M$ 
	 Coisotropic brane.
	Coisotropic branes. Bimodules.
	Cosymplectic brane
	Cosymplectic brane
	Cosymplectic brane
	Pre-Poisson brane
	Final remarks

