The isoperimetric problem in the plane with a piecewise constant density

Antonio Cañete

Dpto. Matemática Aplicada I

Universidad de Sevilla

Benasque, September 9th, 2009

The Isoperimetric Problem

We look for the least perimeter set in \mathbb{R}^2 enclosing a prescribed quantity of area

The Isoperimetric Problem

We look for the least perimeter set in \mathbb{R}^2 enclosing a prescribed quantity of area

- Existence is not guaranteed
- In case of existence \rightarrow isoperimetric region

Density setting

We shall use a density $f : \mathbb{R}^2 \to \mathbb{R}^+$ to weight the area and the perimeter:

For $\Omega \subset \mathbb{R}^2$,

$$area(\Omega) = \int_{\Omega} f, \qquad P(\Omega) = \int_{\partial \Omega} f$$

Density setting

We shall use a density $f : \mathbb{R}^2 \to \mathbb{R}^+$ to weight the area and the perimeter:

For $\Omega \subset \mathbb{R}^2$,

$$area(\Omega) = \int_{\Omega} f, \qquad P(\Omega) = \int_{\partial\Omega} f$$

- We will consider piecewise constant densities (examples of discontinuous ones)

Piecewise constant densities

Ball density in \mathbb{R}^2 :

Piecewise constant densities

Strip density in \mathbb{R}^2 :

 $\mathbf{f}(\mathbf{x}) = a > 1$

 $\{\mathbf{x}=1\}$

f(x)=1

 $\{ x = -1 \}$

f(x) = a > 1

Piecewise constant densities

Half-plane density in \mathbb{R}^2 :

 $\mathbf{f}(\mathbf{x}) = \boldsymbol{a} > 1$

 $\{x=0\}$

f(x)=1

Snell's law in Optics

Snell's law in Optics

Experimentally:

 $\Omega \equiv \text{isoperimetric region}, \quad \partial \Omega = \Sigma$ $\Gamma \equiv \text{set of discontinuities of } f$

 $\Omega \equiv \text{isoperimetric region}, \quad \partial \Omega = \Sigma$ $\Gamma \equiv \text{set of discontinuities of } f$

 ∑ – Γ is composed by curves with the same constant geodesic curvature

 $\Omega \equiv \text{isoperimetric region}, \quad \partial \Omega = \Sigma$ $\Gamma \equiv \text{set of discontinuities of } f$

1) $\Sigma - \Gamma$ is composed by curves with constant geodesic curvature

2) Pieces of Γ may be part of Σ

 $\Omega \equiv \text{isoperimetric region}, \quad \partial \Omega = \Sigma$ $\Gamma \equiv \text{set of discontinuities of } f$

1) $\Sigma - \Gamma$ is composed by curves with constant geodesic curvature

2) Pieces of Γ may be part of Σ

3) Σ may not be smooth: when it crosses transversally Γ, a corner is formed according to Snell's law

Snell's law

Snell's law: Proof

 $p \in \Sigma \cap \Gamma$, local variation of Σ preserving the area $X \equiv$ variational field, $\nu \equiv$ normal vector

Snell's law: Proof

 $p \in \Sigma \cap \Gamma$, local variation of Σ preserving the area $X \equiv$ variational field, $\nu \equiv$ normal vector

$$0 = P'(0) = \int_{\Sigma} \langle \nabla \psi, \nu_{\Sigma} \rangle \, u \, f - \int_{\Sigma} H \, f \, u \\ + \sum_{i=1}^{k} f_i(p) \, \langle X(p), \nu_{\Sigma_i}(p) \rangle \,,$$

where $f = e^{\psi}$, $u = \langle X, \nu_{\Sigma} \rangle$, $H \equiv \text{geod. curv.}$, $f_i = f|_{\Omega_i}, \Sigma_i = \Sigma \cap \Omega_i$

Snell's law: Proof $p \in \Sigma_i \cap \Sigma_j \cap \Gamma$ $X \equiv$ variational field, $\nu \equiv$ normal vector $0 = f_i(p) \langle X(p), \nu_{\Sigma_i}(p) \rangle + f_j(p) \langle X(p), \nu_{\Sigma_j}(p) \rangle$ $f_i(p) \langle X(p), \nu_{\Sigma_i}(p) \rangle = -f_j(p) \langle X(p), \nu_{\Sigma_j}(p) \rangle$

Snell's law: Proof $p \in \Sigma_i \cap \Sigma_j \cap \Gamma$ $X \equiv$ variational field, $\nu \equiv$ normal vector $0 = f_i(p) \langle X(p), \nu_{\Sigma_i}(p) \rangle + f_i(p) \langle X(p), \nu_{\overline{\Sigma_i}}(p) \rangle$ $|f_i(p)|\langle X(p),\nu_{\Sigma_i}(p)\rangle = -f_i(p)|\langle X(p),\nu_{\Sigma_i}(p)\rangle$ In particular, taking X(p) tangent to Γ , |X(p)| = 1, $f_i(p) \cos(\alpha_i) = f_i(p) \cos(\alpha_i)$

The boundary of an isoperimetric region ~>>

- curves with constant geodesic curvature
- possibly pieces of Γ
- Snell's law is satisfied

We focus on Kerning the strip density half-plane density

Ball density

Ball density with a > 1

Isoperimetric regions are:

- For areas $v \leq v_0$, balls of type a)
- For areas $v_0 \le v \le a \pi$, sets of type b)
- For areas $v \ge a \pi$, balls of type c)

Ball density with a < 1

Isoperimetric regions are:

- For areas $v \le a \pi$, balls of type a)
- For areas $a \pi \leq v \leq v_1$, sets of type b)
- For areas $v_1 \le v \le v_2$, sets of type b) or c)
- For areas $v \ge v_2$, balls of type c)

c)

Ball density with a < 1

Isoperimetric regions are:

- For areas $v \leq a \pi$, balls of type a)
- For areas $a \pi \leq v \leq v_1$, sets of type b)
- For areas $v_1 \le v \le v_2$, sets of type b) or c)
- For areas $v \ge v_2$, balls of type c)

• We believe $v_1 = v_2$, but we have not proved it

Strip density

- Vertical symmetry

Strip density

Isoperimetric regions are:

- For areas $v \leq \pi$, balls of type i)
- For areas $\pi \leq v \leq v_0$, sets of type ii)
- For areas $v_0 \le v \le v_1$, sets of type iii) or iv)
- For areas $v \ge v_1$, sets of type iii)

Strip density

Isoperimetric regions are:

- For areas $v \leq \pi$, balls of type i)
- For areas $\pi \leq v \leq v_0$, sets of type ii)
- For areas $v_0 \le v \le v_1$, sets of type iii) or iv)
- For areas $v \ge v_1$, sets of type iii)

In most cases, type iv) does not appear

Half-plane density

f(x) = a > 1

 $\{x=0\}$

f(x)=1

Half-plane density

Subscription for the second s

 $\mathbf{f}(\mathbf{x}) = \boldsymbol{a} > 1$

 $\{x=0\}$

f(x)=1

- Also true in \mathbb{R}^n , n > 2

Summary

• Density \rightarrow New definitions of area and perimeter

- Piecewise Constant Density → Corners may appear
- Particular densities \rightarrow Different isoperimetric regions