

mont.

Netherlands Organisation for Scientific Research

University of Groningen Zernike Institute for Advanced Materials

THE NEXT 45 MINUTES:

THE NEXT 45 MINUTES:

- Introduction: graphene last talk of a graphene workshop...
- Introduction: (4-terminal) lateral spin valves
- Making graphene based devices
- RT spin valve/precession measurements on graphene
- Spin vs charge diffusion; relaxation mechanism, anisotropy
- Carrier drift: controlling the transport / injection
- And finally: transport through p-n junctions

GOOGLE SAYS:

GOOGLE SAYS:

- graphene: "about 592.000" hits
- carbon nanotube: 834.000
- fullerene: 1.920.000
- graphite: 16.800.000
- diamond: 182.000.000
- Michael Jackson: 254.000.000

GOOGLE SAYS:

- graphene: "about 592.000" hits
- carbon nanotube: 834.000
- fullerene: 1.920.000
- graphite: 16.800.000
- diamond: 182.000.000

• Michael Jackson: 254.000.000

BUT of all these, <u>graphene</u> is the youngest! (and very much alive)

BEST THING SINCE SLICED BREAD?

GRAPHENE BANDSTRUCTURE

$$E(k_x, k_y) = \pm t \sqrt{1 + 4 \cos\left(\frac{\sqrt{3}}{2} k_x a\right)} \cos\left(\frac{1}{2} k_y a\right) + 4 \cos^2\left(\frac{1}{2} k_y a\right)$$

GATE VOLTAGE DEPENDENCE

Existence of minimum conductivity: A.K. Geim & K.S. Novoselov, Nature Materials 6, 183 (2007) and everybody else who does CHARGE transport...

SPINTRANSPORT IN GRAPHENE?

SPIN TRANSPORT IN GRAPHENE?

Theory predicted ("folklore"?):

- Weak spin-orbit + hyperfine interactions
- Long spin relaxation T₁ and dephasing T₂ times (5-50 ns)
 spin qubit, quantum computation?

With high mobilities:

- spin-flip length up to 100 µm <u>at RT</u>?
- low power non-volatile spin logic devices, p-n junctions
- robust, thin (=high integration density)

SPIN INJECTION / TRANSPORT LITERATURE

Theory of SO in graphene:

- Trauzettel et al., Nat. Phys. 3 (2007)
- C.L. Kane and E.J. Mele, PRL 95 (2005)
- Y. Yao et al., cond-mat/0606.3503

- D. Huertas-Hernando et al., PR B74 (2006)
- M. Gmitra et al., cond-mat/0904.3315
- C. Ertler et al., cond-mat/0905.0424
- Honki Min et al., PR B 74 (2006)

Experimentally: electrically, through FM contacts:

- E.W. Hill et al., IEEE Trans. Magn. 42 (10), 2694 (2006)
- N. Tombros, C. Józsa et al., Nature 448, 571 (2007)
- S. Cho et al., Appl. Phys. Lett. 91, 123105 (2007)
- M. Nishioka et al., Appl. Phys. Lett. 90, 252505 (2007)
- M. Ohishi et al., Jpn. J. Appl. Phys. 46 (25), L605-L607 (2007)
- W.H. Wang et al., Phys. Rev. B 77, 020402(R) (2008)

SPIN INJECTION / TRANSPORT LITERATURE

Theory of SO in graphene:

- Trauzettel et al., Nat. Phys. 3 (2007)
- C.L. Kane and E.J. Mele, PRL 95 (2005)
- Y. Yao et al., cond-mat/0606.3503

- D. Huertas-Hernando et al., PR B74 (2006)
- M. Gmitra et al., cond-mat/0904.3315
- C. Ertler et al., cond-mat/0905.0424
- Honki Min et al., PR B 74 (2006)

Experimentally: electrically, through FM contacts:

- E.W. Hill et al., IEEE Trans. Magn. 42 (10), 2694 (2006)
- N. Tombros, C. Józsa et al., Nature 448, 571 (2007)
- S. Cho et al., Appl. Phys. Lett. 91, 123105 (2007)
- M. Nishioka et al., Appl. Phys. Lett. 90, 252505 (2007)
- M. Ohishi et al., Jpn. J. Appl. Phys. 46 (25), L605-L607 (2007)
- W.H. Wang et al., Phys. Rev. B 77, 020402(R) (2008)

• and more ...

ABOUT SPIN RELAXATION

i: Elliott-Yafet:

spin flip induced by scattering; $\tau_s \sim \tau_d$

ii: D'yakonov-Perel:

spin precession around fluctuating effective magnetic field; $\tau_s \sim 1/\tau_d$

iii: hyperfine:

interaction with nuclear spin; 1% ¹³C

SPIN INJECTION: THE BASIC PICTURE

FM

SPIN INJECTION: THE BASIC PICTURE

SPIN DETECTION: LATERAL SPIN VALVE

∝ ⋆	"Parallel"		
nce			
istai			
Les			

magnetic field B

SPIN DETECTION: LATERAL SPIN VALVE

	"Parallel"	"Antiparallel"	
tance			
resis			

magnetic field B

SPIN DETECTION: LATERAL SPIN VALVE

NON-LOCAL VS. LOCAL

THE BIRTH OF A GRAPHENE SPIN VALVE DEVICE

THE SCOTCH TAPE METHOD

GRAPHENE SPIN VALVE DEVICE

Graphene flakes: localization (optical + AFM) Ti/Au (40nm) markers Si(n++) / SiO₂ (300 nm)substrate Ti/Au (100 nm) gate electrode

GRAPHENE SPIN VALVE DEVICE

key ingredient: Al (0.6 nm) UHV evaporation + oxidization

GRAPHENE SPIN VALVE DEVICE

Electron beam lithography + Lift-off: Co contacts

GRAPHENE SPIN VALVE DEVICE

And ready to be measured

A SUITABLE GRAPHENE FLAKE

optical microscope image

COBALT CONTACTS ON THE FLAKE

optical microscope image

COBALT CONTACTS ON THE FLAKE

optical microscope image

HOPG SAMPLES, AFM IMAGING

HOPG SAMPLES, AFM IMAGING

before...

SAME SAMPLE, SEM IMAGE

...and after

KISH SAMPLES, OPTICAL IMAGING

SAME SAMPLE, SEM IMAGING

SAMPLE OVERVIEW, SEM IMAGING

SHAPE CONTROL: PLASMA ETCHING

WIDTH CONTROL: PLASMA ETCHING

dirty, but it works

SPIN VALVE AND SPIN PRECESSION

4-TERMINAL SPIN VALVE MEASUREMENT

N. Tombros, C.J. et al., Nature 448, 571-574 (2007)

Determining spin transport parameters: length dependence?

$$R_{non-local} = \pm \frac{P^2 \lambda_{sf}}{2W\sigma} \exp(-\frac{L}{\lambda_{sf}})$$

4-TERMINAL SPIN VALVE MEASUREMENT

Determining spin transport parameters: length dependence?

$$R_{non-local} = \pm \frac{P^2 \lambda_{sf}}{2W\sigma} \exp(-\frac{L}{\lambda_{sf}})$$

spin precession under external magnetic field

spin precession under external magnetic field

spin signal depends on:

- B strength
- SV length
- spin flip time
- diffusion const
- spin injection

D, τ, λ: the same trend vs. Vg *C. Józsa, T. Maassen et al., in preparation

 $D = \frac{1}{e^2 v(E_F) R_{square}(V_g)}$ $v(E_F): \text{DOS at } E_F$ $R_{square}(V_g): \text{resistivity}$

singularity at charge neutrality point!

In reality, DOS broadened:

- temperature (300K)
- e-h puddles
- scattering

use Gaussian broadening σ

$$q(E) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} d\epsilon \ e^{-\frac{(\epsilon-E)^2}{2\sigma^2}} \nu(\epsilon)$$

electron-hole puddles at the charge neutrality point

J. Martin et al. Nature Physics 2008 X. Du et al. Nature Nanotechnology 2008 Y.W. Tan et al. Phys. Rev. Lett. 2007

In reality, DOS broadened:

- temperature (300K)
- e-h puddles
- scattering

an ignorant experimentalist, i know...

use Gaussian broadening σ

$$q(E) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} d\epsilon \ e^{-\frac{(\epsilon-E)^2}{2\sigma^2}} \nu(\epsilon)$$

electron-hole puddles at the charge neutrality point

J. Martin et al. Nature Physics 2008 X. Du et al. Nature Nanotechnology 2008 Y.W. Tan et al. Phys. Rev. Lett. 2007

$$q(E) = \frac{4g_s g_v \sqrt{\pi}}{\left(hv_f\right)^2} \left\{ \frac{\sigma}{\sqrt{2}} e^{-\frac{E^2}{2\sigma^2}} + \frac{\sqrt{\pi}}{2} E \operatorname{erf}\left(\frac{E}{\sqrt{2}\sigma}\right) \right\}$$

broadened DOS

$$\lim_{\sigma \to 0} q(E) = \lim_{\sigma \to 0} \left[\frac{4g_s g_v \sqrt{\pi}}{\left(hv_f\right)^2} \left\{ \frac{\sigma}{\sqrt{2}} e^{-\frac{E^2}{2\sigma^2}} + \frac{\sqrt{\pi}}{2} E \operatorname{erf}\left(\frac{E}{\sqrt{2}\sigma}\right) \right\} \right] = \frac{2g_s g_v \pi E}{\left(hv_f\right)^2}$$

unbroadened

$$q(E) = \frac{4g_s g_v \sqrt{\pi}}{\left(hv_f\right)^2} \left\{ \frac{\sigma}{\sqrt{2}} e^{-\frac{E^2}{2\sigma^2}} + \frac{\sqrt{\pi}}{2} E \operatorname{erf}\left(\frac{E}{\sqrt{2}\sigma}\right) \right\}$$

broadened DOS

 $=\frac{2g_sg_v\pi E}{\left(hv_f\right)^2}$

unbroadened

very good agreement from 2 different approaches

no Coulomb drag! relaxation: on impurities

DIFFUSION LENGTH AND MOBILITY?*

linear scaling: fingerprint of Elliott-Yafet type impurity scattering $\lambda_s = \sqrt{D}\tau_s$ $D \sim \tau_d$

*C. Józsa, T. Maassen et al., in preparation

DIFFUSION LENGTH AND MOBILITY?*

46

DIFFUSION LENGTH AND MOBILITY?

Our first suspended (multi)layer; A. Veligura et al.

Suspended graphene?

$\mu \approx 200\ 000\ \text{cm}^2/\text{Vs}$

as measured by K.I. Bolotin, P. Kim *et al*.

Does λ_s increase?

DIFFUSION LENGTH AND MOBILITY?

Our first suspended (multi)layer; A. Veligura et al.

Suspended graphene?

$\mu \approx 200\ 000\ \text{cm}^2/\text{Vs}$

as measured by K.I. Bolotin, P. Kim *et al*.

Does λ_s increase?

TO BE CONTINUED.

NONE

SEI

15.0kV

X40,000

100nm

WD 28.1mm
ONE MORE THING ON RELAXATION

ONE MORE THING ON RELAXATION

What happens if the spin imbalance is orthogonal to the graphene plane?

RELAXATION ANISOTROPY*

further increase

magnetic field

*N. Tombros, C. Józsa et al., Phys. Rev. Lett., 101, 046601 (2008)

RELAXATION ANISOTROPY*

*N. Tombros, C. Józsa et al., Phys. Rev. Lett., 101, 046601 (2008)

COMPARED TO METALS

same geometry

COMPARED TO METALS

same geometry

 $\tau_{\perp} \approx \tau_{\parallel}$

Jedema et al., Nature (2002)

spin relaxation is isotropic in Al films!

CARRIER DRIFT TO CONTROL SPIN TRANSPORT

Spin drift effects in n-GaAs: X. Lou et al., Phys. Rev. Lett. 96, 176603 (2006)

DRIFT-DIFFUSION UNDER AN EFIELD?

• Yu-Flatté for spin imbalance (degenerate SC):

$$D \nabla^2 \vec{\mu} = \frac{\vec{\mu}}{\tau} - \vec{v}_D \nabla \vec{\mu}$$

Z.G. Yu and M.E. Flatté, Phys. Rev. B 66, R 201202 (2002)

• Solution along x:
$$\mu(x) = A \exp\left(\frac{x}{\lambda_+}\right) + B \exp\left(-\frac{x}{\lambda_-}\right)$$

where $\frac{1}{\lambda_{\pm}} = \pm \frac{1}{2} \frac{1}{\lambda_D} + \sqrt{\frac{1}{4} \frac{1}{\lambda_D^2} + \frac{1}{\lambda_s^2}} = up / downstream spin transport length;$

 $\lambda_{s} = \sqrt{D\tau} = spin diffusion length, symmetric in x$ $\lambda_{D} = \frac{D}{v_{D}} = "spin drift length", asymmetric due to <math>v_{D} = \mu E$

DRIFT GEOMETRY

54

SPIN DRIFT MEASUREMENTS*

COMPARISON WITH THE YU-FLATTÉ MODEL*

COMPARISON WITH THE YU-FLATTÉ MODEL*

COMPARISON WITH THE YU-FLATTÉ MODEL*

DRIFT AND CARRIER MOBILITY

Spin valve signal: ±50%
spin "diffusion" length: >200%
Can we get more?

DRIFT AND CARRIER MOBILITY

Spin valve signal: ±50%
spin "diffusion" length: >200%
Can we get more?
ν_D = μE;
μ ≈ 5500 cm²/Vs

DRIFT AND CARRIER MOBILITY

- Spin valve signal: ±50%
- spin "diffusion" length: >200%

Can we get more? $v_D = \mu E;$ $\mu \approx 5500 \text{ cm}^2/\text{Vs}$

heat treatment: $150^{\circ}C$, 10^{-5} mbar | $\mu \approx 35000 \text{ cm}^2/\text{Vs}$

HOW TO COMBAT THE IMPEDANCE MISMATCH?

DC biasing effects on spin detection in Fe/GaAs junctions: S.A. Crooker *et al.*, arXiv: 0809.1120v1 (2008)

DC BIAS ON AC SPIN INJECTORS

62

AVERY "BAD" BARRIER

SEM images: Al₂O₃

No Al₂O₃

SPIN VALVE & DC BIAS - MEASUREMENTS*

GRAPHENE P-N JUNCTION: SPIN AMPLIFICATION DEVICE?

SPIN AMPLIFICATION DEVICE*

SPIN AMPLIFICATION DEVICE*

SPIN AMPLIFICATION DEVICE: TOP GATE?

Our first top-gated SV device; T. Maassen et al.

SPIN AMPLIFICATION DEVICE: TOP GATE?

Our first top-gated SV device; T. Maassen et al.

SUMMARY

Spin vs. charge diffusion, relaxation anisotropy:

- No sign of spin Coulomb drag weak e-e interactions;
- $\tau_s \le 200 \text{ ps}$, due to Elliott-Yafet;
- higher µ (cleaner+suspended graphene) -> λs ≈ 100 µm at RT.
 Control on spin injection+transport:
 - Carrier drift enhances transport/injection; signals ≈ 100 Ω.
 Spin amplification device:
 - spin imbalance enhanced by drift in a p-n junction;
 - plenty of questions at the neutrality point.

THEPLACE

THEPLACE

prof. Bart van Wees

group leader

Niko Tombros lately a post-doc

Mihai Popinciuc

now at RWTH Aachen

Alina Veligura

somewhere in this room

Thomas Maassen

somewhere in this room

Steve Watts

now at Grandis Inc. selling the spin

Paul Zomer

Shinichi Tanabe, now at NTT

THANK YOU.

c.jozsa@rug.nl

http://nanodevices.fmns.rug.nl