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Lie group actions: the orbit data

Let G be a Lie group acting on a manifold M and let O be the
orbit through a point x . Consider:

the isotropy group at x , call it Gx .

the normal space at x to the orbit, call it V .

the induced (linear) action of Gx on V (isotropy action).
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Local form: the slice theorem

Local model out of the orbit data: the G-manifold

G ×Gx V = (G × V )/Gx .

Theorem (the slice theorem)

If G is compact, then O admits a G-invariant neighborhood U ,
G-diffeomorphic to G ×Gx V.

Read: (O and Gx compact) instead of (G-compact).

Marius Crainic Stability and normal forms (around leaves in Poisson geometry)



I. Lie group actions
II. Foliations

III. Poisson geometry: intro
IV. Poisson geometry: the local data and the local model

V. Normal forms and stability in Poisson geometry

The orbit data
Local form
Stability

Local form: the slice theorem

Local model out of the orbit data: the G-manifold

G ×Gx V = (G × V )/Gx .

Theorem (the slice theorem)

If G is compact, then O admits a G-invariant neighborhood U ,
G-diffeomorphic to G ×Gx V.

Read: (O and Gx compact) instead of (G-compact).

Marius Crainic Stability and normal forms (around leaves in Poisson geometry)



I. Lie group actions
II. Foliations

III. Poisson geometry: intro
IV. Poisson geometry: the local data and the local model

V. Normal forms and stability in Poisson geometry

The orbit data
Local form
Stability

Local form: the slice theorem

Local model out of the orbit data: the G-manifold

G ×Gx V = (G × V )/Gx .

Theorem (the slice theorem)

If G is compact, then O admits a G-invariant neighborhood U ,
G-diffeomorphic to G ×Gx V.

Read: (O and Gx compact) instead of (G-compact).

Marius Crainic Stability and normal forms (around leaves in Poisson geometry)



I. Lie group actions
II. Foliations

III. Poisson geometry: intro
IV. Poisson geometry: the local data and the local model

V. Normal forms and stability in Poisson geometry

The orbit data
Local form
Stability

Local form: the slice theorem

Local model out of the orbit data: the G-manifold

G ×Gx V = (G × V )/Gx .

Theorem (the slice theorem)

If G is compact, then O admits a G-invariant neighborhood U ,
G-diffeomorphic to G ×Gx V.

Read: (O and Gx compact) instead of (G-compact).

Marius Crainic Stability and normal forms (around leaves in Poisson geometry)



I. Lie group actions
II. Foliations

III. Poisson geometry: intro
IV. Poisson geometry: the local data and the local model

V. Normal forms and stability in Poisson geometry

The orbit data
Local form
Stability

Local form: the slice theorem

Local model out of the orbit data: the G-manifold

G ×Gx V = (G × V )/Gx .

Theorem (the slice theorem)

If G is compact, then O admits a G-invariant neighborhood U ,
G-diffeomorphic to G ×Gx V.

Read: (O and Gx compact) instead of (G-compact).

Marius Crainic Stability and normal forms (around leaves in Poisson geometry)



I. Lie group actions
II. Foliations

III. Poisson geometry: intro
IV. Poisson geometry: the local data and the local model

V. Normal forms and stability in Poisson geometry
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Local form
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Stability: Hirsch-Stowe stability

Theorem (stability theorem, Hirsch 1980, Stowe 1983)

If O is compact and H1(Gx ; V ) = 0, then O is stable, i.e.
any other action of G on M which is close enough to the
original one has at least one orbit diffeomorphich to O.

Remark: one can also say how many leaves are diff. to O (at
least as many as H0(Gx , V )).
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Foliations: the leaf data

Let F be a foliation on a manifold M and let L be a leaf of the
foliation through a point x . Consider

the fundamental group Γx = π(L, x).

the normal space at x to the leaf L, call it V .

the (linear) holonomy action of Γx on νx(L).

Also consider the holonomy group at x :

Γ
′
x = Γx/hol.
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Local form: Local Reeb stability

Local form out of the local data: the foliated manifold

L̃×Γx V = (L̃× V )/Γx

with the foliation coming from the product foliation (with leaves
L̃× {v}).

Theorem (local Reeb stability)

If L is a compact leaf and Γ
′
x is finite, then L admits a saturated

neighborhood U which is diffeomorphic to L̃×Γx V as foliated
manifolds.

Read: (Γ
′
x is compact) instead of (Γ

′
x is finite).
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Foliations: Thurston stability

Theorem (Thurston, Langevin & Rosenberg)

If L is compact and H1(Γx ; V ) = 0, then L is stable i.e. any
other foliation on M which is close enough to the original one,
has at least one leaf which is diffeomorphic to L.

Remark: one can also say how many leaves are diff. to L (at
least as many as H0(Γx ; V )).
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History
Definition
Basic examples
Conn’s theorem
The symplectic leaves
A Basic principle in P. geometry: contravariant geometry

Origins

J.L. Lagrange 1736-1813 S. Poisson 1781-1840 W.R. Hamilton 1805-1865

1809: Lagranian mechanics 1809: Poisson brackets 1833: Hamiltonian mechanics

In 1831-1837, A.L. Cauchy: clear present. of Lagrange’s methods, using Hamilton’s formalism and Poisson brackets.

Marius Sophus Lie 1842-1899 Ellie Joseph Cartan 1869-1951
Weil,Chern,etc

=⇒ modern geometry, Lie theory,
Lie (pseudo-) groups Lie theory, EDS, etc geometry of PDE’s
Linear Poisson structures
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Various descriptions

A Poisson structure on M is a Lie bracket {−,−} on C∞(M) s.t.

{f ,−} : C∞(M) −→ C∞(M)

acts as a vector field (the Hamiltonian vector field Xf ).

Equivalently, it is a bivector π on M with the property that

{f , g} := π(df , dg)

satisfies Jacoby (or [π, π] = 0).

Locally: determined by fcts πi,j = {xi , xj}; π =
∑

πi,j
∂

∂xi
∧ ∂

∂xj
.
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symplectic manifolds.

duals of Lie algebras.

S/G where S is symplectic and G acts on S by
symplectomorphisms.
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History
Definition
Basic examples
Conn’s theorem
The symplectic leaves
A Basic principle in P. geometry: contravariant geometry

Conn’s theorem

Let (M, π)-Poisson, x ∈ M singular point (i.e. πx = 0).

Local data: gx - the isotropy Lie algebra at x . Locally:

ck
i,j =

∂πi,j

∂xk
(x).

Local model out of the local data: g∗x .

Theorem (J. Conn, 1980)

If gx is semi-simple of compact type, then x admits a
neighborhood U which is Poisson diffeomorphic to g∗x .
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The symplectic leaves

In a Poisson manifold (M, π): the hamiltonians Xf define an
integrable distribution on M. A symplectic leaf is a maximal
integral submanifold.

Equivalently: x , y ∈ M are in the same leaf iff there exists a
piecewise smooth curve joining x to y made of integral curves
of hamiltonian vector fields:
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The symplectic leaves

=⇒ a partition of M into symplectic submanifolds.

Actually: a Poisson manifold = a manifold with a (possibly
singular) symplectic foliation.

Basic examples:

g∗ =⇒ coadjoint orbits.

S/G, with S a hamiltonian G-space =⇒ the symplectic
reductions.
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Ordinary Geometry

Tangent bundle TM
with usual Lie
bracket.

Curves: γ : I −→ M
(with derivatives
γ̇ : I −→ TM).

Homotopy of curves.

k -forms:
Ωk (M) = Γ(∧kT ∗M).

DeRham operator
and cohomology.

Poisson Geometry

Cotangent bundle T ∗M: related to TM by
π] : T ∗M −→ TM, df 7→ Xf , bracket
[df , dg] = d{f , g}.
Cotangent curves: γ : I −→ M plus
“cotangent derivatives” a : I −→ T ∗M
which are π]-related to γ̇.

Cotangent homotopies.

Multivector fields:
Xk (M) = Γ(∧kTM);

Poisson operator
and Poisson cohomology.
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V. Normal forms and stability in Poisson geometry

A symplectic manifold: the symplectic leaf Sx
A Lie group: the isotropy group Gx
A principal bundle: the Poisson universal cover
The local model

IV. POISSON GEOMETRY: LOCAL DATA AND THE LOCAL
MODEL
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A symplectic manifold: the symplectic leaf Sx
A Lie group: the isotropy group Gx
A principal bundle: the Poisson universal cover
The local model

Poisson geometry: the local data and the local model

Start with (M, π) Poisson manifold, x ∈ M.
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The symplectic leaf through x

Consider the symplectic leaf through x .

Sx = {γ(1) : γ − cotangent path starting atx}.
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A symplectic manifold: the symplectic leaf Sx
A Lie group: the isotropy group Gx
A principal bundle: the Poisson universal cover
The local model

Isotropy at x

The isotropy at x , or the Poisson fundamental group at x :

Gx := {cotangent loops atx}/{cotangent homotopy}.

If Hausdorff, it is a Lie group (this is mostly the case, and we
understand when this fails).

Infinitesimally,
gx = ν∗x ⊂ T ∗M

(with the bracket coming from the one on 1-forms).
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Normal form

Theorem (together with I. Marcut, based on joint work with L.R.
Fernandes and discussions with D.M. Torres)

If Sx is compact, Gx is compact and Px is 2-connected, then Sx

admits a neighborhood U which is Poisson diffeomorphic to
Px ×Gx g∗x .

Example: coadjoint orbits for semi-simple Lie algebras of
compact type.
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Stability

Theorem (with R.L. Fernandes)

If Sx is compact and H2
π(M, Sx) = 0 then S is stable.

Here:

H2
π(M, Sx) is defined similar to Poisson cohomology, by

“restricting to Sx . It is finite dimensional and computable!

If Gx is compact, then

H2
π(M, Sx) ↪→ H1(Gx ; νx).

Example: coadjoint orbits of semi-simple Lie algebras of
compact type.
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About the proof of the stability theorem

It is a combination of several ingredients:

Geometric: a coupling construction, like in symplectic
geometry.

Algebraic: the structure that governs complicated
equations.

Analytic: the actual proof, based on minimizing a certain
functional defined on the Sobolev space of sections and
taking advantage of the ellipticity of the operators
(complexes) involved.

Main idea: work in a tubular neighborhood and look for leaves
which are graphs of sections of the normal bundle.Marius Crainic Stability and normal forms (around leaves in Poisson geometry)
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