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@ Introducction

@ Quasivelocities

© Optimal Control for Underactuated Mechanical Systems



A Control System is underactuated if the number of the control
inputs is less than the dimension of the configuration space.

To balance a cylindrical rod on your hand.




Introduction

@ ( configuration space,
@ T'Q Velocity space,
© Lagrangian L : TQ — R, diferentiable function

. d [ OL oL __
Q Euler-Lagrange equations ; <aqi) o 0,

© Hamilton equations gg = —pi, % =,

@ 2-Cartan form Q, := —dO = dq' A dp;,
Q Energy Ep, :=¢'p; — L,

© Dynamic equations ix{2;, = dET}.
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© Configuration space Q = Q1 x Q2

@ Velocity space TQ =TQ1 x TQ2

© Coordinates (¢) = (¢%,¢%), 1 < A< mnin Q; (¢%),
1<a<r vy (¢¥),r+1<a<ncoordinates in Q1 and Q2
respectively.

Q@ Lagrangian L : T'Q — R regular.



Euler-Lagrange equations with control

OLN 0L _ o
0g® dgr



Euler-Lagrange equations with control

OLN 0L _ o
0g® dgr

(1)

Disadvantages
@ No included external forces

@ No included control forces



@ (), configuration space n-dimensional

° (¢%)

o {Xp} local basis of vector fields defined in the same
coordinate neighbourhood.

coordinates in @



@ (), configuration space n-dimensional

e (¢*) coordinates in Q
o {Xp} local basis of vector fields defined in the same

coordinate neighbourhood.

The component to Xpg relative to the standard basis % will be
A . _ YA o]
denoted Xy, that is Xp = XB(q)a—qf;.



Quasivelocities

@ (), configuration space n-dimensional

° (¢%)

e {Xp} local basis of vector fields defined in the same
coordinate neighbourhood.

coordinates in @)

The component to Xpg relative to the standard basis a%f will be
denoted Xé, that is Xp = Xé(q)&%_

Let (y',...,y™) (the quasivelocities) be the components of a
velocity vector v on T'Q) relative to the basis X g, then

0
v=yPXp(q) = yBXﬁ(Q)aTA,
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Quasivelocities

@ (), configuration space n-dimensional

° (¢%)

e {Xp} local basis of vector fields defined in the same
coordinate neighbourhood.

coordinates in @)

The component to Xpg relative to the standard basis a%f will be

denoted X3, that is Xp = Xé(q)aq%.

Let (y',...,y™) (the quasivelocities) be the components of a
velocity vector v on T'Q) relative to the basis X g, then

v=yPXp(q) = yBXﬁ(Q)aTA,

therefore, ¢4 = yBXg(q).
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On T'Q we have induced coordinates {(¢*,y4) | A= 1,...,n}.



On T'Q we have induced coordinates {(¢*,y4) | A= 1,...,n}.

The bracket of vector fields X 4 is of the form [X 4, Xp] = C{5Xp
where C; are called Hamel's symbols or structure coefficients.



Quasivelocities

On T'Q we have induced coordinates {(¢4,y) | A=1,...,n}.

The bracket of vector fields X 4 is of the form [X 4, Xp| = CEBXD
where C¥; are called Hamel’s symbols or structure coefficients.

The Euler-Lagrange equations in quasivelocities or Hamel equations

T yBXS(Q)
d(OLY _ 9L s op 0L
di \ 9yA B gD
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In standard local coordinates the control equations that we will are

% (a_L> oL FA+UaXA

0¢A Jdq g™

where F = F4(q, §)dq” represents given external forces and
X" =X%(¢q)dq* 1 < a < m < n, the control forces.



Optimal Control for Underactuated Mechanical Systems

In standard local coordinates the control equations that we will are

d ( OL oL
dt<an) gg7 ~ Fat uXi

where F' = F4(q, G)dg” represents given external forces and
X" = Xj(q)dq“, 1 < a <m < n, the control forces.

Complete with 1-form X to local basis {X“, X} of A'Q and
take its dual basis that we denote by {X,, X,}.
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Taking quasivelocities induced by the local basis {X,, X4}, the
control equations are written as



Optimal Control for Underactuated Mechanical Systems

Taking quasivelocities induced by the local basis {X,, X}, the
control equations are written as

Lagrangian Control Equation in Quasivelocities

¢ = y"X5(q)
d (OLY _OL n oo 50L B
0 = FaX as
dt <8ya> dq BgB Xo +Can Y oyD ada tu
d (DL _ 9L p oo pOL _ B
dt(@ya> GEXE +ChaP 5 = FaXi
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Optimal Control Problem for Underactuated Mechanical
Systems

The optimization problem deals with the problem of finding a
control law for the system such that a certain optimality criterion
is achieved. Usually, the optimization criterion is given by a cost
functional of the type

ts

A= t C(a™ (1), y™ (¢), ua(t))dt.
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Optimal Control Problem for Underactuated Mechanical
systems

This optimal control problem is equivalent to the following
constrained variational problem

_ tr
Minimize A= [ ~ L (¢*(t), y*(t),5(t)) dt
to
subject to constraints

d (0L 8L g OL
A, A A A
o ( Y 7y ( )) dt <8ya> 8 B C ayiD_FAXa = 07

where L is defined as

d (0L 0L oL
A, A A A
Lig*y* ") = C(dt <8y> 35X +Clp 8yD—FAXa>.
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Geometrically, we have that (¢4, y*, y*) are coordinates on T2 Q,

and the constraints & determines a submanifold M of T?Q and
L is a lagrangian function also defined in T3)Q, that is
L:T@Q - R.



Optimal Control for Underactuated Mechanical Systems
Geometrically, we have that (¢#, y*,7%) are coordinates on TR,
and the constraints & determines a submanifold M of T®Q and
L is a lagrangian function also defined in T3, that is
L:T®Q - R.

The canonical inmersion j, : T?)Q — T(TQ) in the induced
coordinates (g, y4,y?) is
TAQ — TTQ
(¢* 9% 9%) = (¢ v XgyP, %)
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Optimal Control for Underactuated Mechanical Systems
Geometrically, we have that (¢#, y*,7%) are coordinates on TR,
and the constraints & determines a submanifold M of T®Q and
L is a lagrangian function also defined in T3, that is
L:T®Q - R.

The canonical inmersion j, : T?)Q — T(TQ) in the induced
coordinates (g4, 34, 94) is
TAQ — TTQ
(¢* 9% 9%) = (¢ v XgyP, %)
%L

Assume that the matrix <7

is regular, then we
Oy dyP > 1<a,f<n—m &

can rewrite the constraints in the form ¢° = G% (¢4, y*, %) and,
coordinates (g4, y?, %) on M.
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Optimal Control for Underactuated Mechanical Systems

Let us define L v by Ly=L |pm: M — R and consider
Wo = M xpq T*TQ with induced coordinates

(qAa yAv y‘aapA7ﬁA)-

Let us define the 2-form Q = pr3(wrq) on Wy, where wrg is the
c~anonica| symplectic form on T*TQ, and

F(var ) = {0, () nt (02)) — Laa(vz) where

z € TQ,vy € Ms(trg |Mm) " (z) and oy € THTQ.

In coordinates
O =dg* Adpa + dy® A dpa,

H = paXA(Q)y® + Pat® + paG(¢™, ™, 5% — La(g™, v, 9%).
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The dynamics of this variational constrained problem is
determining by the solution of the equation

ixQ = dH.



The dynamics of this variational constrained problem is
determining by the solution of the equation

ixQ = dH.

Q is a presymplectic form and ker() = spcm(%).



Optimal Control for Underactuated Mechanical Systems

The dynamics of this variational constrained problem is
determining by the solution of the equation

ixQ =dH.

Q is a presymplectic form and kerQ) = 3pan<a‘ga>.

Following the Gotay-Nester-Hinds algorithm we obtain the primary

constraints dH <6ay.a> =0, that is

OH _  _0G* 0Ly

g TP o o
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Optimal Control for Underactuated Mechanical Systems

The dynamics is restricted to the manifold W determined by the
vanishing of the constraints ¢, = 0. Observe that dim W; = 4n
with induced coordinates (g%, y*, 9%, pa, Da)-

A curve solution of dynamic equations must verify the following
system of diferential equations
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qu

W~ X)) ()
Y= w000 =i G
C a
P~ pel) 5 GO0 - )G (0. (0.1)

+%LTQ"<qB(t),yB<t>,yb<t>> (4)
dﬁA o C ~ oG* B B . b
- = —pc(t)XA(q(t))—pa(t)ay—A(q (t),y7 (t),9")
+%L7f<q3(t),y3<t>,yb> (5)
_ _ 090G 9L
Pa = _p“a_ya (9@)/‘\14 (6)



Optimal Control for Underactuated Mechanical Systems

From Equations (5) and (6) we deduce

d (0Lnp - 0G® o - 0G* 0L
- — Pa - — X, — o
di ( o ¥ 53}“) Poa = Pegya T gya

Differentiating with respect to time, replacing in the previous
equality and using (4) we obtain the following equations system

Leonardo Colombo XVIII International Fall Workshop on Geometry and Physics



& (0Lv - 0G*\  d (0Lm . 9Ge
dt2 \ aye Po oye dt \ Oy® Pe oy
OLp -~ 0G*\ - OXG  p0X{

XA — By B XD B _XD_a —
+X; (8(]‘4 D an)pC’y a an B 3qD 0
o _ 5 0G"  OLm

a PP T e



Optimal Control for Underactuated Mechanical Systems

& (0Lym . 0G*\ d [0Ly - OG°
a2 \ age P9 | T @\ ayr P gye
OLym . 0G*\ _ 0X¢ 0X¢
xA — B B |xD%2B _ xDY%%a | _
+X, (an p an>pr a an B an 0
dpa - 9G  OLn
at | PeTPB oy™ oy~

Let us consider the 2-form Qyy, = z"{,VlQ where iy, 1 W1 — Wy is

the canonical inclusion.
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(W1, Quw,) is symplectic if and only if for any choise of local
coordinates (q*, y*, 9%, pa,pa) on Wy

R2Ly . 92Ge
det (8@“8@17 — Do 8y’“83}b> # 0.
(n—m)x (n—m)
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Thanks for voting me !!!
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