
|J J I I| CCC BBB Orrr xxx � ���

Conformal metrics of constant curvature

on planar domains

Pablo Mira
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The Liouville equation

Consider the following classical nonlinear problem:


∆u+ f(u) = 0 in R2

+ = {(s, t) ∈ R2 : t > 0},
∂u

∂t
= g(u) on ∂R2

+.
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The Liouville equation

Consider the following classical nonlinear problem:


∆u+ f(u) = 0 in R2

+ = {(s, t) ∈ R2 : t > 0},
∂u

∂t
= g(u) on ∂R2

+.

Here, we will make the following choices:


∆u+ 2Keu = 0 in R2

+,

∂u

∂t
= −2κeu/2 on ∂R2

+ ≡ R, K, κ ∈ R.
(P)

The equation ∆u+ 2Keu = 0 is called the Liouville equation.
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Geometrical interpretation

A conformal metric ds2 = eu(dx2 +dy2) on a planar domain Ω ⊂ R2

satisfies
∆u+ 2Keu = 0,

where K is the Gaussian curvature of ds2.

The Liouville equation describes conformal metrics of constant cur-
vature K on planar domains.
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A conformal metric ds2 = eu(dx2 +dy2) on a planar domain Ω ⊂ R2

satisfies
∆u+ 2Keu = 0,

where K is the Gaussian curvature of ds2.

The Liouville equation describes conformal metrics of constant cur-
vature K on planar domains.

NOTE: the Liouville equation is conformally invariant: if u is a so-
lution and Φ is a regular conformal map on R2, then u ◦ Φ is also a
solution.
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Geometrical interpretation

A conformal metric ds2 = eu(dx2 +dy2) on a planar domain Ω ⊂ R2

satisfies
∆u+ 2Keu = 0,

where K is the Gaussian curvature of ds2.

The Liouville equation describes conformal metrics of constant cur-
vature K on planar domains.

NOTE: the Liouville equation is conformally invariant: if u is a so-
lution and Φ is a regular conformal map on R2, then u ◦ Φ is also a
solution.

The boundary condition ut = −2κeu/2 on R ≡ ∂R2
+ means that ds2

has constant geodesic curvature κ ∈ R on the boundary.
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The half-plane problem
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Previous results

(1) Y.Y. Li, M. Zhu (1995): Any solution to (P) for K = 1 with∫
R2

+

eu < +∞,
∫

R
eu/2 < +∞

is a canonical solution.
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Previous results

(1) Y.Y. Li, M. Zhu (1995): Any solution to (P) for K = 1 with∫
R2

+

eu < +∞,
∫

R
eu/2 < +∞

is a canonical solution.

(2) Zhang (2003): Removes K = 1 and the finite length condition

(3) Y.Y. Li, M. Zhu (1995), and Chipot-Shafir-Fila (1996): Any
solution to 

∆u+ au
n+2
n−2 = 0, u > 0, in Rn

+,

∂u

∂xn
= cu

n
n−2 on ∂Rn

+

is a canonical solution.
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Our objectives...

(I) To solve problem (P) without additional hypotheses.
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Our objectives...

(I) To solve problem (P) without additional hypotheses.

(II) To solve the analogous problem in D∗:


∆u+ 2Keu = 0 in D∗ = {z ∈ R2 ≡ C : 0 < |z| < 1},
∂u

∂ν
= −2κeu/2 + 2 on S1 = {z : |z| = 1}.
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Other related theories

• Complex analysis.

• Minimal surfaces in R3 and maximal surfaces in L3.

• Constant mean curvature surfaces in H3 and S3
1.

• Flat surfaces in H3 and S3
1.

• Linear Weingarten surfaces.
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The Neumann problem in R2
+
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The Liouville equation and complex analysis

We fix K ∈ {−1, 1} and identify C ≡ R2 and C+ ≡ R2
+.
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The Liouville equation and complex analysis

We fix K ∈ {−1, 1} and identify C ≡ R2 and C+ ≡ R2
+.

Liouville’s theorem:
Solutions to ∆u+ 2Keu = 0 on Ω ⊂ C simply connected are:

u = log
4|g′|2

(1 +K|g|2)2 .

Here g is meromorphic (holomorphic with |g| < 1 if K = −1) with
g′ 6= 0 (and conversely).

Note: the developing map g gives a global isometric immersion of
(Ω, eu|dz|2) into Q2(K).
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The extension lemma

Let u be a solution to

 ∆u+ 2Keu = 0 in R2
+,

∂u

∂t
= −2κeu/2 on ∂R2

+ ≡ R, K, κ ∈ R.
(P)

Then it holds

uzz −
1

2
u2
z = {g, z} :=

(
g′′

g′

)′
− 1

2

(
g′′

g′

)2

(=: Q).

By the boundary condition, ImQ = 0 on R.

By Schwarz’s reflection principle, Q (and g) can be meromorphically
extended to C.
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The Cauchy problem for ∆u + 2Keu = 0

The unique solution to the Cauchy problem
∆u+ 2Keu = 0,

u(s, 0) = a(s),

ut(s, 0) = d(s)

can be constructed as follows.
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The Cauchy problem for ∆u + 2Keu = 0

The unique solution to the Cauchy problem
∆u+ 2Keu = 0,

u(s, 0) = a(s),

ut(s, 0) = d(s)

can be constructed as follows.Let α(s) be the unique curve in Q2(K)
with

v(s) =

∫
ea(r)/2dr, κg(s) =

−d(s)

2ea(s)/2
.

Let g(s) := π(α(s)) denote its stereographic projection on C̄, and
extend it holomorphically to g(z). Then,

u = log
4|g′|2

(1 +K|g|2)2 .
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The Cauchy problem for ∆u + 2Keu = 0

The unique solution to the Cauchy problem
∆u+ 2Keu = 0,

u(s, 0) = a(s),

ut(s, 0) = d(s)

can be constructed as follows. Let α(s) be the unique curve in Q2(K)
with

v(s) =

∫
ea(r)/2dr, κg(s) =

−d(s)

2ea(s)/2
.

If ut(s, 0) = −2κeu(s,0)/2, then κg(s) = κ ≡ constant !!!
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The solution for K = 1

Let u : C+ → R be a solution to (P) for K = 1. Then, its developing
map g is, over R, of the form

g(s) = α exp

(
i

∫ s

µ(r)dr

)
,

where

α :=
sg(κ)√

κ2 + 1− |κ|
, µ(s) := sg(κ)

√
κ2 + 1 ea(s)/2.

By the properties of g we see that h(s) := 1/µ(s) satisfies:

• h(s) 6= 0 and it can be extended to an entire function h(z).

• h(z) only has simple zeros with h′(z0) = ±i at them.

(And conversely...)
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The solution for K = −1 and κ ≥ 1

If κ > 1 ⇒ similar to K = 1.

If κ = 1, then g(C+) ⊂ D and

g(s) =
h(s)

h(s) + 2i
, h(s) :=

∫ s

s0

ea(r)/2dr, a(s) := u(s, 0)
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The solution for K = −1 and κ ≥ 1

If κ > 1 ⇒ similar to K = 1.

If κ = 1, then g(C+) ⊂ D and

g(s) =
h(s)

h(s) + 2i
, h(s) :=

∫ s

s0

ea(r)/2dr, a(s) := u(s, 0)

h(s) extends to C with h(C+) ⊂ C+ and h(C−) ⊂ C−.

By the little Picard theorem, h(z) = h0 z + h1 and so

u(s, t) = log

(
h2

0

(1 + h0t)2

)
.
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K = −1 and |κ| < 1 is impossible

• g(C+) ⊂ D.

• g(R) ⊂ Cκ.

• g(z̄) = J(g(z)).

So, g(C) omits infinitely many points (Contradiction!).
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K = −1 and κ ≤ −1 is impossible

• g(C+) ⊂ D.

• g(R) ⊂ Cκ.

• g(z̄) = J(g(z)).

So, g(C) omits infinitely many points (Contradiction!).
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K = −1 and κ ≤ −1 is impossible

• g(C+) ⊂ D.

• g(R) ⊂ Cκ.

• g(z̄) = J(g(z)).

So, g(C) omits infinitely many points (Contradiction!).
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To sum up

We have obtained for the problem ∆u+ 2Keu = 0 in R2
+,

∂u

∂t
= −2κeu/2 on ∂R2

+ ≡ R.
(P)

• If K = −1 and κ < 1 ⇒ the problem does not have a solution.

• If K = −1 and κ = 1 ⇒ the unique solution is

u(s, t) = log

(
h2

0

(1 + h0t)2

)
.

• In the remaining cases ⇒ there is an enormous family of solu-
tions, all of which can be described by entire functions.
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The punctured disc problem
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Formulation of the problem ∆u+ 2Keu = 0 in D∗,
∂u

∂ν
= −2κeu/2 + 2 on S1, K, κ ∈ R.

(PDP)
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Reduction to the half-plane case
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Reduction to the half-plane case

• Solutions to (PDP) come from 2π-periodic solutions to (P).

• In particular, (PDP) does not have a solution for K = −1 and
κ < 1.
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Reduction to the half-plane case

• Solutions to (PDP) come from 2π-periodic solutions to (P).

• In particular, (PDP) does not have a solution for K = −1 and
κ < 1.

What are the finite area solutions to this problem?
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The finite area case

Theorem: Any solution to (PDP) such that∫
D∗
eu <∞

is radially symmetric, i.e. u = u(r) where r = |z|.
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The finite area case

Theorem: Any solution to (PDP) such that∫
D∗
eu <∞

is radially symmetric, i.e. u = u(r) where r = |z|.

Moreover, all solutions can be explicitly given by simple expressions.

For instance, if K = 1 and κ ≥ 0, then

u(r) = 2 log
2Rβrβ−1

1 +R2r2β ,

where

R :=
1√

κ2 + 1− |κ|
.
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Sketch of proof: the solution u on D∗ is

u = log
4|G′(ζ)|2

(1 + |G(ζ)|2)2 , G(ζ) multivalued on C.

• Q∗ := {G, ζ} is holomorphic on D∗, and

Im(ζ2Q∗) = 0 on S1.

• G(ζ) = ζαF (ζ), F single valued on C∗. By the finite area
assumption, F is meromorphic at 0 (Chou-Wan, 1994).

• Q∗ = r0/ζ
2 and so G(ζ) =M(ζβ).

• By |G(ζ)| = R on S1, then M(ζ) = Reiθζ and the result
follows.
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An open problem
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The half-plane problem with corners

Jost, Wang, Zhou ⇒ Classification for K = 1 when∫
R2

+

eu <∞,
∫

R
eu/2 <∞.


