The ABC of graphene trilayers

Edward McCann

Lancaster University, UK

in collaboration with Mikito Koshino Tokyo Institute of Technology, Japan

The Daiwa Anglo-Japanese Foundation

 $\begin{array}{c|c}
 & \varepsilon/\gamma_1^2 \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & &$

AB-stacked bilayer: Berry phase 2π

a combination of monolayer-like and bilayer-like bands

The ABC of graphene trilayers: using a simple (tight-binding) model, can we identify any novel features in their low-energy electronic spectrum?

Overview

- Review of tight-binding model of monolayers and bilayers
- ABA-stacked trilayers
- ABC-stacked trilayers

Electronic dispersion of a monolayer

Saito *et al*, "Physical Properties of Carbon Nanotubes" (Imperial College Press, London, 1998)

Two bands: no energy gap at the K-points

To calculate the transfer integral for hopping from site A to site B we need to determine factors like

$$2^{i\vec{k}\cdot(\vec{R}_B-\vec{R}_A)}$$

that depend on the atomic positions \vec{R}_A , \vec{R}_B

Electronic dispersion of a monolayer

Saito *et al*, "Physical Properties of Carbon Nanotubes" (Imperial College Press, London, 1998)

Two bands: no energy gap at the K-points

Exactly at the K point: $\vec{k} = \left(\frac{4\pi}{3a}, 0\right)$

Electronic dispersion of a monolayer

Saito *et al*, "Physical Properties of Carbon Nanotubes" (Imperial College Press, London, 1998)

Two bands: no energy gap at the K-points

Exactly at the K point: $\vec{k} = \left(\frac{4\pi}{3a}, 0\right)$

Two uncoupled triangular sub-lattices

The Dirac Hamiltonian gives a linear spectrum E = v|p| around each K point – with no gap between conduction and valence bands.

Two bands: no energy gap at the K-points

Near the K point:
$$\vec{k} = \left(\frac{4\pi}{3a}, 0\right) + \frac{\vec{p}}{\hbar}$$

Coupling between triangular sub-lattices occurs in linearin-momentum terms:

$$\hat{H}_1 = v \begin{pmatrix} 0 & p_x - ip_y \\ p_x + ip_y & 0 \end{pmatrix}$$

written in a two-component basis of A and B sites.

Bloch function amplitudes (e.g., in the valley K) on the AB sites ('pseudospin') mimic spin components of a relativistic particle.

Pseudospin and chirality: Berry's phase π

$$\hat{H}_{1} = v \begin{pmatrix} 0 & p_{x} - ip_{y} \\ p_{x} + ip_{y} & 0 \end{pmatrix} = v\vec{\sigma} \cdot \vec{p} = vp\vec{\sigma} \cdot n$$

Chiral Dirac-type (relativistic) electrons: pseudospin of plane waves is linked to the **momentum direction, which determines unusual transport properties of graphene.**

chiral plane wave states

Bilayer [Bernal (AB) stacking]

Bilayer [Bernal (AB) stacking]

$$\begin{array}{cccc} A & \widetilde{B} & \widetilde{A} & B \\ \text{Bilayer} \\ \text{Hamiltonian} & H = \begin{pmatrix} 0 & 0 & 0 & \mathbf{v}\pi^+ \\ 0 & 0 & \mathbf{v}\pi & 0 \\ 0 & \mathbf{v}\pi^+ & 0 & \gamma_1 \\ \mathbf{v}\pi & 0 & \gamma_1 & 0 \end{pmatrix} \begin{array}{c} A \\ \widetilde{B} \\ \widetilde{A} \\ B \end{array}$$

Trigonal warping in bilayer graphene

EM and V.I. Fal'ko, PRL 96, 086805 (2006)

 $v_3 = \frac{\sqrt{3}}{2} a \gamma_3 / \hbar$

 $\pi = p_x + ip_y$

Trigonal warping in bilayer graphene

 \mathcal{E}

EM and V.I. Fal'ko, PRL **96**, 086805 (2006)

$$H_{2} = \frac{-1}{2m} \begin{pmatrix} 0 & (\pi^{+})^{2} \\ \pi^{2} & 0 \end{pmatrix} + v_{3} \begin{pmatrix} 0 & \pi \\ \pi^{+} & 0 \end{pmatrix} + \dots$$
Perturbation arising from $v_{3} = \frac{\sqrt{3}}{2} a \gamma_{3} / \hbar$
"skew" interlayer coupling $\pi = p_{x} + ip_{y}$

$$\varepsilon^{2} = \left(\frac{p^{2}}{2m}\right)^{2} - \frac{\xi v_{3} p^{3}}{m} \cos 3\phi + v_{3}^{2} p^{2}$$
Dispersion is linear inside each pocket, with chirality corresponding to that of a monolayer J.L. Manes, F. Guinea, and M.A. Vozmediano, PRB 75, 155424 (2007); G.P. Mikitik and Y. Sharlai, PRB 77, 113407 (2008).
Lifshitz transition: Fermi surface separation $\varepsilon_{L} \approx \frac{\gamma_{1}}{4} \left(\frac{v_{3}}{v}\right)^{2} \sim 1 meV$

Low-energy Hamiltonian of bilayer graphene

EM and V.I. Fal'ko, PRL 96, 086805 (2006)

$$H_{2} = \frac{-1}{2m} \begin{pmatrix} 0 & (\pi^{+})^{2} \\ \pi^{2} & 0 \end{pmatrix} + v_{3} \begin{pmatrix} 0 & \pi \\ \pi^{+} & 0 \end{pmatrix} + \dots$$

Perturbation arising from $v_{3} = \frac{\sqrt{3}}{2} a \gamma_{3} / \hbar$
"skew" interlayer coupling $\pi = p_{x} + ip_{y}$

Low-energy Hamiltonian of monolayer graphene

Ajiki and Ando, JPSJ **62**, 2470 (1993) Ando, Nakanishi, and Saito, JPSJ **67**, 2857 (1998)

$$H_{1} = v \begin{pmatrix} 0 & \pi^{+} \\ \pi & 0 \end{pmatrix} - \mu \begin{pmatrix} 0 & \pi^{2} \\ (\pi^{+})^{2} & 0 \end{pmatrix} + \dots$$

Perturbation arising from higher-order in momentum expansion

Role of Υ₄ in bilayer graphene

 $v_4 = \frac{\sqrt{3}}{2} a \gamma_4 / \hbar$

 $\pi = p_x + ip_y$

Role of *γ*₄ in bilayer graphene

$$H_{2} = \frac{-1}{2m} \begin{pmatrix} 0 & (\pi^{+})^{2} \\ \pi^{2} & 0 \end{pmatrix} + \frac{2vv_{4}p^{2}}{\gamma_{1}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \dots$$

electron-hole asymmetry arising $v_{4} = \frac{\sqrt{3}}{2}a\gamma_{4}/\hbar$
 $\pi = p_{x} + ip_{y}$

Interlayer asymmetry gap in bilayer graphene

Interlayer asymmetry gap in bilayer graphene A site; **Bilayer** lower layer $\frac{-\Delta^{\prime}}{2} - p^2 e^{-2i\varphi} / 2m$ $\frac{p^2 e^{2i\varphi}}{2m} - \frac{\Delta}{2}$

$$\Rightarrow E = \pm \sqrt{\frac{\Delta^2}{4} + \left(\frac{p^2}{2m}\right)^2}$$

H =

EMcC and VI Fal'ko, PRL 96, 086805 (2006); EMcC, PRB 74, 161403(R) (2006); H Min, BR Sahu, SK Banerjee, and AH MacDonald, PRB 75, 155115 (2007); EV Castro et al, PRL 99, 216802 (2007)

AB-stacked bilayer

$$\hat{H}_{bilayer}^{(eff)} =$$

$$-\frac{v^{2}}{\gamma_{1}}\begin{pmatrix} 0 & (p_{x}-ip_{y})^{2} \\ (p_{x}+ip_{y})^{2} & 0 \end{pmatrix} \text{ chirality}$$

$$+v_{3}\begin{pmatrix} 0 & p_{x}+ip_{y} \\ p_{x}-ip_{y} & 0 \end{pmatrix} \qquad \gamma_{3}: \text{ trigonal warping}$$

$$+\frac{2vv_{4}p^{2}}{\gamma_{1}}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \gamma_{4}: \text{ e-h asymmetry}$$

$$+\Delta\left[1-\frac{2v^{2}p^{2}}{\gamma_{1}^{2}}\right]\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \text{asymmetry gap}$$

This isn't an exhaustive list: e.g. next-nearest neighbours, non-orthogonality, other on-site asymmetry terms,

Interlayer asymmetry gap in bilayer graphene

T Ohta, A Bostwick, T Seyller, K Horn, E Rotenberg, Science 313, 951 (2006)

Lawrence Berkeley National Lab. (US), Fritz-Haber-Institut and University of Erlangen-Nuremburg (Germany).

ARPES measurements of heavily doped bilayer graphene synthesized on a silicon carbide substrate

Gate-tunable band-gap in bilayer graphene

 $E_{g} \sim 10 \, meV$

Trilayer graphene with perpendicular electric field

C.L. Lu *et al*, PRB **73**, 144427 (2006) Band gap (light lines)

Theory of band structure of ABA-stacked trilayer graphene

0.04

3 layers of carbon atoms
6 atoms in the unit cell (A1,B1,A2,B2,A3,B3)
Hopping within a layer γ₀
Interlayer coupling γ₁,γ₃,γ₄
Next-nearest layer γ₂,γ₅

3 layers of carbon atoms
6 atoms in the unit cell (A1,B1,A2,B2,A3,B3)
Hopping within a layer γ₀
Interlayer coupling γ₁,γ₃,γ₄
Next-nearest layer γ₂,γ₅

$$\widetilde{H} = \begin{pmatrix} A1 & B1 & A2 & B2 & A3 & B3 \\ 0 & \nu \pi^{+} & \nu_{4} \pi^{+} & \nu_{3} \pi & \gamma_{2} & 0 \\ \nu \pi & 0 & \gamma_{1} & \nu_{4} \pi^{+} & 0 & \gamma_{5} \\ \nu_{4} \pi & \gamma_{1} & 0 & \nu \pi^{+} & \nu_{4} \pi & \gamma_{1} \\ \nu_{3} \pi^{+} & \nu_{4} \pi & \nu \pi & 0 & \nu_{3} \pi^{+} & \nu_{4} \pi \\ \gamma_{2} & 0 & \nu_{4} \pi^{+} & \nu_{3} \pi & 0 & \nu \pi^{+} \\ 0 & \gamma_{5} & \gamma_{1} & \nu_{4} \pi^{+} & \nu \pi & 0 \end{pmatrix} \begin{bmatrix} A1 \\ B1 \\ B2 \\ B2 \\ A3 \\ B3 \end{bmatrix}$$

$$\pi = p_x + ip_y$$

$$v = \frac{\sqrt{3}}{2} a\gamma_0 / \hbar$$

$$v_3 = \frac{\sqrt{3}}{2} a\gamma_3 / \hbar$$

$$v_4 = \frac{\sqrt{3}}{2} a\gamma_4 / \hbar$$

3 layers of carbon atoms
6 atoms in the unit cell (A1,B1,A2,B2,A3,B3)
Hopping within a layer γ₀
Interlayer coupling γ₁,γ₃,γ₄
Next-nearest layer γ₂,γ₅

A1 Couplings γ₀,γ₃,γ₄ all occur between 3
 B1 nearest neighbours so appear linear in small momentum p

B2

A3

B3

3 layers of carbon atoms
6 atoms in the unit cell (A1,B1,A2,B2,A3,B3)
Hopping within a layer γ₀
Interlayer coupling γ₁,γ₃,γ₄
Next-nearest layer γ₂,γ₅

A1 Couplings γ₁,γ₂,γ₅ are vertical (with
B1 only 1 partner) so are independent of small momentum p
B2
A3

3 layers of carbon atoms
6 atoms in the unit cell (A1,B1,A2,B2,A3,B3)
Hopping within a layer γ₀
Interlayer coupling γ₁,γ₃,γ₄
Next-nearest layer γ₂,γ₅
Interlayer asymmetry U₁,U₂,U₃

$$\widetilde{H} = \begin{pmatrix} A1 & B1 & A2 & B2 & A3 & B3 \\ U_1 & v\pi^+ & v_4\pi^+ & v_3\pi & \gamma_2 & 0 \\ v\pi & U_1 & \gamma_1 & v_4\pi^+ & 0 & \gamma_5 \\ v_4\pi & \gamma_1 & U_2 & v\pi^+ & v_4\pi & \gamma_1 \\ v_3\pi^+ & v_4\pi & v\pi & U_2 & v_3\pi^+ & v_4\pi \\ \gamma_2 & 0 & v_4\pi^+ & v_3\pi & U_3 & v\pi^+ \\ 0 & \gamma_5 & \gamma_1 & v_4\pi^+ & v\pi & U_3 \end{pmatrix} \begin{bmatrix} A1 \\ B1 \\ B2 \\ B2 \\ A3 \\ B3 \end{bmatrix}$$

Introduce new basis:

$$\begin{split} \phi_1 &= (A1 - A3)/\sqrt{2} & \text{odd} & U_3 - \cdots & A3 \text{ B3} \\ \phi_2 &= (B1 - B3)/\sqrt{2} & \text{odd} & U_2 - \cdots & \gamma_2 & A2 \\ \phi_3 &= (A1 + A3)/\sqrt{2} & \text{even} & U_2 - \cdots & \gamma_2 & A2 \\ \phi_4 &= B2 & \text{even} & U_1 - \cdots & A1 \text{ B1} \\ \phi_5 &= A2 & \text{even} & U_1 - \cdots & A1 \text{ B1} \\ \phi_6 &= (B1 + B3)/\sqrt{2} & \text{even} & U_1 - \cdots & U_1 + U_2 +$$

Introduce new asymmetry parameters:

$$\Delta_{1} = (U_{1} - U_{3})/2 \quad \text{odd}$$
$$\Delta_{2} = (U_{1} - 2U_{2} + U_{3})/6 \quad \text{even}$$

asymmetry between outer layers central layer is at different energy to the (average of the) outer ones average energy is zero

 γ_5

 $U_1 + U_2 + U_3 = 0$

ABA-stacked trilayer graphene: next-nearest layer coupling

separate monolayer and bilayer bands (2 each at low energy, plus 2 bilayer bands at $\pm \sqrt{2} \gamma_1$)

 γ_2 , γ_5 shift the monolayer and bilayer bands... to produce a gap

or an overlap

• Δ_1 mixes monolayer and bilayer bands •2 bands go to energy $\pm \Delta_1$ •2 bands stay near zero energy with anti-crossing at momentum $p \approx \Delta_1/v$ •size of hybridization gap is ~ $|\gamma_2 - \gamma_5|/2$

Unlike bilayer, the gap doesn't grow with Δ_1 , only the position of the anticrossing p ~ Δ_1 / v

ABA-stacked trilayer graphene: low-energy effective Hamiltonian #1

$$H = \begin{pmatrix} 0 & v\pi^{+} & \Delta_{1} & 0 & 0 & 0 \\ v\pi & 0 & 0 & 0 & 0 & \Delta_{1} \\ \Delta_{1} & 0 & 0 & 0 & 0 & v\pi^{+} \\ 0 & 0 & 0 & 0 & v\pi & 0 \\ 0 & 0 & 0 & v\pi^{+} & 0 & \sqrt{2}\gamma_{1} \\ 0 & \Delta_{1} & v\pi & 0 & \sqrt{2}\gamma_{1} & 0 \end{pmatrix}$$

Let's simplify things by keeping only v, γ_1 and Δ_1 .

ABA-stacked trilayer graphene: low-energy effective Hamiltonian #1

$$H = \begin{pmatrix} 0 & v\pi^{+} & \Delta_{1} & 0 & 0 & 0 \\ v\pi & 0 & 0 & 0 & 0 & \Delta_{1} \\ \Delta_{1} & 0 & 0 & 0 & 0 & v\pi^{+} \\ 0 & 0 & 0 & 0 & v\pi & 0 \\ 0 & 0 & 0 & v\pi^{+} & 0 & \sqrt{2\gamma_{1}} \\ 0 & \Delta_{1} & v\pi & 0 & \sqrt{2\gamma_{1}} & 0 \\ \end{pmatrix}$$
A3 B3
$$\eta_{1}$$

$$A3 B3$$

$$A3 B3 B3 B3$$

$$A3 B3 B3 B3$$

$$A3 B3 B3 B3 B3 B3$$

$$A3 B3 B3 B3 B3 B3$$

There are four bands near zero energy (at $\varepsilon << \gamma_1$) so we can eliminate the "high-energy" bilayer components: $\phi_5 = A2$ $\phi_6 = (B1 + B3)/\sqrt{2}$

A1 B1

A2

γ₁

B2

 $\pi =$

ABA-stacked trilayer graphene: low-energy effective Hamiltonian #1

Effective Hamiltonian describing four bands near zero energy (at $\varepsilon << \gamma_1$)

ABA-stacked trilayer graphene: low-energy effective Hamiltonian #2: large Δ_1

 $= (A1 + A3) / \sqrt{2}$

Summary of ABA-trilayer

- ABA-stacked trilayer graphene:
 - Interlayer asymmetry $\Delta_{\rm 1}$ hybridises low-energy linear and parabolic bands
 - Two low-energy bands with an anti-crossing and gap << Δ_1
 - The bands still support chiral quasiparticles
 - Density of states and minimal conductivity increase with $\Delta_{_1}$

Mikito Koshino and E McCann, Phys Rev B 79, 125443 (2009).

3 layers of carbon atoms
6 atoms in the unit cell (A1,B1,A2,B2,A3,B3)
Hopping within a layer γ₀
Interlayer coupling γ₁,γ₃,γ₄
Next-nearest layer γ₂

3 layers of carbon atoms
6 atoms in the unit cell (A1,B1,A2,B2,A3,B3)
Hopping within a layer γ₀
Interlayer coupling γ₁,γ₃,γ₄
Next-nearest layer γ₂
Interlayer asymmetry U₁,U₂,U₃

$$H = \begin{pmatrix} A1 & B1 & A2 & B2 & A3 & B3 \\ U_1 & v\pi^+ & v_4\pi^+ & v_3\pi & 0 & \gamma_2/2 \\ v\pi & U_1 & \gamma_1 & v_4\pi^+ & 0 & 0 \\ v_4\pi & \gamma_1 & U_2 & v\pi^+ & v_4\pi^+ & v_3\pi \\ v_3\pi^+ & v_4\pi & v\pi & U_2 & \gamma_1 & v_4\pi^+ \\ 0 & 0 & v_4\pi & \gamma_1 & U_3 & v\pi^+ \\ \gamma_2/2 & 0 & v_3\pi^+ & v_4\pi & v\pi & U_3 \end{pmatrix} \begin{bmatrix} A1 \\ B1 \\ B2 \\ B3 \end{bmatrix}$$

3 layers of carbon atoms
6 atoms in the unit cell (A1,B1,A2,B2,A3,B3)
Hopping within a layer γ₀
Interlayer coupling γ₁,γ₃,γ₄
Next-nearest layer γ₂
Interlayer asymmetry U₁,U₂,U₃

A3

B3

A1 Couplings γ₀,γ₃,γ₄ all occur between 3
 B1 nearest neighbours so appear linear in small momentum p
 B2 _____

3 layers of carbon atoms
6 atoms in the unit cell (A1,B1,A2,B2,A3,B3)
Hopping within a layer γ₀
Interlayer coupling γ₁,γ₃,γ₄
Next-nearest layer γ₂
Interlayer asymmetry U₁,U₂,U₃

B3

A1 Couplings γ₁, and γ₂ are vertical (with
B1 only 1 partner) so are independent of small momentum p
B2
A3

 $\gamma_2 = \gamma_3 = \gamma_4 = U_1 = U_2 = U_3 = 0$

high-energy bands created by B1A2 and B2A3 dimers

low-energy bands created by effective hopping A1 to B3: cubic generalisation of bilayer bands

F. Guinea *et al*, PRB **73**, 245426 (2006); S. Latil and L. Henrard, PRL **97**, 036803 (2006); C.-L. Lu *et al*, APL **89**, 221910 (2006); M. Aoki and H. Amawashi, SSC **142**, 123 (2007).

 $\gamma_2 = \gamma_3 = \gamma_4 = U_1 = U_2 = U_3 = 0$

high-energy bands created by B1A2 and B2A3 dimers

low-energy bands created by effective hopping A1 to B3: cubic generalisation of bilayer bands

$$\hat{H}_{ABC}^{(eff)} = \frac{v^3}{\gamma_1^2} \begin{pmatrix} 0 & \left(p_x - ip_y\right)^2 \\ \left(p_x + ip_y\right)^3 & 0 \end{pmatrix}$$

chirality related to Berry's phase 3π

A2

 γ_2

B2

F. Guinea *et al*, PRB **73**, 245426 (2006); J.L. Manes, F. Guinea, and M.A. Vozmediano, PRB **75**, 155424 (2007); H. Min and A.H. MacDonald, PRB **77**, 155416 (2008).

AB-stacked bilayer

ABC-stacked trilayer

$$H_{bilayer}^{(eff)} = H_{ABC}^{(eff)} =$$

$$-\frac{v^{2}}{\gamma_{1}} \begin{pmatrix} 0 & (p_{x} - ip_{y})^{2} \\ (p_{x} + ip_{y})^{2} & 0 \end{pmatrix} \text{ chirality } \frac{v^{3}}{\gamma_{1}^{2}} \begin{pmatrix} 0 & (p_{x} - ip_{y})^{3} \\ (p_{x} + ip_{y})^{3} & 0 \end{pmatrix}$$

$$+v_{3} \begin{pmatrix} 0 & p_{x} + ip_{y} \\ p_{x} - ip_{y} & 0 \end{pmatrix} \text{ trigonal warping}$$

$$+\frac{2vv_{4}p^{2}}{\gamma_{1}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \gamma_{4}: \text{ e-h} \text{ asymmetry}$$

$$+\Delta \left[1 - \frac{2v^{2}p^{2}}{\gamma_{1}^{2}}\right] \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \text{gap}$$

ABC-stacked trilayer graphene: interlayer asymmetry

- 3 layers of carbon atoms
 6 atoms in the unit cell (A1,B1,A2,B2,A3,B3)
 Hopping within a layer γ₀
 Interlayer coupling γ₁,γ₃,γ₄
 Next-nearest layer γ₂
- Interlayer asymmetry U₁,U₂,U₃

New asymmetry parameters:

$$\Delta_1 = (U_1 - U_3)/2$$

$$\Delta_2 = (U_1 - 2U_2 + U_3)/6$$

breaks symmetry between A1 and B3 sites, opening a gap

$$\Delta_{1} \left[1 - \frac{v^{2} p^{2}}{\gamma_{1}^{2}} \right] \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

in A1/B3 basis

F. Guinea *et al*, PRB **73**, 245426 (2006); M. Aoki and H. Amawashi, SSC **142**, 123 (2007).

ABC-stacked trilayer graphene: interlayer asymmetry

- 3 layers of carbon atoms
 6 atoms in the unit cell (A1,B1,A2,B2,A3,B3)
 Hopping within a layer γ₀
 Interlayer coupling γ₁,γ₃,γ₄
 Next-nearest layer γ₂
- Interlayer asymmetry U₁,U₂,U₃

New asymmetry parameters:

$$\Delta_{1} = (U_{1} - U_{3})/2$$

$$\Delta_{2} = (U_{1} - 2U_{2} + U_{3})/6 \longrightarrow$$

The central layer is at a different potential to the outer layers: it introduces e-h Δ_2

 $\Delta_2 \left[1 - \frac{3v^2 p^2}{\gamma_1^2} \right] \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

In a bilayer, a similar term is produced by asymmetry between the dimer (B1A2) and non-dimer sites (A1B2)

$$\mathbf{I}_{graphite} \begin{bmatrix} 1 - \frac{2\nu^2 p^2}{\gamma_1^2} \end{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

AB-stacked bilayer

ABC-stacked trilayer

$$\begin{aligned} \hat{H}_{bilayer}^{(eff)} &= & \hat{H}_{ABC}^{(eff)} &= \\ -\frac{v^2}{\gamma_1} \begin{pmatrix} 0 & (p_x - ip_y)^2 \\ (p_x + ip_y)^2 & 0 \end{pmatrix} & \text{chirality} & \frac{v^3}{\gamma_1^2} \begin{pmatrix} 0 & (p_x - ip_y)^3 \\ (p_x + ip_y)^3 & 0 \end{pmatrix} \\ + v_3 \begin{pmatrix} 0 & p_x + ip_y \\ p_x - ip_y & 0 \end{pmatrix} & \text{trigonal warping} \\ + \frac{2vv_4 p^2}{\gamma_1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \gamma_4 : \text{e-h} \\ \text{asymmetry} \\ + \Delta \left[1 - \frac{2v^2 p^2}{\gamma_1^2} \right] \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} & \text{asymmetry} \\ + \Delta_{graphike} \left[1 - \frac{2v^2 p^2}{\gamma_1^2} \right] \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \text{more e-h} \\ \text{asymmetry} & + \Delta_2 \left[1 - \frac{3v^2 p^2}{\gamma_1^2} \right] \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{aligned}$$

ABC-stacked trilayer graphene: role of γ_4

3 layers of carbon atoms
6 atoms in the unit cell (A1,B1,A2,B2,A3,B3)
Hopping within a layer γ₀
Interlayer coupling γ₁,γ₃,γ₄
Next-nearest layer γ₂
Interlayer asymmetry U₁,U₂,U₃

It creates the same term in the effective Hamiltonian as for the bilayer, describing electron-hole asymmetry

$$\frac{2\nu v_4 p^2}{\gamma_1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

This term only involves the outer two layers, so it will have the same form in all N-layer ABC multilayers (N>1).

ABC-stacked trilayer graphene: role of γ_3

3 layers of carbon atoms
6 atoms in the unit cell (A1,B1,A2,B2,A3,B3)
Hopping within a layer γ₀
Interlayer coupling γ₁,γ₃,γ₄
Next-nearest layer γ₂
Interlayer asymmetry U₁,U₂,U₃

"skew" interlayer coupling γ_3 contributes to trigonal warping

$$\frac{2\nu v_3 p^2}{\gamma_1} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

ABC-stacked trilayer graphene: role of γ_3 and γ_2

3 layers of carbon atoms
6 atoms in the unit cell (A1,B1,A2,B2,A3,B3)
Hopping within a layer γ₀
Interlayer coupling γ₁,γ₃,γ₄
Next-nearest layer γ₂
Interlayer asymmetry U₁,U₂,U₃

"skew" interlayer coupling γ_3 contributes to trigonal warping

vertical, next-nearest layer coupling
$$\gamma_2$$
 contributes to trigonal warping

$$\frac{2vv_3p^2}{\gamma_1} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\frac{\gamma_2}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

ABC-stacked trilayer graphene: role of γ_3 and γ_2

Even though coupling γ_2 may be small ($|\gamma_2| \sim 20 \text{meV}$?), the γ_2 term is important because it doesn't vanish at the K point.

S. Latil and L. Henrard, PRL 97, 036803 (2006);
C.-L. Lu *et al*, APL 89, 221910 (2006);
M. Aoki and H. Amawashi, SSC 142, 123 (2007).

"skew" interlayer coupling γ_3 contributes to trigonal warping

vertical, next-nearest layer coupling
$$\gamma_2$$
 contributes to trigonal warping

$$\frac{2vv_3p^2}{\gamma_1} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\frac{\gamma_2}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

ABC-stacked trilayer graphene: role of γ_3 and γ_2

Even though coupling γ_2 may be small ($|\gamma_2| \sim 20 \text{meV}$?), the γ_2 term is important because it doesn't vanish at the K point. It sets the energy scale for the Lifshitz transition: $\varepsilon_L \approx \frac{\gamma_2}{2} \sim 10 \text{ meV}$ cf. bilayer $\varepsilon_L \approx \frac{\gamma_1}{4} \left(\frac{\nu_3}{\nu}\right)^2 \sim 1 \text{meV}$

"skew" interlayer coupling γ_3 contributes to trigonal warping

$$\frac{2vv_3p^2}{\gamma_1} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

 $\frac{\gamma_2}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

vertical, next-nearest layer coupling γ_2 contributes to trigonal warping

Trigonal warping and Berry's phase

bilayer Berry's phase 2π

ABC-trilayer Berry's phase 3π

central pocket

$$\varepsilon_L \approx \frac{\gamma_1}{4} \left(\frac{v_3}{v}\right)^2 \sim 1 meV$$

no central pocket

$$\frac{\varepsilon_L}{2} \approx \frac{\gamma_2}{2} \sim 10 \, meV$$

Trigonal warping and Berry's phase

for N layers of ABC-stacked multilayers (with Berry phase Nπ)

AB-stacked bilayer

ABC-stacked trilayer

$$\begin{aligned} \hat{H}_{bilayer}^{(eff)} &= & \hat{H}_{ABC}^{(eff)} &= \\ -\frac{v^2}{\gamma_1} \begin{pmatrix} 0 & (p_x - ip_y)^2 \\ (p_x + ip_y)^2 & 0 \end{pmatrix} & \text{chirality} & \frac{v^3}{\gamma_1^2} \begin{pmatrix} 0 & (p_x - ip_y)^3 \\ (p_x + ip_y)^3 & 0 \end{pmatrix} \\ + v_3 \begin{pmatrix} 0 & p_x + ip_y \\ p_x - ip_y & 0 \end{pmatrix} & \text{trigonal} & + \left[-\frac{2vv_3p^2}{\gamma_1} + \frac{\gamma_2}{2} \right] \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\ &+ \frac{2vv_4p^2}{\gamma_1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \gamma_4 : e-h \\ asymmetry & + \frac{2vv_4p^2}{\gamma_1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ &+ \Delta \left[1 - \frac{2v^2p^2}{\gamma_1^2} \right] \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} & \text{asymmetry} \\ &+ \Delta_1 \left[1 - \frac{v^2p^2}{\gamma_1^2} \right] \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ &+ \Delta_{graphile} \left[1 - \frac{2v^2p^2}{\gamma_1^2} \right] \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \text{more e-h} \\ &\text{asymmetry} \\ &+ \Delta_2 \left[1 - \frac{3v^2p^2}{\gamma_1^2} \right] \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{aligned}$$

Summary

- Trilayers aren't the same as monolayers or bilayers
- ABA-stacked trilayer:
 - Combination of "monolayer" and "bilayer" bands
 - Interlayer asymmetry Δ_1 hybridises them
 - Two low-energy bands still support chiral quasiparticles
- ABC-stacked trilayer:
 - Cubic generalisation of monolayer and bilayer
 - Lifshitz transition at relatively large energy ~ $\gamma_2/2$ ~ 10meV
 - Lifshitz transition into 3 pockets (3π) not 4 (2π) as in bilayer.

Mikito Koshino and E. McCann, Physical Review B **79**, 125443 (2009). Mikito Koshino and E. McCann, arXiv:0906.4634