Stacking faults in crystalline graphite

bound states and Landau levels

D. P. Arovas, UC San Diego F. Guinea, CSIC Madrid

Phys. Rev. B 78, 245416 (2008)

Benasque, 2009

Brief outline

1. Stacking and graphitic structures

2. Bernal hexagonal vs. rhombohedral graphite

3. Landau levels, surface states, possible 3DQHE

4. Simple model of a stacking fault: S-matrix, bound states, Landau levels

5. Surface spectroscopy of buried faults

6. Full SWMc treatment of a stacking fault

Graphene stacks : from triangular lattice

Graphitic structures

1. Bernal stacking : ABAB...

- hexagonal Bravais lattice $a_0 = 2.46$ Å; $c_0 = 2d = 6.74$ Å

2. rhombohedral: ABCABC...

- ab initio calculations \rightarrow 0.11 meV / atom more total energy than BHG
 - J. C. Charlier, X. Gonze, and J.-P. Michenaud, Carbon 32, 289 (1994)
- exists only in combination with Bernal hexagonal phase (as high as 40%)
 - S. Chehab, K. Guerin, J. Amiell, and S. Flandrois, Eur. Phys. J. B 13, 235 (2000)

3. disordered ("turbostratic")

- disordered stacking plus some orientational disorder A. Marchand, in Les Carbones, A. Pacault, ed. (Masson, Paris, 1965), T. 1, Part III, p. 232 J. C. Charlier, J.-P. Michenaud, and Ph. Lambin, *Phys. Rev. B* **46**, 4540 (1992)

4. hexagonal : AAA...

- e.g. in Li - intercalated graphite

Bernal stacking ABAB...

 γ_4

 \mathcal{U}

v

 \tilde{u}

v

73V

 γ_0

 γ_2

 γ_1

SWMc parameters: $\gamma_0\,,\gamma_1\,,\gamma_2\,,\gamma_3\,,\gamma_4\,,\gamma_5\,,\Delta$

Predictions of nearest-neighbor tight-binding model : zero-gap semiconductor

graphene bilayer

Bernal hexagonal graphite

F. Guinea, A. H. Castro Neto, and N. M. R. Peres, PRB 73, 245426 (2006)

Degeneracy along KH lifted by γ_2 hopping Bernal graphite is a semi-metal

M. S. Dresselhaus and G. Dresselhaus, Adv. Phys. 51, 1 (2002)

M. S. Dresselhaus and J. G. Mavroides, IBM Res. Jour. **8**, 262 (1964)

Rhombohedral graphite

- ABCABC stacking (but 2-atom unit cell)

- "sausage link" Fermi surface -- almost graphene (McClure 1969)
- DOS $\approx 10^{-4}$ states / eV·atom·spin (RG), 3x10⁻³ eV·atom·spin (BHG)
- -LLs: $E_n = -\Gamma \cos(3\theta_3) \pm \gamma_0 \sqrt{nB/B_0}$ with $\Gamma \approx 6.5 \,\mathrm{meV}$ and $B_0 \approx 7300 \,\mathrm{T}$

J. W. McClure, Carbon 7, 425 (1969)

Collapse of cyclotron gaps by c-axis hopping

Energy bands vs. magnetic field Bernal stacking rhombohedral

simple hexagonal (AAA): $E_n(B, \mathbf{k}) = 2\gamma_1 \cos(k_z c) + \operatorname{sgn}(n) \gamma_0 \sqrt{nB/B_0}$ $B_0 = \frac{hc/e}{3\pi a^2} \approx 7300 \operatorname{T} \qquad B_n^* = \left(\frac{4\gamma_1}{\gamma_0}\right)^2 \cdot \frac{B_0}{(\sqrt{n+1}-\sqrt{n})^2} \approx 1800 \operatorname{T}(n=1)$

B. A. Bernevig et al., Phys. Rev. Lett. 99, 146804 (2007)

Undoped Case : CDW Transition

D. Yoshioka and H. Fukuyama, J. Phys. Soc. Japan 50, 725 (1981)

- One-dimensional dispersion : $Q = 2k_F$ instability

 $\rho(z) = \rho_O \cos(Qz)$

- Two central LLs (from A/B graphene planes) are spin-split and valley degenerate: 8 bands
- Highest T_c from (n = 0 , σ = \uparrow) subband

 $T_{\rm c}(B) = T^* e^{-B^*/B}$ $T^* = 100 \,{\rm K}$, $B^* = 1 \,{\rm kG}$

Chiral edge states in graphene

$$v(k_x) = rac{1}{\hbar} rac{\partial E}{\partial k_x}$$

 $E = E(k_x)$

Y. Hatsugai, T. Fukui, and H. Aoki, Eur. Phys. J. Special Topics 148, 133 (2007)

Spectral flow of graphite surface states

Bernal stacking

rhombohdral

Three-dimensional BHG surface state plots

<u>Quantum Hall Effect</u>

integer "Chern number"

Qualitative effect of disorder (cartoon)

J. T. Chalker and A. Dohmen, PRL 75, 4496 (1995)

3D Quantum Percolation Network Model

positive Lyapunov exponents

Surface State Properties

L. Balents and M. P. A. Fisher, PRL 76, 1996

Integer 3DQHE chiral surface states are **always diffusive** in **z**-direction

$$\left\langle |G(k_x,k_z,\omega)|^2 \right\rangle \approx \frac{1}{i\omega - ivk_x - Dk_z^2}$$

Different scaling than for non-chiral Fermi liquid leads to a stable metallic phase with surface disorder.

Strong bulk disorder "floats up" 3DQHE.

missing!

Simple model of a graphite stacking fault

A stacking pattern can be written as a sequence of + and - symbols :

 $\cdots A + B - A + B - A - C + A - C + A \cdots$

$$\begin{split} \psi_{j}(\boldsymbol{k}) &= \begin{pmatrix} U_{j}(\boldsymbol{k}) \\ V_{j}(\boldsymbol{k}) \end{pmatrix} \quad ; \quad M\psi_{j} - \gamma_{1}^{t} \Sigma^{\sigma_{j-\frac{1}{2}}} \psi_{j-1} - \gamma_{1} \Sigma^{\sigma_{j+\frac{1}{2}}} \psi_{j+1} = 0 \\ M &= \begin{pmatrix} E & \gamma_{0} S_{\boldsymbol{k}} \\ \gamma_{0} S_{\boldsymbol{k}}^{*} & E \end{pmatrix} \quad ; \quad \Sigma^{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad ; \quad \Sigma^{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \end{split}$$

Here E is the bulk dispersion in any of the four graphite bands.

Stacking fault : S-matrix defect : ... ABABACACA... $\begin{pmatrix} O \\ O' \end{pmatrix} = \overbrace{\begin{pmatrix} t & r' \\ r & t' \end{pmatrix}}^{S-\text{matrix}} \begin{pmatrix} I \\ I' \end{pmatrix} \qquad R = |r|^2 = 1$

Stacking fault : sublattice configuration

BERNAL HEXAGONAL

Stacking fault : Landau levels

Condition for bound state: $\det \mathcal{M}(E) = 0$

 $\det \mathcal{M}(E) \approx \gamma_1^2 - (n+1)^2 (n+2) \frac{\epsilon^6 \gamma_0^6}{\gamma_1^2 E^2}$

$$E_{\rm B} = \pm (n+1)(n+2)^{1/2} \, \frac{\epsilon^3 \, \gamma_0^3}{\gamma_1^2}$$

The energy of the bound state Landau level behaves as $B^{3/2}$ rather than $B^{1/2}$

Surface spectroscopy of buried faults

Compute $G_{uu}^{l=1}(\omega)$ and $G_{vv}^{l=1}(\omega)$ using hierarchy for $\Sigma_l(\omega)$

•

$$\Sigma_{l-1}(\omega) = \frac{|\gamma_0 S_{\boldsymbol{k}}|^2}{\omega} + \frac{\gamma_1^2}{\omega - \Sigma_l(\omega)}$$

Surface spectroscopy in a field Landau level index shifts in consecutive layers : $\Sigma_{l}(\omega) = \frac{n v_{\rm F}^{2} \ell_{B}^{-2}}{\omega} + \frac{\gamma_{1}^{2}}{\omega - \Sigma_{l+1}(\omega)} \quad , \quad \Sigma_{l-1}(\omega) = \frac{(n-1) v_{\rm F}^{2} \ell_{B}^{-2}}{\omega} + \frac{\gamma_{1}^{2}}{\omega - \Sigma_{l}(\omega)}$

Full SWMc treatment of a stacking fault

- scattering states (no band overlap) :

 $n < 0 : \psi_n = \mathcal{I} e^{ikn} \chi_1 + \mathcal{O}' e^{-ikn} \chi_5 + A_2 z_2^n \chi_3 + A_3^n z_3^n \chi_3 + A_4 z_4^n \chi_4$

 $n > 0 : \phi_n = \mathcal{I}' e^{-ikn} \chi_1^* + \mathcal{O} e^{ikn} \chi_5^* + A_6 z_6^{*n} \chi_6^* + A_7 z_7^{*n} \chi_7^* + A_8 z_8^{*n} \chi_8^*$

- bound states :

 $n < 0 : \quad \psi_n = A_1 z_1^n \chi_1 + A_2 z_2^n \chi_2 + A_3^n z_3 \chi_3 + A_4 z_4^n \chi_4$ $n > 0 : \quad \phi_n = A_5 z_5^{*n} \chi_5^* + A_6 z_6^{*n} \chi_6^* + A_7 z_7^{*n} \chi_7^* + A_8 z_8^{*n} \chi_8^*$

 $|z_{1,2,3,4}| > 1$, $|z_{5,6,7,8}| < 1$, $z_k^* = z_{k+4}^{-1}$ - scattering equations :

 $M\psi_{-2} + K\psi_{-1} + F^{\dagger}\phi_{1} = 0$ $F\psi_{-1} + K^{*}\phi_{1} + M^{t}\phi_{2} = 0$

- solve these to obtain S-matrix and/or bound state energies

- Find bound states within gap along KM segment in basal Brillouin zone
- Maximum binding energy ~45 meV (compare 14 meV for γ_0 - γ_1 model)
- SWMc parameterization suspect away from K-H segment (e.g. it fails to accurately reproduce full graphite π -band

Κ'

M

SWMc bands for graphite

bound state binding energies

Brief outline

1. Stacking and graphitic structures

- 2. Bernal hexagonal vs. rhombohedral graphite
- 3. Landau levels, surface states, possible 3DQHE
- 4. Simple model of a stacking fault: S-matrix, bound states, Landau levels
- 5. Surface spectroscopy of buried faults
- 6. Full SWMc treatment of a stacking fault