Discrete Dirac Structures and Variational Discrete Dirac Mechanics

Melvin Leok

Mathematics, University of California, San Diego

Joint work with Tomoki Ohsawa (Michigan)

XVIII International Fall Workshop on Geometry and Physics Benasque, Spain, September 2009.

arXiv:0810.0740

Supported in part by NSF DMS-0714223, DMS-0726263, DMS-0747659 (CAREER).

Dirac Structures

- Dirac structures can be viewed as simultaneous generalizations of symplectic and Poisson structures.
- Implicit Lagrangian and Hamiltonian systems¹ provide a unified geometric framework for studying degenerate, interconnected, and nonholonomic Lagrangian and Hamiltonian mechanics.

¹H. Yoshimura, J.E. Marsden, Dirac structures in Lagrangian mechanics. Part I: Implicit Lagrangian systems, J. of Geometry and Physics, **57**, 133–156, 2006.

Variational Principles

- The Hamilton–Pontryagin principle² on the Pontryagin bundle $TQ \oplus T^*Q$, unifies Hamilton's principle, Hamilton's phase space principle, and the Lagrange–d'Alembert principle.
- Provides a variational characterization of implicit Lagrangian and Hamiltonian systems.

²H. Yoshimura, J.E. Marsden, Dirac structures in Lagrangian mechanics. Part II: Variational structures, J. of Geometry and Physics, 57, 209–250, 2006.

Discrete Dirac Structures

- Continuous Dirac structures are constructed by considering the geometry of symplectic vector fields and their associated Hamiltonians.
- By analogy, we construct discrete Dirac structures by considering the geometry of symplectic maps and their associated generating functions.
- Provides a unified treatment of implicit discrete Lagrangian and Hamiltonian mechanics in the presence of discrete Dirac constraints.

Discrete Hamilton–Pontryagin principle

- We define a discrete Hamilton–Pontryagin principle on the discrete Pontryagin bundle $(Q \times Q) \oplus T^*Q$.
- Obtained from the discrete Hamilton's principle by imposing the discrete second-order curve condition using Lagrange multipliers.
- Provides an alternative derivation of implicit discrete Lagrangian and Hamiltonian mechanics.
- In the absence of constraints, implicit discrete Hamiltonian mechanics reduce to the usual definition of discrete Hamiltonian mechanics³ obtained using duality in the sense of optimization.

³S. Lall, M. West, Discrete variational Hamiltonian mechanics, J. Phys. A **39**(19), 5509–5519, 2006.

Dirac Structures on Vector Spaces

Properties

• Given a *n*-dimensional vector space V, consider the pairing $\langle \langle \cdot, \cdot \rangle \rangle$ on $V \oplus V^*$ given by

$$\langle \langle (v,\alpha), (\tilde{v},\tilde{\alpha}) \rangle \rangle = \langle \alpha, \tilde{v} \rangle + \langle \tilde{\alpha}, v \rangle,$$

where $\langle \cdot, \cdot \rangle$ is the natural pairing between covectors and vectors.

- A Dirac Structure is a subspace $D \subset V \oplus V^*$, such that $D = D^{\perp}$.
- In particular, $D \subset V \oplus V^*$ is a Dirac structure iff $\dim D = n$

and

$$\langle \alpha, \tilde{v} \rangle + \langle \tilde{\alpha}, v \rangle = 0,$$

D

for all $(v, \alpha), (\tilde{v}, \tilde{\alpha}) \in D$.

Dirac Structures on Manifolds

Properties

- An **almost Dirac Structure** on a manifold M is a subbundle $D \subset TM \oplus T^*M$ such that $D_q \subset T_q M \oplus T_q^*M$ is a Dirac structure.
- A **Dirac structure** on a manifold is an almost Dirac structure such that

$$\langle \pounds_{X_1} \alpha_2, X_3 \rangle + \langle \pounds_{X_2} \alpha_3, X_1 \rangle + \langle \pounds_{X_3} \alpha_1, X_2 \rangle = 0,$$

for all pairs of vector fields and one-forms

$$(X_1, \alpha_1), (X_2, \alpha_2), (X_3, \alpha_3) \in D,$$

and where \pounds_X is the Lie derivative along the vector field X.

• This is a generalization of the condition that the symplectic twoform is closed, or that the Poisson bracket satisfies Jacobi's identity.

Dirac Structures on Manifolds

Generalizing Symplectic and Poisson Structures

- Let $M = T^*Q$.
- The graph of the symplectic two-form $\Omega: TM \times TM \to \mathbb{R}$, viewed as a map $TM \to T^*M$,

$$v_z \mapsto \Omega(v_z, \cdot),$$

is a Dirac structure.

• Similarly, the graph of the Poisson structure $B: T^*M \times T^*M \to \mathbb{R}$, viewed as a map T^*M to $T^{**}M \cong TM$,

$$\alpha_z \mapsto B(\alpha_z, \cdot),$$

is a Dirac structure.

• Furthermore, if the symplectic form and the Poisson structure are related, they induce the same Dirac structure on $TM \oplus T^*M$.

Motivating Example: Electrical Circuits

Configuration space and constraints

- The configuration $q \in E$ of the electrical circuit is given by specifying the current in each branch of the electrical circuit.
- Not all configurations are admissible, due to **Kirchhoff's Current Laws**:

the sum of currents at a junction is zero.

This induce a **constraint KCL space** $\Delta \subset TE$.

• Its annihilator space $\Delta^{\circ} \subset T^*E$ is defined by

 $\Delta_q^{\circ} = \{ e \in T_q^* E \mid \langle e, f \rangle = 0 \text{ for all } f \in \Delta_q \},\$

which can be identified with the set of **branch voltages**, and encodes the **Kirchhoff's Voltage Laws**:

the sum of voltages about a closed loop is zero.

Motivating Example: Electrical Circuits

Dirac structures and Tellegen's theorem

• Given $\Delta \subset TE$ and $\Delta^{\circ} \subset T^*E$ which encode the Kirchhoff's current and voltage laws,

$$D_E = \Delta \oplus \Delta^{\circ} \subset TE \oplus T^*E$$

is a Dirac structure on E.

• Since
$$D = D^{\perp}$$
, we have that for each $(f, e) \in D_E$,
 $\langle e, f \rangle = 0$.

This is a statement of **Tellegen's theorem**, which is an important result in the network theory of circuits.

Motivating Example: Electrical Circuits Lagrangian for LC-circuits

- Dirac's theory of constraints was concerned with degenerate Lagrangians where the set of primary constraints, the image $P \subset T^*Q$ of the Legendre transformation, is not the whole space.
- The magnetic energy is given by

$$T(f) = \sum \frac{1}{2} L_i f_{L_i}^2.$$

• The electric potential energy is

$$V(q) = \sum \frac{1}{2} \frac{q_{C_i}^2}{C_i}.$$

• The **Lagrangian** of the LC circuit is given by

$$L(q, f) = T(f) - V(q).$$

Variational Principles

Continuous Hamilton–Pontryagin principle

Pontryagin bundle and Hamilton–Pontryagin principle

- Consider the **Pontryagin bundle** $TQ \oplus T^*Q$, which has local coordinates (q, v, p).
- The **Hamilton–Pontryagin principle** is given by

$$\delta \int [L(q,v) - p(v - \dot{q})] = 0,$$

where we impose the second-order curve condition, $v = \dot{q}$ using Lagrange multipliers p.

Continuous Hamilton–Pontryagin principle Implicit Lagrangian systems

• Taking variations in q, v, and p yield

$$\begin{split} \delta \int [L(q,v) - p(v - \dot{q})] dt \\ &= \int \left[\frac{\partial L}{\partial q} \delta q + \left(\frac{\partial L}{\partial v} - p \right) \delta v - (v - \dot{q}) \delta p + p \delta \dot{q} \right] dt \\ &= \int \left[\left(\frac{\partial L}{\partial q} - \dot{p} \right) \delta q + \left(\frac{\partial L}{\partial v} - p \right) \delta v - (v - \dot{q}) \delta p \right] dt \end{split}$$

where we used integration by parts, and the fact that the variation δq vanishes at the endpoints.

• This recovers the **implicit Euler–Lagrange equations**,

$$\dot{p} = \frac{\partial L}{\partial q}, \qquad p = \frac{\partial L}{\partial v}, \qquad v = \dot{q}.$$

Continuous Hamilton–Pontryagin principle

Hamilton's phase space principle

• By taking variations with respect to v, we obtain the **Legendre transform**,

$$\frac{\partial L}{\partial v}(q,v) - p = 0.$$

• The **Hamiltonian**, $H: T^*Q \to \mathbb{R}$, is defined to be,

$$H(q,p) = \underset{v}{\text{ext}} \left(pv - L(q,v) \right) = pv - L(q,v)|_{p = \partial L/\partial v(q,v)}.$$

• The Hamilton–Pontryagin principle reduces to,

$$\delta \int [p\dot{q} - H(q, p)] = 0,$$

which is the Hamilton's principle in phase space.

Continuous Hamilton–Pontryagin principle

Lagrange–d'Alembert–Pontryagin principle

- Consider a constraint distribution $\Delta_Q \subset TQ$.
- The Lagrange–d'Alembert–Pontryagin principle is given by

$$\delta \int L(q,v) - p(v - \dot{q})dt = 0,$$

for fixed endpoints, and variations $(\delta q, \delta v, \delta p)$ of $(q, v, p) \in TQ \oplus T^*Q$, such that $(\delta q, \delta v) \in (T\tau_Q)^{-1}(\Delta_Q)$, where $\tau_Q : TQ \to Q$.

Discrete Variational Principles

Geometry and Numerical Methods

Dynamical equations preserve structure

- Many continuous systems of interest have properties that are conserved by the flow:
 - Energy
 - Symmetries, Reversibility, Monotonicity
 - Momentum Angular, Linear, Kelvin Circulation Theorem.
 - Symplectic Form
 - Integrability

• At other times, the equations themselves are defined on a manifold, such as a Lie group, or more general configuration manifold of a mechanical system, and the discrete trajectory we compute should remain on this manifold, since the equations may not be well-defined off the surface.

Motivation: Geometric Integration

Main Goal of Geometric Integration:

Structure preservation in order to reproduce long time behavior.

Role of Discrete Structure-Preservation:

Discrete conservation laws impart long time numerical stability to computations, since the structure-preserving algorithm exactly conserves a discrete quantity that is always close to the continuous quantity we are interested in. Geometric Integration: Energy Stability Energy stability for symplectic integrators

Geometric Integration: Energy Stability

Energy behavior for conservative and dissipative systems

Discrete Lagrangian Mechanics

Discrete Variational Principle

• Discrete Lagrangian

$$L_d \approx \int_0^h L\left(q(t), \dot{q}(t)\right) dt.$$

• Discrete Euler-Lagrange equation

$$D_2L_d(q_0, q_1) + D_1L_d(q_1, q_2) = 0.$$

Automatically symplectic and momentum preserving.

Discrete Lagrangian Mechanics

A Gallery of Simulations

Joint work with Taeyoung Lee (FIT) and N. Harris McClamroch (Michigan).

Discrete Hamilton–Pontryagin principle

Discrete Pontryagin bundle and Hamilton–Pontryagin principle

- Consider the **discrete Pontryagin bundle** $(Q \times Q) \oplus T^*Q$, which has local coordinates (q_k^0, q_k^1, p_k) .
- The discrete Hamilton–Pontryagin principle is given by

$$\delta \sum \left[L_d(q_k^0, q_k^1) - p_{k+1}(q_k^1 - q_{k+1}^0) \right] = 0,$$

where we impose the second-order curve condition, $q_k^1 = q_{k+1}^0$ using Lagrange multipliers p_{k+1}

• The discrete Lagrangian L_d is a Type I generating function, and is chosen to be an approximation of **Jacobi's solution** of the Hamilton–Jacobi equation.

Discrete Hamilton–Pontryagin principle

Implicit discrete Lagrangian systems

• Taking variations in q_k^0 , q_k^1 , and p_k yield

$$\begin{split} \delta \sum \left[L_d(q_k^0, q_k^1) - p_{k+1}(q_k^1 - q_{k+1}^0) \right] \\ &= \sum \left\{ [D_1 L_d(q_k^0, q_k^1) + p_k] \delta q_k^0 \\ &- [q_k^1 - q_{k+1}^0] \delta p_{k+1} + [D_2 L_d(q_k^0, q_k^1) - p_{k+1}] \delta q_k^1 \right\} \end{split}$$

• This recovers the **implicit discrete Euler–Lagrange equa**tions,

$$p_k = -D_1 L_d(q_k^0, q_k^1), \qquad p_{k+1} = D_2 L_d(q_k^0, q_k^1), \qquad q_k^1 = q_{k+1}^0.$$

Discrete Hamilton–Pontryagin principle

Discrete Hamilton's phase space principle

• By taking variations with respect to q_k^1 , we obtain the **discrete** Legendre transform,

$$D_2 L_d(q_k^0, q_k^1) - p_{k+1} = 0$$

• The discrete Hamiltonian, $H_{d+}: \mathcal{H}_+ \to \mathbb{R}$, is defined to be,

$$\begin{split} H_{d+}(q_k^0, p_{k+1}) &= \underset{q_k^1}{\text{ext}} p_{k+1} q_k^1 - L_d(q_k^0, q_k^1) \\ &= p_{k+1} q_k^1 - L_d(q_k^0, q_k^1) \Big|_{p_{k+1} = D_2 L_d(q_k^0, q_k^1)} \end{split}$$

• The discrete Hamilton–Pontryagin principle reduces to,

$$\delta \sum [p_{k+1}q_{k+1} - H_{d+}(q_k, p_{k+1})] = 0,$$

which is the discrete Hamilton's principle in phase space.

Discrete Hamilton's Equations and Discrete HamiltoniansDiscrete Hamilton's Equations

• The discrete Hamilton's principle in phase space yields the following **discrete Hamilton's equations**,

$$p_k = D_1 H_{d+}(q_k, p_{k+1}), \qquad q_{k+1} = D_2 H_{d+}(q_k, p_{k+1})$$

• From this, it is clear that the discrete Hamiltonian H_{d+} is a Type II generating function of a symplectic transformation.

Discrete Hamilton's Equations and Discrete Hamiltonians⁴ **Exact Discrete Hamiltonian**

• The **exact discrete Hamiltonian** generates the time-*h* flow map of the continuous Hamilton's equations, and is given by,

$$H_{d+}^{\text{exact}}(q_0, p_1) = \underset{\substack{(q,p) \in C^2([0,h], T^*Q)\\q(0) = q_0, p(h) = p_1}}{\text{ext}} p(h)q(h) - \int_0^h (p(t)\dot{q}(t) - H(q(t), p(t))dt$$

• Compare this to the **exact discrete Lagrangian** given by Jacobi's solution of the Hamilton–Jacobi equation,

$$L_d^{\text{exact}}(q_0, q_1) = \underset{\substack{q \in C^2([0,h],Q)\\q(0) = q_0, q(h) = q_1}}{\text{ext}} \int_0^h L(q(t), \dot{q}(t)) dt$$

• Approximations for both of these can be obtained by appropriately choosing a **finite-dimensional function space**, and a **numerical quadrature method**.

⁴Joint work with Jingjing Zhang (Chinese Academy of Sciences).

Discrete Hamilton–Jacobi Theory⁵

Discrete Jacobi's Solution

• Consider the action sum, evaluated along a solution of the discrete Hamilton equations, and viewed as a function of the end point q_k ,

$$S_{d}^{k}(q_{k}) := \sum_{l=0}^{k-1} \left[p_{l+1} \cdot q_{l+1} - H_{d}^{+}(q_{l}, p_{l+1}) \right]$$

• This satisfies the **discrete Hamilton–Jacobi equation**, $S_{d}^{k+1}(q_{k+1}) - S_{d}^{k}(q_{k}) - D_{2}S_{d}^{k+1}(q_{k+1}) \cdot q_{k+1}$ $+ H_{d}^{+}\left(q_{k}, D_{2}S_{d}^{k+1}(\hat{q}_{0}, q_{k+1})\right) = 0.$

⁵Joint work with Anthony Bloch (Michigan) and Tomoki Ohsawa (Michigan).

Discrete Hamilton–Jacobi Theory

Derivation of Hamilton–Jacobi Equation

• Taking the finite difference of the discrete actions, we obtain, $S_d^{k+1}(q_{k+1}) - S_d^k(q_k) = p_{k+1} \cdot q_{k+1} - H_d^+(q_k, p_{k+1}).$

• Taking the derivative of both sides with respect to q_{k+1} , we have

$$p_{k+1} = DS_{d}^{k+1}(q_{k+1}).$$

• Substituting this into the first equation yields,

$$S_{d}^{k+1}(q_{k+1}) - S_{d}^{k}(q_{k}) - D_{2}S_{d}^{k+1}(q_{k+1}) \cdot q_{k+1} + H_{d}^{+}\left(q_{k}, D_{2}S_{d}^{k+1}(\hat{q}_{0}, q_{k+1})\right) = 0,$$

which is the **discrete Hamilton–Jacobi equation**⁶.

⁶This equation first appeared in N. A. Elnatanov and Jeremy Schiff, The Hamilton–Jacobi difference equation, *Functional Differential Equations*, 3(279–286), 1996.

Discrete Hamilton–Jacobi Theory

Geometric Hamilton–Jacobi Theory

• Suppose that $\{S_{d}^{k}\}_{k=1}^{N}$ satisfies the discrete Hamilton–Jacobi equation, and consider the set of points $\{c_{k}\}_{k=1}^{N} \subset Q$ such that

$$c_{k+1} = \pi_Q \circ \tilde{F}_{L_{\mathrm{d}}} \left(dS_{\mathrm{d}}^k(c_k) \right),$$

where $\tilde{F}_{L_d}: T^*Q \to T^*Q$ is the discrete Hamiltonian map, $\tilde{F}_{L_d}: (q_k, p_k) \mapsto (q_{k+1}, p_{k+1}).$

• Then the set of points $\{(c_k, p_k)\}_{k=0}^N \subset T^*Q$ with

$$p_k := DS_d^k(c_k), \quad k = 0, 1, \dots, N$$

is a solution of the discrete Hamilton's equations.

Discrete Lagrange–d'Alembert–Pontryagin principle Continuous constraints from discrete constraints • Given $\Delta_Q^d \subset Q \times Q$, consider compatible curves on Q, $\mathcal{C}_{\Delta_Q^d} := \{\varphi \in C^{\infty}([-1,1],Q) | \exists \epsilon > 0,$ $\forall \tau \in (0,\epsilon), (\varphi(-\tau),\varphi(0)), (\varphi(0),\varphi(\tau)) \in \Delta_Q^d \}.$

• Identify $v_q \in T_q Q$ with $[\varphi]$, the **equivalence class of curves** where $\varphi(0) = q$, and $D\varphi(0) = v$, and define $\Delta_Q \subset TQ$,

$$\varphi \in \mathcal{C}_{\Delta^d_Q} \implies [\varphi] \in \Delta_Q.$$

Discrete Lagrange–d'Alembert–Pontryagin principle

- Discrete Lagrange–d'Alembert–Pontryagin principle
- The Discrete Lagrange–d'Alembert–Pontryagin principle is given by

$$\delta \sum \left[L_d(q_k^0, q_k^1) - p_{k+1}(q_k^1 - q_{k+1}^0) \right] = 0,$$

for fixed endpoints q_0^0 and q_N^0 , and variations $(\delta q_k^0, \delta q_k^1, \delta p_k)$ of $(q_k^0, q_k^1, p_k) \in (Q \times Q) \oplus T^*Q$ such that $\delta q_k^0 \in \Delta_Q(q_k^0), \ \delta q_k^1 \in \Delta_Q(q_k^1)$, and $(q_k^0, q_k^1) \in \Delta_Q^d$.

Dirac Structures

The Big Diagram

Dirac Structures and Constraints

• A constraint distribution $\Delta_Q \subset TQ$ induces a **Dirac structure** on T^*Q ,

$$D_{\Delta_Q}(z) \coloneqq \left\{ (v_z, \alpha_z) \in T_z T^* Q \times T_z^* T^* Q \mid \\ v_z \in \Delta_{T^* Q}(z), \ \alpha_z - \Omega^{\flat}(v_z) \in \Delta_{T^* Q}^{\circ}(z) \right\}$$

where $\Delta_{T^*Q} := (T\pi_Q)^{-1}(\Delta_Q) \subset TT^*Q.$

• Holonomic and nonholonomic constraints, as well as constraints arising from interconnections can be incorporated into the Dirac structure.

Implicit Lagrangian Systems

- Let $\gamma_Q := \Omega^{\flat} \circ (\kappa_Q)^{-1} : T^*TQ \to T^*T^*Q.$
- Given a Lagrangian $L: TQ \to \mathbb{R}$, define $\mathfrak{D}L := \gamma_Q \circ dL$.
- An implicit Lagrangian system (L, Δ_Q, X) is, $(X, \mathfrak{D}L) \in D_{\Delta_Q},$

where $X \in \mathfrak{X}(T^*Q)$.

• This gives the **implicit Euler–Lagrange equations**,

$$\dot{q} = v \in \Delta_Q(q), \qquad p = \frac{\partial L}{\partial v}, \qquad \dot{p} - \frac{\partial L}{\partial q} \in \Delta_Q^{\circ}(q).$$

• In the special case $\Delta_Q = TQ$, we obtain,

$$\dot{q} = v, \quad \dot{p} = \frac{\partial L}{\partial q}, \quad p = \frac{\partial L}{\partial v}.$$

Implicit Hamiltonian Systems

• Given a Hamiltonian $H: T^*Q \to \mathbb{R}$, an **implicit Hamiltonian** system (H, Δ_Q, X) is,

$$(X,dH)\in D_{\Delta_Q},$$

which gives the implicit Hamilton's equations,

$$\dot{q} = \frac{\partial H}{\partial p} \in \Delta_Q(q), \qquad \dot{p} + \frac{\partial H}{\partial q} \in \Delta_Q^{\circ}(q).$$

• In the special case $\Delta_Q = TQ$, we recover the standard Hamilton's equations,

$$\dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q}.$$

The Geometry of Symplectic Flows Hamiltonian Flows and the Ω^{\flat} map

• The flow F_X of a vector field $X \in \mathfrak{X}(T^*Q)$ is symplectic if locally,

 $i_X \Omega = dH$, for some function $H : T^*Q \to \mathbb{R}$.

• We require that the following diagram commutes,

• This gives rise to the map $\Omega^{\flat} : TT^*Q \to T^*T^*Q$,

 $\Omega^{\flat}: (q, p, \delta q, \delta p) \mapsto (q, p, -\delta p, \delta q).$

The Geometry of Symplectic Flows

Lagrangian Flows and the κ_Q map

- The second-order vector field $X_L \in \mathfrak{X}(TQ)$ preserves the Lagrangian symplectic form if, $\pounds_{X_L}\Omega_L = 0$.
- Consider the Lagrange one-form, given by,

$$\Theta_L = (\mathbb{F}L)^* \Theta = \frac{\partial L}{\partial v} dq.$$

• Since $\pounds_{X_L} \Theta_L$ is closed, by the Poincaré lemma, we have a local function $L: TQ \to \mathbb{R}$ such that,

$$\pounds_{X_L} \Theta_L = dL,$$

which is the intrinsic Euler–Lagrange equation.

• In terms of the $\mathbb{F}L$ -related vector field $X \in \mathfrak{X}(T^*Q)$, we have,

$$p = \frac{\partial L}{\partial v}, \qquad \dot{q} = v, \qquad \dot{p} = \frac{\partial L}{\partial q}.$$

The Geometry of Symplectic Flows Lagrangian Flows and the κ_Q map

• We require that the following diagram commutes,

• This gives rise to the map κ_Q ,

 $\kappa_Q: (q, p, \delta q, \delta p) \mapsto (q, \delta q, \delta p, p).$

Discrete Dirac Structures

The Geometry of Symplectic Maps

Generating Functions

- The Lagrangian and the Hamiltonian induce a Lagrangian and Hamiltonian vector field.
- In discrete time, the analogue would be the generating functions of a symplectic map.
- In particular, a discrete Lagrangian is a Type I generating function, and discrete Hamiltonians are Type II or III generating functions.

The Geometry of Generating Functions Generating Functions of Type I and the κ_O^d map

• The flow F on T^*Q is symplectic iff there exists $S_1: Q \times Q \to \mathbb{R}$, $(i_F^{Q \times Q})^* \Theta_{T^*Q \times T^*Q} = dS_1.$

which gives

$$p_0 = -D_1 S_1, \qquad p_1 = D_2 S_1.$$

• We require that the following diagram commutes,

• This gives rise to a map $\kappa_Q^d : T^*Q \times T^*Q \to T^*(Q \times Q)$ $\kappa_Q^d : ((q_0, p_0), (q_1, p_1)) \mapsto (q_0, q_1, -p_0, p_1).$

The Geometry of Generating Functions Generating Functions of Type II

- Consider \mathcal{H}_+ , whose local coordinates are (q_0, p_1) .
- Then the flow F on T^*Q is symplectic if and only if there exists $S_2: \mathcal{H}_+ \to \mathbb{R}$ such that

$$(i_F^{\mathcal{H}_+})^* \Theta_{T^*Q \times T^*Q}^{(2)} = dS_2,$$

which gives

$$p_0 = D_1 S_2, \qquad q_1 = D_2 S_2.$$

The Geometry of Generating Functions Generating Functions of Type II and the Ω_{d+}^{\flat} map

• We require that the following diagram commutes,

• This gives rise to a map $\Omega_{d+}^{\flat}: T^*Q \times T^*Q \to T^*\mathcal{H}_+$ $\Omega_{d+}^{\flat}: ((q_0, p_0), (q_1, p_1)) \mapsto (q_0, p_1, p_0, q_1).$

The Big Diagram

Discrete Dirac Structures and Discrete Constraints

- A discrete constraint distribution $\Delta_Q^d \subset Q \times Q$ induces a continuous constraint distribution $\Delta_Q \subset TQ$.
- These two distributions yield a **discrete Dirac structure**,

$$D_{\Delta_Q}^{d+}(z) := \left\{ ((z, z^1), \alpha_{z_+}) \in (\{z\} \times T^*Q) \times T_{z_+}^*\mathcal{H}_+ \middle| \\ \left(z, z^1\right) \in \Delta_{T^*Q}^d, \ \alpha_{z_+} - \Omega_{d+}^{\flat}\left((z, z^1)\right) \in \Delta_{\mathcal{H}_+}^{\circ} \right\},$$

where

$$\Delta_{T^*Q}^d := (\pi_Q \times \pi_Q)^{-1} (\Delta_Q^d) \subset T^*Q \times T^*Q,$$
$$\Delta_{\mathcal{H}_+}^\circ := \left(\Omega_{d+}^\flat\right) \left(\Delta_Q^\circ \times \Delta_Q^\circ\right) \subset T^*\mathcal{H}_+.$$

Implicit Discrete Lagrangian Systems

• Let
$$\gamma_Q^{d+} := \Omega_{d+}^{\flat} \circ (\kappa_Q^d)^{-1} : T^*(Q \times Q) \to T^*\mathcal{H}_+.$$

- Given a discrete Lagrangian $L_d : Q \times Q \to \mathbb{R}$, define $\mathfrak{D}^+ L_d := \gamma_Q^{d+} \circ dL_d$.
- An implicit discrete Lagrangian system is given by

$$\left(X_d^k, \mathfrak{D}^+ L_d(q_k^0, q_k^1)\right) \in D_{\Delta_Q}^{d+},$$

where $X_d^k = ((q_k^0, p_k^0), (q_{k+1}^0, p_{k+1}^0)) \in T^*Q \times T^*Q.$

• This gives the **implicit discrete Euler–Lagrange equations**, $p_{k+1}^0 - D_2 L_d(q_k^0, q_k^1) \in \Delta_Q^{\circ}(q_k^1), \quad p_k^0 + D_1 L_d(q_k^0, q_k^1) \in \Delta_Q^{\circ}(q_k^0),$ $q_k^1 = q_{k+1}^0, \quad (q_k^0, q_{k+1}^0) \in \Delta_Q^d.$

Implicit Discrete Hamiltonian Systems

• Given a discrete Hamiltonian $H_{d+} : \mathcal{H}_+ \to \mathbb{R}$, an **implicit dis**crete Hamiltonian system $(H_{d+}, \Delta_Q^d, X_d)$ is,

$$\left(X_d^k, dH_{d+}(q_k^0, p_k^1)\right) \in D_{\Delta_Q}^{d+},$$

which gives the **implicit discrete Hamilton's equations**, $p_k^0 - D_1 H_{d+}(q_k^0, p_k^1) \in \Delta_Q^{\circ}(q_k^0), \quad q_{k+1}^0 = D_2 H_{d+}(q_k^0, p_k^1),$ $p_k^1 - p_{k+1}^0 \in \Delta_Q^{\circ}(q_k^1), \quad (q_k^0, q_{k+1}^0) \in \Delta_Q^d,$ **Connections to Mechanics on Lie algebroids Tulczyjew's triple on Lie algebroids**

Tulczyjew's triple on tangent bundles

⁷Joint work with Diana Sosa Martín (La Laguna)

Connections to Mechanics on Lie algebroidsDirac Mechanics on Lie algebroids

• Introduce the Lie algebroid analogue of the Pontryagin bundle,

 $E \oplus E^*$.

• Construct the Lie algebroid analogue of the Dirac structure by using the two vector bundle isomorphisms,

$$A_E : \rho^* (TE^*) \to (\mathcal{L}^\tau E)^*$$

$$\flat_{E^*} : \mathcal{L}^{\tau^*} E \to (\mathcal{L}^{\tau^*} E)^*$$

- Generalizes Dirac mechanics to Lie algebroids, thereby unifying Lagrangian and Hamiltonian mechanics on Lie algebroids.
- Interesting to consider the Lie groupoid analogue of the Tulczyjew's triple, viewed as a generalization of discrete Dirac mechanics.

Connections to Multisymplectic Classical Field Theories

Tulczyjew's triple in classical field theories

- Bundle $\pi_{XY}: Y \to X$.
- Lagrangian density $\mathbb{L} : Z \to \Lambda^{n+1}X$, for first-order field theories $Z = J^1Y$.
- We have the following Tulczyjew's triple,

• Provides a means of developing multisymplectic Dirac mechanics for classical field theories.

Conclusion

Discrete Dirac Structures

- We have constructed a discrete analogue of a Dirac structure by considering the geometry of generating functions of symplectic maps.
- Unifies geometric integrators for degenerate, interconnected, and nonholonomic Lagrangian and Hamiltonian systems.
- Provides a characterization of the discrete geometric structure associated with Hamilton–Pontryagin integrators.

Discrete Hamilton–Pontryagin principle

- Provides a unified discrete variational principle that recovers both the discrete Hamilton's principle, and the discrete Hamilton's phase space principle.
- Is sufficiently general to characterize all near to identity Dirac maps.

Conclusion

Current Work and Future Directions

- Discrete Dirac structures are intimately related to the geometry of Lagrangian submanifolds and the Hamilton–Jacobi equation.
- Derive the Dirac analogue of the Hamilton–Jacobi equation, with nonholonomic Hamilton–Jacobi theory as a special case.
- Discrete Augmented Variational Principles, with the Hamilton– Pontryagin principle, Clebsch variational principle, optimal control and the symmetric representation of rigid bodies as special cases.
- Continuous and discrete Dirac mechanics on Lie algebroids and Lie groupoids.
- Continuous and discrete multisymplectic Dirac mechanics.

Questions?

M. Leok, T. Ohsawa, Discrete Dirac Structures and Variational Discrete Dirac Mechanics, arXiv:0810.0740