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Model for e-ph interaction in graphene
Park, Giustino, Cohen, Louie PRL 99, 086804 (2007) did full
first-principles calculations for the electron-phonon interaction in
graphene.

Solid lines – first-principles
Model – dashed lines
left – intrinsic; right – electron-doped

Found self-energy could be
well-approximated (within
15%) by in-plane Einstein
phonon spectrum at
frequency ωE = 200meV
The self-energy is
independent of electron
momentum and band
index.
Notice, ImΣ has the wrong sign
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Main equations
Consider T = 0.

Σ(ω) =

∫ +∞

−∞

dω′N(ω′)

N◦

A

WC

[

θ(ω′)

ω − ω′ − ωE + i0+
+

θ(−ω′)

ω − ω′ + ωE + i0+

]

,

where A = 250meV is the coupling, WC =
√

π
√

3t = 7 eV is the
cutoff on the Dirac cone (preserves BZ volume), and N◦ = 2/π~

2
v

2
0

with the bare Fermi velocity v0.
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where A = 250meV is the coupling, WC =
√

π
√

3t = 7 eV is the
cutoff on the Dirac cone (preserves BZ volume), and N◦ = 2/π~

2
v

2
0

with the bare Fermi velocity v0. New aspect, consider the
self-consistent [S. Engelsberg and J.R. Schrieffer, Phys. Rev. 131,
993 (1963)]. DOS N(ω):

N(ω)

N◦
=

∫

WC

−WC

dǫ
|ǫ|
π

−ImΣ(ω)

[ω − ReΣ(ω) + µ − ǫ]2 + [ImΣ(ω)]2
.

Here µ is the chemical potential of interacting system and µ0 (will
appear below) is the chemical potential for the bare bands.
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Main equations: conventions and features
By choice ω = 0 corresponds to the Fermi level in noninteracting
and interacting cases.

Notice that the position of the
Dirac point shifts.
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Main equations: conventions and features
By choice ω = 0 corresponds to the Fermi level in noninteracting
and interacting cases.

Notice that the position of the
Dirac point shifts.

The value of the DOS at the
Fermi surface remains pinned to
its noninteracting value:
N(ω=0)

N◦

= µ − ReΣ(ω = 0) = µ0

Will show why last equality holds.
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Main equations: conventions and features
By choice ω = 0 corresponds to the Fermi level in noninteracting
and interacting cases.

Notice that the position of the
Dirac point shifts.

The value of the DOS at the
Fermi surface remains pinned to
its noninteracting value:
N(ω=0)

N◦

= µ − ReΣ(ω = 0) = µ0

Will show why last equality holds.
Notice, in some papers including
our own in New J. Phys. use
different convention with ω = µ!
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First approximation: bare DOS
Getting used to the self-energy

N(ω)

N◦
=

{

|ω + µ0|, −WC − µ0 < ω < WC − µ0,

0, otherwise,

In this case self-energy Σ(ω; µ0) can be calculated analytically:

−ImΣ(ω) =

{

πA

WC

|ω − ωE + µ0|, ωE < ω < WC − µ0 + ωE ,
πA

WC

|ω + ωE + µ0|, −ωE > ω > −WC − µ0 − ωE ,

ReΣ(ω) is lengthy and explicitly depends on ln WC

M. Calandra and F. Mauri, PRB
76, 205411 (07); W.-K. Tse and
S. Das Sarma PRL 99, 236802
(07); T. Stauber and
N.M.R. Peres, J.Phys. Cond.
Matt. 20, 055002 (2008).
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First iteration approximation

Real (top) and imaginary (middle)
part of Σ(ω) and DOS [first
iteration] N(ω)/N◦ (bottom) (all
in units of meV) as a function of
ω in eV for |µ0| = 150meV .
Dashed is for µ0 > 0 and solid is
for µ0 < 0. The bare band DOS is
indicated by the dotted curve.
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Mass (velocity!) and µ0 renormalization

Carrier effective mass renormalization λeff due to the e-ph
interaction: ReΣ(ω) = −λeffω + ReΣ(ω = 0) for ω → 0. From
known analytical expression for Σ(ω) we obtain

λeff = 2A
WC

(

ln WC

|µ0+ωE |
− 1 + |µ0|

ωE

)

.

Energies Ek are obtained from the pole condition:
ω−ReΣ(ω)+µ− ǫ = 0 ⇒ Ek +λeff

Ek −ReΣ(ω = 0)+µ = ±v0|k|
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Mass (velocity!) and µ0 renormalization

Carrier effective mass renormalization λeff due to the e-ph
interaction: ReΣ(ω) = −λeffω + ReΣ(ω = 0) for ω → 0. From
known analytical expression for Σ(ω) we obtain

λeff = 2A
WC

(

ln WC

|µ0+ωE |
− 1 + |µ0|

ωE

)

.

Energies Ek are obtained from the pole condition:
ω−ReΣ(ω)+µ− ǫ = 0 ⇒ Ek +λeff

Ek −ReΣ(ω = 0)+µ = ±v0|k|
So far we did not distinguish the bare chemical potential µ0 of
noninteracting system from the chemical potential µ of the
interacting system. The value of µ is set by the doping
ρ = sgn(µ)µ2/π~

2
v

2
0 which is controlled by the gate voltage. We

identify the quantity µ − ReΣ(ω = 0; µ) as the bare chemical
potential µ0. Assuming that A/WC is small iterate and relate
µ = µ0 + ReΣ(ω = 0; µ0).
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Energies Ek are obtained from the pole condition:
ω−ReΣ(ω)+µ− ǫ = 0 ⇒ Ek +λeff

Ek −ReΣ(ω = 0)+µ = ±v0|k|
So far we did not distinguish the bare chemical potential µ0 of
noninteracting system from the chemical potential µ of the
interacting system. The value of µ is set by the doping
ρ = sgn(µ)µ2/π~

2
v

2
0 which is controlled by the gate voltage. We

identify the quantity µ − ReΣ(ω = 0; µ) as the bare chemical
potential µ0. Assuming that A/WC is small iterate and relate
µ = µ0 + ReΣ(ω = 0; µ0).

Thus the dispersion becomes Ek =
±~v0k − µ0

1 + λeff
.
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Main conclusions for renormalizations: 1-2
1) For the massless carriers in graphene the role of λeff is to
renormalize their velocity: v0 → v0/(1 + λeff ).
If we take A = 250meV, obtain λeff ∼ 0.19 which is larger than
calculated in density functional theory (Park), but smaller than
measured by ARPES.

The mass renormalization
parameter λeff at the Fermi level
as a function of bare chemical
potential µ0 At least 20 %
renormalization of v0.
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Main conclusions for renormalizations: 1-2
1) For the massless carriers in graphene the role of λeff is to
renormalize their velocity: v0 → v0/(1 + λeff ).
If we take A = 250meV, obtain λeff ∼ 0.19 which is larger than
calculated in density functional theory (Park), but smaller than
measured by ARPES.

The mass renormalization
parameter λeff at the Fermi level
as a function of bare chemical
potential µ0 At least 20 %
renormalization of v0.

2) The value of µ0 is renormalized (J.M. Luttinger and J. C. Ward,
Phys. Rev. 118, 1417 (1960)). Since ReΣ(ω = 0) = −µ0λ

eff then

µ = µ0(1 − λeff) ≃ µ0

1 + λeff

This has not been taken into account in all previous literature on
calculation of AC conductivity in graphene!
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This has not been taken into account in all previous literature on
calculation of AC conductivity in graphene!

S.G. Sharapov (BITP) Effects of the electron-phonon Benasque, Spain 9 / 23



Main conclusions for renormalizations: 3-4
3) If we include imaginary part due to impurities, η = −ImΣ:
η → η/(1 + λeff)
4) The position of the Dirac point is also shifted from ω = −µ0 to
ωd ≃ −µ0/(1 + λeff).

ωd = −µ0 + ReδΣ(ωd)
Results of a first iteration for the
shift in chemical potential
ReΣ(ω = 0) (top frame), the
shift in position of the Dirac point
ReδΣ(ωd) (middle frame) and the
imaginary part of the self-energy
ImΣ(ωd) at the Dirac point
(lower frame). All of these
quantities are shown in units of
meV.
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The effect of self-consistency I

Σ(ω) and DOS have been
self-consistently iterated and
µ0 = 500meV which is greater
than ωE . The red solid curves are
for the iterated case and the blue
dashed curves are for the initial
uniterated results. The dotted
curve is the bare density of states.
All quantities on the y-axis are in
meV.
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The effect of self-consistency II
Looking closer at the band edge

Top of the renormalized band extends to
higher energies as compared with the bare
band and the bottom extends to lower
energies, F. Dogan and F. Marsiglio, PRB
68, 165102 (03); A. Knigavko and J.P.
Carbotte, PRB 72, 035125 (05). The
phonon energy sets the scale for this
smearing beyond the bare band edge.
Σ(ω) and DOS have been self-consistently
iterated and µ0 = 500meV which is greater
than ωE . The red solid curves are for the
iterated case and the blue dashed curves are
for the initial uniterated results. The black
dotted curve is the bare density of states.
All quantities on the y-axis are in meV.
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DOS modification by phonons I

For ω near ωd and ǫ near ǫ = 0, the spectral functions that
determine the DOS are
A(±ǫ, ω) ≃ 1

π

−ImΣ(ωd )
[ω−ReΣ(ωd )−ReΣ′(ωd )(ω−ωd )+µ±ǫ]2+[ImΣ(ωd )]2

.

Denoting 1 − ReΣ′(ωd) by Z , where Σ′(ωd) ≡ dΣ(ω)/dω|ω=ωd
, and

−ImΣ(ωd) by Γ, we obtain A(±ǫ, ω) ≃ 1
π

Γ
[(ω−ωd )Z±ǫ]2+Γ2 .

Then for µ0 > ωE and |(ω − ωd)Z | ≪ Γ we get that the Dirac point
is lifted and the DOS becomes quadratic at that point due to finite

scattering rate: N(ω)
N0

= 2Γ
π

ln

∣

∣

∣

∣

WC

Γ

∣

∣

∣

∣

+ (ω−ωd )2Z2

πΓ
.

For µ0 < ωE as Γ → 0 recover linear in ω DOS.
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DOS modification by phonons II

N(ω) (solid blue line) vs. ω for
ωE = 200meV, λ = 2A/ωE = 2.5.
The top frame is for
µ0 = 150meV < ωE and the bottom
for µ0 = 500meV > ωE . The dotted
curve is the bare band case. For
µ0 > ωE , N(ω) at the Dirac point is
nonzero and becomes quadratic. A
comparison of this approximate
quadratic behavior is shown as the
dashed (red) curve.
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More realistic phonon spectra
Magic formula

In normal systems |ǫ| is absent in the equation which expresses full
DOS via Σ, so the DOS is const independent of Σ.
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More realistic phonon spectra
Magic formula

In normal systems |ǫ| is absent in the equation which expresses full
DOS via Σ, so the DOS is const independent of Σ.

This is not so in graphene and
one can restore the phonon
spectra.
Consider distribution of
phonon energies: Σlor(ω) =
∫ ∞

−∞
P(ν)Σ(ω, ν)dν, where we

used truncated Lorentzian (F.
Dogan and F. Marsiglio, PRB
68, 165102 (03)) to model the
widths of the phonon peaks.
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Renormalization and ARPES I
Spectral function A(k, ω) = A(ǫ, ω), ǫ ± ~v0|k| can be measured
by ARPES. Begin with ideal case ImΣ = 0, so that the dressed
energy Ek is found from the equation Ek − ReΣ(Ek) + µ − ǫk = 0.
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Renormalization and ARPES I
Spectral function A(k, ω) = A(ǫ, ω), ǫ ± ~v0|k| can be measured
by ARPES. Begin with ideal case ImΣ = 0, so that the dressed
energy Ek is found from the equation Ek − ReΣ(Ek) + µ − ǫk = 0.

Lorentzian model is used to
make “kink” at
ω0 = 200meV less singular.

Renormalized energies (solid blue curves)
Ek as a function of k in units of eV/(~v0)
for µ0 = 400meV. Twice the bare 2µ0

and dressed 2µ chemical potential are
indicated by vertical arrows.
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Renormalization and ARPES I
Spectral function A(k, ω) = A(ǫ, ω), ǫ ± ~v0|k| can be measured
by ARPES. Begin with ideal case ImΣ = 0, so that the dressed
energy Ek is found from the equation Ek − ReΣ(Ek) + µ − ǫk = 0.

Lorentzian model is used to
make “kink” at
ω0 = 200meV less singular.

Renormalized energies (solid blue curves)
Ek as a function of k in units of eV/(~v0)
for µ0 = 400meV. Twice the bare 2µ0

and dressed 2µ chemical potential are
indicated by vertical arrows. The bare
curves are shown as dashed black lines
and the dotted is a line chosen to fit the
dressed curve asymptotically at large
negative energy. This line when extended
towards the Fermi energy does not cross
through the Fermi energy, because e-ph
renormalization does not vanish at high
energies.
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Renormalization and ARPES II

Restore ImΣ.

Color map (units of
meV−1) of interacting
dispersions Ek in units of
meV as a function of k in
units of meV/(~v0). The
bare chemical potential
µ0 = 400meV and a
Lorentzian phonon
spectrum with
ω0 = 200meV were used.
Broadening makes
determination of µ
somewhat ambiguous.
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Electrical conductivity

Consider the limit the opposite to the universal one T = 0, but
µ − ReΣ(ω = 0) ≫ η, where 1/τ = 2η is the transport scattering
rate. The electron-phonon interaction drops out of the DC
conductivity:

σDC (T = 0) =
e

2

h

2[µ − ReΣ(ω = 0)]

2η
=

e
2

h

2µ0

2η
.
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µ − ReΣ(ω = 0) ≫ η, where 1/τ = 2η is the transport scattering
rate. The electron-phonon interaction drops out of the DC
conductivity:

σDC (T = 0) =
e

2

h

2[µ − ReΣ(ω = 0)]

2η
=

e
2

h

2µ0

2η
.

Low frequency conductivity:

σintra(Ω) =
πe

2

2h

4|µ0|
π

2η

Ω2(1 + λeff)2 + 4η2
, Ω, η ≪ µ0.

Drude form with effective optical scattering rate 2η/(1 + λeff) and
effective plasma frequency of 4µ0/[π(1 + λeff)].
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Optical conductivity

Reσxx(Ω) in units πe
2/2h

There is an absorption Ω > ωE

(Holstein sideband).
T. Stauber and N.M.R. Peres, J.Phys. Cond. Matt. 20,

055002 (08) did not include a shift of the absorption edge

from 2µ0 to 2µ, but also get the reduction of σ(Ω) .
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Optical conductivity

Reσxx(Ω) in units πe
2/2h

There is an absorption Ω > ωE

(Holstein sideband).
T. Stauber and N.M.R. Peres, J.Phys. Cond. Matt. 20,

055002 (08) did not include a shift of the absorption edge

from 2µ0 to 2µ, but also get the reduction of σ(Ω) .

The e-p interaction has reduced
the value of the universal
background slightly below
σ0 = πe

2/2h (for finite µ!).
The electron-phonon interaction
has a profound effect on the band
structure in the energy region
around the band edge. The DOS
is considerably depleted below its
noninteracting value and to
conserve states tails appear
beyond the bare cut off WC .
Thus in optical experiments,
spectral weight is removed below
the bare optical cut off which is
transferred to higher energies.
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Understanding Holstein sideband

The probability of occupation of a
state k, nk =

∫ ∞

−∞
f (ω)A(k, ω)dω

for two cases: bare band (dashed
blue curve) and with
electron-phonon interaction
included (solid red curve). The
inset is a schematic which
illustrates the renormalized energy
bands filled to the Fermi level EF

with finite probability for some
holes to exist below the Fermi
level. Interband transitions are
now possible for energies below
2µ.
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AC background in magnetic field
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a

Reσxx(Ω) in units πe
2/2h

(universal background) for
T = 10K, scattering rate
Γ = 2.5meV.

It is not surprising that for low B

the universal AC background
survives. The figures is plotted on
the base of the formula which
includes the sum over transitions
between Landau levels:
V.P. Gusynin, S.G Sh and J.P.
Carbotte, J. Phys. Cond. Mat.
19, 026222 (07).
Is there a simpler low-field
representation for conductivity?
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Evolution of the Drude peak
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Reσxx(Ω) in units πe
2/2h

for B = 0.1T, T = 10 K,
and scattering rate
Γ = 1meV. For green line
µ is getting close to
E1 = 11.5meV.

All thick lines are computed using the
full expression with the sum over Landau
levels and the thin lines using a simple
expression with the “relativistic”
cyclotron frequency, ωc = |eB|v 2

F
/(c|µ|):

Reσxx(Ω) =
2e

2

h
T ln

(

2 cosh
µ

2T

)

×
[

2Γ

(ωc − Ω)2 + 4Γ2
+

2Γ

(ωc + Ω)2 + 4Γ2

]

Valid for
E1 = L(B) =

√

2eB~v 2
F
/c . |µ|.
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Summary

Any conclusive comparison with experiment would need to
include additional interactions! So we did not try to fit the
data.

Because the bare band DOS is linear in energy rather than
constant, an image of the phonons is retained in dressed DOS
and a first derivative of N(ω) provides an ideal baseline to
study boson structures.

Renormalization of v0, µ, η, ωd by 1 → 1/(1 + λeff ).

Drude peak evolves into a peak at the cyclotron frequency.

Thank you very much for inviting
and listening!
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