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The Isoperimetric Problem

We look for the least perimeter set in R
2

enclosing a prescribed quantity of area
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The Isoperimetric Problem

We look for the least perimeter set in R
2

enclosing a prescribed quantity of area

- Existence is not guaranteed

- In case of existence → isoperimetric region
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Density setting

We shall use a density f : R
2 → R

+ to weight
the area and the perimeter:

For Ω ⊂ R
2,

area(Ω) =

∫

Ω

f, P (Ω) =

∫

∂Ω

f
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Density setting

We shall use a density f : R
2 → R

+ to weight
the area and the perimeter:

For Ω ⊂ R
2,

area(Ω) =

∫

Ω

f, P (Ω) =

∫

∂Ω

f

- We will consider piecewise constant densities
(examples of discontinuous ones)
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Piecewise constant densities

Ball density in R
2:
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Piecewise constant densities

Strip density in R
2:
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Piecewise constant densities

Half-plane density in R
2:
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Snell’s law in Optics

n1 sin(θ1) = n2 sin(θ2)
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Snell’s law in Optics

Experimentally:
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Properties of the isoperimetric regions

Ω ≡ isoperimetric region, ∂Ω = Σ

Γ ≡ set of discontinuities of f
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Properties of the isoperimetric regions

Ω ≡ isoperimetric region, ∂Ω = Σ

Γ ≡ set of discontinuities of f

1) Σ − Γ is composed by curves with the same
constant geodesic curvature
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Properties of the isoperimetric regions

Ω ≡ isoperimetric region, ∂Ω = Σ

Γ ≡ set of discontinuities of f

1) Σ − Γ is composed by curves with constant
geodesic curvature

2) Pieces of Γ may be part of Σ
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Properties of the isoperimetric regions

Ω ≡ isoperimetric region, ∂Ω = Σ

Γ ≡ set of discontinuities of f

1) Σ − Γ is composed by curves with constant
geodesic curvature

2) Pieces of Γ may be part of Σ

3) Σ may not be smooth: when it crosses
transversally Γ, a corner is formed according
to Snell’s law
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Snell’s law

fi cos(αi) = fj cos(αj)
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Snell’s law: Proof

p ∈ Σ ∩ Γ, local variation of Σ preserving the area

X ≡ variational field, ν ≡ normal vector
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Snell’s law: Proof

p ∈ Σ ∩ Γ, local variation of Σ preserving the area

X ≡ variational field, ν ≡ normal vector

0 = P ′(0) =

∫

Σ

〈∇ψ, νΣ〉 u f −

∫

Σ

H f u

+
k

∑

i=1

fi(p) 〈X(p), νΣi
(p)〉 ,

where f = eψ, u = 〈X, νΣ〉, H ≡ geod. curv.,
fi = f |Ωi

, Σi = Σ ∩ Ωi
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Snell’s law: Proof
p ∈ Σi ∩ Σj ∩ Γ

X ≡ variational field, ν ≡ normal vector

0 = fi(p) 〈X(p), νΣi
(p)〉 + fj(p)

〈

X(p), νΣj
(p)

〉

fi(p) 〈X(p), νΣi
(p)〉 = −fj(p)

〈

X(p), νΣj
(p)

〉
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Snell’s law: Proof
p ∈ Σi ∩ Σj ∩ Γ

X ≡ variational field, ν ≡ normal vector

0 = fi(p) 〈X(p), νΣi
(p)〉 + fj(p)

〈

X(p), νΣj
(p)

〉

fi(p) 〈X(p), νΣi
(p)〉 = −fj(p)

〈

X(p), νΣj
(p)

〉

In particular, taking X(p) tangent to Γ, |X(p)| = 1,

fi(p) cos(αi) = fj(p) cos(αj)
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The boundary of an isoperimetric region 

- curves with constant geodesic curvature

- possibly pieces of Γ

- Snell’s law is satisfied

We focus on











ball density
strip density
half-plane density
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Ball density

- Existence

- Two different cases

{

a>1
a<1
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Ball density with a > 1

Isoperimetric regions are:

- For areas v ≤ v0, balls of type a)

- For areas v0 ≤ v ≤ a π, sets of type b)

- For areas v ≥ a π, balls of type c)
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Ball density with a < 1

Isoperimetric regions are:

- For areas v ≤ a π, balls of type a)

- For areas a π ≤ v ≤ v1, sets of type b)

- For areas v1 ≤ v ≤ v2, sets of type b) or c)

- For areas v ≥ v2, balls of type c)
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Ball density with a < 1

Isoperimetric regions are:

- For areas v ≤ a π, balls of type a)

- For areas a π ≤ v ≤ v1, sets of type b)

- For areas v1 ≤ v ≤ v2, sets of type b) or c)

- For areas v ≥ v2, balls of type c)

• We believe v1 = v2, but we have not proved it
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Strip density

- Existence

- Vertical symmetry
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Strip density

Isoperimetric regions are:

- For areas v ≤ π, balls of type i)

- For areas π ≤ v ≤ v0, sets of type ii)

- For areas v0 ≤ v ≤ v1, sets of type iii) or iv)

- For areas v ≥ v1, sets of type iii)
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Strip density

Isoperimetric regions are:

- For areas v ≤ π, balls of type i)

- For areas π ≤ v ≤ v0, sets of type ii)

- For areas v0 ≤ v ≤ v1, sets of type iii) or iv)

- For areas v ≥ v1, sets of type iii)

• In most cases, type iv) does not appear
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Half-plane density
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Half-plane density

Isoperimetric regions are balls in {x < 0}

- Also true in R
n, n > 2
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Summary

• Density → New definitions of area and
perimeter

• Piecewise Constant Density → Corners may
appear

• Particular densities → Different isoperimetric
regions
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