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Poisson sigma mode!.
-

N. Ikeda: Non linear gauge theories, applications to 2d
gravity.

P. Schaller and T. Strobl: put the model into the right
geometric setup and coined its name, applications to
gravity, BF theory, Yang-Mills...

A. Cattaneo and G. Felder: relation to Kontsevich’s
deformation quantization, to symplectic groupoids,
AKSZ formalism...

Cattaneo and Felder: coisotropic branes.
More general branes?
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Poisson sigma mode

-

- {, } a Poisson bracket in C>®(M).

® Thetarget: (M,{, })

- In coordinates X = (X!, ... X™) for M

ITV(X) = {X", X7 }(X)
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Poisson sigma mode

f.p The target: (M, {, }) [M7(X) = {X* X7} X) T

® The fields:
- 3 two dimensional space-time (worldsheet).

- The fields are given by the bundle map
(X,n): TS — T*M
i.e. X:X—-M, neQ(ZX*T*M)
with coordinates o = (o', 0?) for ¥
1N = Nwi(0)do®d X" = n;dX*
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Poisson ssgma model

-

® The target: (M,{, }) M7 (X) = {X* X7}X)
#® Thefields: X :¥ — M, N = Nwi(0)do®d X" = n;d X?

-

® The action:

1
S(X,U)Z/mAdXZ+§H”(X)mAm
>

o |

XVIII Int. Fall Workshop on Geometry and Physics — p.5/21



Poisson ssgma model

-

® The target: (M,{, }) M7 (X) = {X* X7}X)
#® Thefields: X :¥ — M, N = Nwi(0)do®d X" = n;d X?

-

® The action:

1
S(X,U)Z/nfz/\dXZ+§H”(X)mA77j
>

# The equations of motion:
dX —IF(X)y=0 (') =11V,
1 .
dn; + §aiH]k(X)77j Anr =0

Li. e. (X,n):TY — T*M Lie algebroid homomorphism. J
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-

Under the transformations

#® The Gauge symmetry:

35X = TIH(X) 3 3 = Bi(0)dX" € T(X*T* M)
dam; = dB; + O;117%n; By,
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Under the transformations

#® The Gauge symmetry:

35X = TIH(X) 3 3 = Bi(0)dX" € T(X*T* M)
dam; = dB; + O;117%n; By,

%S:éﬁmv@)
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-

Under the transformations

#® The Gauge symmetry:

35X = TIH(X) 3 3 = Bi(0)dX" € T(X*T* M)
dam; = dB; + O;117%n; By,

059 = /Z d(dX'5;).

03,051 X" = 015,51 X" | |
08,081 = 5[5,5/]77i—5k51/8¢8jﬂkl(dX] — 11" n;)

With [, 3, = 3,9/0,11(X)
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Examples

-

- dim(M)=3
- (71, m2,m3) = (€1, e2,w) (zweibein and connection)

# R? gravity in two dimensions
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Examples

-

- dim(M)=3

- (m,m2,m3) = (€1, €2, w) (zweibein and connection)

® R? gravity in two dimensions

H23(X) _ Xl, HBl(X) _ X2
M%(X) = —(X?)* + A

- Then the Poisson sigma model in (M, {.,.}) upon
integration of X -fields, leads to 2-d R? gravity.

Sp> = /E GRMA) Vg d*o
- .
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® [BF theories.



Examples

-

- (g,[.,.]) any Lie algebra, M = g*.

® [BF theories.

- A, B € g viewed as linear functions on g*.

- Then {A, B} = A, B] defines the Kostant-Kirillov-Souriau
Poisson bracket in g*
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Examples

-

- (g,[.,.]) any Lie algebra, M = g*.

® [BF theories.

- A, B € g viewed as linear functions on g*.

- Then {A, B} = A, B] defines the Kostant-Kirillov-Souriau
Poisson bracket in g*

The action in this case Is equivalent to

Sar = [ X'F

with X (o) e g*and F = dn + [n,n] € Q*(M) @ ¢

o |

XVIII Int. Fall Workshop on Geometry and Physics — p.8/21



Examples

- N

#® Poisson-Lie sigma models.
For any Poisson-Lie group (G, {.,.}) we can define its
Poisson-sigma model.
It has several interesting properties:
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Poisson-sigma model.
It has several interesting properties:

» Generalizes the BF-theory.

» The gauge group is the dual Poisson-Lie group
(G*,{.,.}"), acting by dressing transformation.

s Duality in the Hamiltonian formulation.
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Examples

-

# Poisson-Lie sigma models. T

For any Poisson-Lie group (G, {.,.}) we can define its
Poisson-sigma model.

It has several interesting properties:
» Generalizes the BF-theory.

» The gauge group is the dual Poisson-Lie group
(G*,{.,.}"), acting by dressing transformation.
s Duality in the Hamiltonian formulation.

s With group (G*,{.,.}*) itis equivalentto G/G WZW
model.
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Boundary conditions
E

ake a worldsheet with boundary. ¢ : 9% — ¥

Putabrane Nc M.ie. X: Y —- Ms.t X :0> — N
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Boundary conditions
E

ake a worldsheet with boundary. ¢ : 9% — ¥

Putabrane Nc M.ie. X: Y —- Ms.t X :0> — N
. . 1 |
515 = — / 5 X + / 5X(dni + 0¥ A )
o5 5
We must have (* X, ) : TOX. — TN° TN° C Ty M

TNy, ={{ €T, M|{(v) =0Vv € T,N}
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Boundary conditions
E

ake a worldsheet with boundary. ¢ : 9% — ¥

Putabrane Nc M.ie. X: Y —- Ms.t X :0> — N

. . 1 .
dx S = —/ 5sz+/ §X Y (dn; + =0;117%n; A my)
) ¥ 2
We must have (* X, ) : TOX. — TN° TN° C Ty M
From the equations of motion, (dX — IIfn = 0)
FAX = (X)) =

= I (* X)o*n € QLO%, * X*T'N)

o |
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Boundary conditions

-

The boundary conditions (B.C.) for a brane N C M are:

-

(*X,0*n) - TS — AN AN = TN°N1IIF (TN) C T5M
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Boundary conditions

-

The boundary conditions (B.C.) for a brane N C M are:

-

(*X,0*n) - TS — AN AN = TN°N1IIF (TN) C T5M

We assume AN of constant rank.
(regular brane or pre-Poisson)
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Boundary conditions

-

The boundary conditions (B.C.) for a brane N C M are:

-

(*X,0*n) - TS — AN AN = TN°N1IIF (TN) C T5M

We assume AN of constant rank.
(regular brane or pre-Poisson)

Then:
- AN Is a Lie subalgebroid of T M.
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Boundary conditions
=

The boundary conditions (B.C.) for a brane N C M are: T

(*X,0*n) - TS — AN AN = TN°N1IIF (TN) C T5M

We assume AN of constant rank.
(regular brane or pre-Poisson)
Then:
- AN Is a Lie subalgebroid of T M.
- The gauge transformation Jz subject to the same B. C.

B eT ("X AN)

Lpreserves B.C. and is a symmetry. J
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Pre-Poisson branes (examples)
AN = TN° N Hﬁ‘l(TN)j

-

# Free Boundary Conditions:
N = M then AN = 0.



Pre-Poisson branes (examples)
- AN = TN° N Hﬁ‘l(TN)j

# Free Boundary Conditions:
N = M then AN = 0.

o Coisotropic brane: Dirac’s first class constraints.
[I*(TN°) c TN < AN = TN°.
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Pre-Poisson branes (examples)
- AN = TN° N Hﬁ‘l(TN)j

# Free Boundary Conditions:
N = M then AN = 0.

o Coisotropic brane: Dirac’s first class constraints.
[I*(TN°) c TN < AN = TN°.

# Constant rank Poisson-Dirac: AN C Ker(II#).
Reduction of symplectic groupoids (M. Crainic, R. L.
Fernandes)
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Pre-Poisson branes (examples)

AN = TN° N Hﬂ‘l(TN)j
Free Boundary Conditions:
N = M then AN = 0.

Coisotropic brane: Dirac’s first class constraints.
[I*(TN°) c TN < AN = TN°.

Constant rank Poisson-Dirac: AN C Ker(I1#).
Reduction of symplectic groupoids (M. Crainic, R. L.
Fernandes)

Cosymplectic brane: Dirac’s second class constraints.
AN = 0.

|

XVIII Int. Fall Workshop on Geometry and Physics — p.12/21



Pre-Poisson branes (examples)
- AN = TN° N Hﬂ‘l(TN)j

# Free Boundary Conditions:
N = M then AN = 0.

o Coisotropic brane: Dirac’s first class constraints.
[I*(TN°) c TN < AN = TN°.

# Constant rank Poisson-Dirac: AN C Ker(II#).
Reduction of symplectic groupoids (M. Crainic, R. L.
Fernandes)

#® Cosymplectic brane: Dirac’s second class constraints.
AN = 0.

Theorem: Every pre-Poisson submanifold can be embedded

Lcoisotropically In a cosymplectic submanifold. J
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Quantization

- N

# Batalin-Vilkoviski quantization
Poisson sigma model has a gauge symmetry of the
open type (its algebra closes only on-shell).
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Quantization

-

# The fields
s X' n; the original fields.

s (3;,~" the ghost and antighosts.
s )\ the auxiliary field (Lagrange multiplier)
Lorenz gauge d x n; = 0 +x Hodge star operator
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Quantization

-

# The fields
s X' n; the original fields.

s (3;,~" the ghost and antighosts.

s )\ the auxiliary field (Lagrange multiplier)

Lorenz gauge d x n; = 0 +x Hodge star operator
# The gauge fixed action

1 .. -
S = [ mAdXT 4 ST 0n A gy — Nd -
by
—x dy' A (dB; 4 OTT (X)) B) —
1 . .
—7 *dy’ A ey’ 0;0; 11" (X)) By, 3,
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Quantization

-

# The fields T
s X' n; the original fields.
s (3;,~" the ghost and antighosts.
s )\ the auxiliary field (Lagrange multiplier)
Lorenz gauge d x n; = 0 +x Hodge star operator
# The gauge fixed action

1 -
ng — /m/\dXZ—F5H”(X)7%/\77j—)\2d>l<772’—
>
— s Ay A (A 4 TR X g B) —
1 : :
— %y A Ay 0,011 (X) By

. Perturbative expansion. o
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FreeB.C. N =M
-

>; = D the unit disk. Pick three points at the boundary
0,1, co.

-
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FreeB.C. N =M
-

>; = D the unit disk. Pick three points at the boundary
Oa 17 Q. Ox

-

Then the perturbative expansion of

J en s F(X(0))g(X (1))8(X (00) — )
gives the Kontsevich’s star product.

frg() = flx)g(x) +i5{f g}(x) + ...
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FreeB.C. N =M
-

f2 — D the unit disk. Pick three points at the boundary
Oa 17 Q. Ox

Then the perturbative expansion of

J en s F(X(0))g(X (1))8(X (00) — )
gives the Kontsevich’s star product.

frg() = flx)g(x) +i5{f g}(x) + ...

o s
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o |
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XY= free, 1*n, =0 >
B. C.




Coisotropic brane.

-

dapted coordinates X = (X% XH#), N ={(X* Xt =0)}

A

XY= free, 1*n, =0 A
B. C. u
XH =0, v'n, = free VAVAVE
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Coisotropic brane.

-

dapted coordinates X = (X% XH#), N ={(X* Xt =0)}

A

XY= free, 1*n, =0 A
B. C. u
XH =0, v'n, = free AVAVL -

The perturbative expansion of .

/ S5t £(X(0))g(X (1))8(X (00) — x)
L* X EeN

o |
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Coisotropic brane.

o |

dapted coordinates X = (X% XH#), N ={(X* Xt =0)}

XY= free, 1*n, =0 A

B. C. u
XH =0, v'n, = free S\

The perturbative expansion of :

[ e X)X (1)3(X (e0) - 2)

L*XeN .

defines an associative x product in

Al = {f € C®(N)[[A]] s.t. 8*(N)f = 0}, 0

if anomaly vanishes. SN X =TI"(X)3, + ...

o |
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Coisotropic branes. Bimodules.

-

Ny, N7 coisotropic branes with vanishing anomaly.
6"(No, N) X! =TI"3, + ... (dX") a basis of TN N TNy,
A?Vo]\ﬁ = {f - COO(N() M Nl)[[h]] S.t. 5h(N(),N1)f — O}

-
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Coisotropic branes. Bimodules.

- N

Ny, N7 coisotropic branes with vanishing anomaly.
6"(No, N) X! =TI"3, + ... (dX") a basis of TN N TNy,
Al v = {f € C®(No N Ny)[[R]] s.t. 6"(No, N1) f = 0}
We define the action of A% and A% on A%
Sx Ox
fy» () = ¢ U ayg(z) = g

Ny i No Ny
W Y

Which makes A% . a A% -bimodule-A7%, .
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Coisotropic branes. Bimodules.

- N

Ny, N7 coisotropic branes with vanishing anomaly.
6"(No, N) X! =TI"3, + ... (dX") a basis of TN N TNy,
A?Vo]\ﬁ = {f c COO(N() M Nl)[[h]] S.1. 5h(N(),N1)f — O}
We define the action of A% and A% on A%
Ox Ox
fo¥(z) = U ag(zr) = 0

Ny i No Ny
W Y

Which makes A% . a A% -bimodule-A7%, .

LQuantization of Poisson maps. J
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Cosymplectic brane

-

Adapted coordinates X = (X% X4), N ={(X* X4 =0)}
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(X% = free, 1*n, =0 © -

B. C.




Cosymplectic brane

Adapted coordinates X = (X®, X4), N ={(X* X4 = 0)}T
(X% = free, 1*n, =0 © -

B. C. )
XA =0, v*ng =0 D Ng

\




Cosymplectic brane

Adapted coordinates X = (X®, X4), N = {(X X4 = 0)}T

)
XY= free, 1*n, =0 -

B. C. < ) N
X2 =0 *ng =0

Y,

\

| 1 .. :
15t idea. ng — / m/\dX’¢+ §HZJ(X)772'/\77]' —)\Zd*ni_
>
— s dy’ A (B + OITF (X )y 3)) —
1 : :
—rdy A «dy! 0;0,TT° (X)) 81,3,

det I8 () # 0, perform the Gaussian integration in 74

o |
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Cosymplectic brane

Adapted coordinates X = (X®, X4), N = {(X X4 = 0)}T

)
XY= free, 1*n, =0 -

B. C. < ) N
X2 =0 *ng =0

Y,

\

1% idea. Set = /Z m AdX" + %Hij (X)ni Am; — Nd * m;—
—x dy' A (dB; 4+ OTTN (X)) B) —
—i x dy' A xdoy! 9;0,11° (X)) B By

det I8 () # 0, perform the Gaussian integration in 74

Effective action has a well defined pert. expansion.
th is hard to compute and relate to star product. J
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Cosymplectic brane

24 idea
Change gauge fixing: d «n, =0, X4 =0
for cosymplectic branes only: d5X* = 114535 + [1443,.

A% and A4 new Lagrange multipliers.

o |
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Cosymplectic brane

24 idea
Change gauge fixing: d «n, =0, X4 =0
for cosymplectic branes only: d5X* = 114535 + [1443,.

A% and A4 new Lagrange multipliers.
1 ..
Sef = / n; AdX" + §H”(X)m An;— A'dxn, — AaXA—
by
— % dy" A (dB + 0uI17 (X )i 3j) — 7allM(X) B —

| 3
h dv® A xd~"0,0,11% (X)BiB;

o |
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Cosymplectic brane

24 idea
Change gauge fixing: d «n, =0, X4 =0
for cosymplectic branes only: d5X* = 114535 + [1443,.

A% and A4 new Lagrange multipliers.

1 ..
Sef = / n; AdX" + §H”(X)m An;— A'dxn, — AaXA—
>
— % dy® A (ABa + OITY (X)mi 8;) — v ATl (X)) Bi—

| 3
h dv® A xd~"0,0,11% (X)BiB;

Integrating in A4, v4 (linear) and in n4 (quadratic). One ob-

|
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Cosymplectic brane

ngﬁ — /2377@/\an—|—§Han<X)77a/\77b_)\ad*77a
— % dy? A (dBy + 0TI (X)) —
1

_Z * dfya A *d’ybaaabncpd<X)ﬁcﬁd

% = 119 — M%411 4 gI15%, the Dirac bracket in N.

o |
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Cosymplectic brane

seit = /naAan+§H%[)(X)77a/\nb—)\ad*na
bD

— % dy? A (dBy + 0TI (X)) —

1
_Z * dfya’ A *d’ybaaabncpd<X)6cﬁd

% = 119 — M%411 4 gI15%, the Dirac bracket in N.

[ e X)X W)X (o0) ~ 2) = f e g
¥ XeN

defines an associative product in A% = C>(N)[[R]].

o |
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Pre-Poisson brane

fAdapted coordinates X = (X%, X* X4) = (XP, X4, T
XY = free, 1'n, =0. brane
B. C. XH =0, V', = free. 15¢ class
XA =0, *ng = 0. ond class

Gauge fixing: d 1, = 0, X4 = 0.

o |
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Pre-Poisson brane

fAdapted coordinates X = (X% X* X4) = (XP, X4). -
XY = free, 1'n, =0. brane
B. C. XH =0, V', = free. 15¢ class
XA =0, *ng = 0. ond class

Gauge fixing: d 1, = 0, X4 = 0.

1
St = [ nAXP 4 ST (X)m, Ay — N
— s+ dy? A (dBp + OpIly (X)ngBr) —

1
- dyP A xdy10,0,115 (X)) B, B

o |
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Pre-Poisson brane

fAdapted coordinates X = (X% X* X4) = (XP, X4). -
XY = free, 1'n, =0. brane
B. C. XH =0, V', = free. 15¢ class
XA =0, *ng = 0. ond class

Gauge fixing: d 1, = 0, X4 = 0.

1
St = [ nAXP 4 ST (X)m, Ay — N
— s+ dy? A (dBp + OpIly (X)ngBr) —

1
- dyP A xdy10,0,115 (X)) B, B

l. e. it defines an effective Poisson sigma model

Cin M= (X9 XH XA = 0)} with brane N’ = {(X% X* =0)}. |
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Final remarks

- N

# Unlike the coisotropic branes, the cosymplectic ones do
always lead to associative star products.

o |
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-

Final remarks

# Unlike the coisotropic branes, the cosymplectic ones do

always lead to associative star

-

nroducts.

#® Cosymplectic branes redefine t
expansion.

ne perturbative

|
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Final remarks

- N

# Unlike the coisotropic branes, the cosymplectic ones do
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