CMS Status Report and Early Physics Plans

J. Alcaraz (CIEMAT - Madrid) on behalf of the CMS Collaboration

XXXVII International Meeting on Fundamental Physics, Benasque (Spain) 9 February 2009

- The CMS experiment.
- CMS commissioning, performance with cosmics and first LHC beams
- Early physics: first analyses, EWK and top physics, early discoveries
- Conclusions.

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

The CMS design: goals

- Good muon identification and momentum resolution:
 - Redundant measurements and redundant trigger systems
 - $\Delta M_{\mu\mu} / M_{\mu\mu} \approx 1\%$ at 100 GeV
 - Unambiguous determination of the charge for $p_{\mu} < 1 \text{ TeV}$
- Good electromagnetic identification and photon/electron energy resolution:
 - $\Delta M_{ee} / M_{ee}$, $\Delta M_{\gamma\gamma} / M_{\gamma\gamma} \approx 1\%$ at 100 GeV
 - Large coverage and goof granularity, π^0 rejection
- Precise and efficient inner tracking, including vertex capabilities:
 - Efficient triggering and offline tagging of taus and b-jets
 - Pixel detectors close to the interaction region
- Good jet and missing transverse energy resolution:
 - Hermetic coverage, fine lateral segmentation

Energéticas, Medioambientales

v Tecnológicas

Compact... Muon... Solenoid

Transverse View

• All central tracking and calorimetry contained inside a superconducting solenoid (L = 13 m, r = 3m)

• Strong field (3.8 T) => very large BL²

• Iron yoke instrumented to host the muon spectrometer => Measurement of muon momentum thanks to the saturation of the iron

Simple, compact, but heavy and still enormous !

J. Alcaraz, CMS Status Report and Early Physics Plans, 9 February 2009

Energéticas, Medioambientales y Tecnológicas

5

The CMS detector at the LHC

Energéticas, Medioambientales

y Tecnológicas

Energéticas, Medioambientales

y Tecnológicas

CMS inner tracking system

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

CMS inner tracking system

- 3 layers of silicon pixel detectors: 66M pixels (sixe 100 x 150 μm²)
- 10 layers of silicon micro-strip detectors: 10M strips (80-180 μm variable strip pitch, ≈ 10 measurements, ≈ 4 of them two-dimensional in $|\eta|{<}2.4$

Energéticas, Medioambientales

y Tecnológicas

CMS inner tracking system

AN IMPRESSIVE TRACKER SYSTEM

- $\Delta p_T / p_T \approx 1-2\%$ ($|\eta| < 1.6$) at $p_T \approx 100$ GeV
 - Muon resolution dominated by inner tracking resolution for $p_T < \approx 100 \text{ GeV}$
- $\Delta d_{xy} \approx 10 \ \mu m$ resolution at 100 GeV
- Δz≈20-40 µm (|η|<2) resolution at 100 GeV</p>

Ciemat Centro de Investigaciones

Energéticas, Medioambientales

v Tecnológicas

CMS Muon Chambers

Barrel installation finished August 2007

End-cap lowering finished January 2008

Drift Tubes (DT) used in the barrel Cathode Strip Chambers (CSC) used in the end-caps

RPCs for fast trigger response

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

CMS Muon Chambers

□ The CMS muon system (barrel and also endcap) is optimized for:

Robust, efficient and redundant muon triggering system (chambers+RPCs)
 Efficient muon identification and reconstruction (|η|<2.4, redundant coverage)
 Precise measurement (< 10%) for TeV momenta (good alignment + level arm)

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

CMS Electromagnetic Calorimeter

More crystals (in volume or number) than in all previous HEP experiments combined

- 76K PbWO₄ crystals (≈ [Molière radius]² × 25 X₀) for precise electron/photon angular/energy measurements
 - Very high density, small radiation length (X₀=8.9 mm). small Molière radius (2.2 cm) radiation hard, fast response (80% of light output collected in 25 ns) → compactness, high granularity and precision
- System to be completed in February 2009 with lead+silicon pre-shower detector (≈ 3 X₀ depth, ≈ 2 mm pitch in X,Y) to increase granularity in front of end-caps

Ciemate Centro de Investigaciones Energéticas, Medioambientales

v Tecnológicas

J. Alcaraz, CMS Status Report and Early Physics Plans, 9 February 2009

13

CMS Electromagnetic Calorimeter

Extremely good resolution (stochastic term ≈ 2.8% at 1 GeV), low noise (noise term ≈ 120 MeV), and good uniformity/intercalibration (uniformity ≈ 0.3% from test-beam studies):

$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{2.8\%}{\sqrt{||E|}}\right)^2 + \left(\frac{0.12}{E}\right)^2 + (0.3\%)^2$$

CMS Hadronic Calorimetry

- Scintillator-brass/steel tile calorimeter: compact, hermetic, good segmentation and coverage (|η|<5.2)
- Jet angular resolution ~ 20 (30) mrad in $\varphi(\theta)$ at $E_T \ge 100 \text{ GeV}$
- Jet transverse energy resolution (using ECAL+HCAL only, barrel):

$$\left(\frac{\sigma}{\mathrm{E}_T}\right)^2 = \left(\frac{1.25}{\sqrt{\|\mathrm{E}_T}}\right)^2 + \left(\frac{5.6}{\mathrm{E}_T}\right)^2 + (3.3\%)^2$$

Energéticas, Medioambientales

y Tecnológicas

CMS Trigger system

 Challenging, but allows to be dependent on ``software" and use fully (more precise) reconstructed information at earlier stages..

J. Alcaraz, CMS Status Report and Early Physics Plans, 9 February 2009

iemot

CMS Completed and closed, September 2008

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

CMS Commissioning

Summer 06 Fall 08

MTCC CRUZET ... BEAM ... CRAFT

- MTCC: Magnet Test and Cosmic Challenge (summer 2006)
- CRUZET: Cosmic RUn at ZEro Tesla (Spring-Summer 2008)
- BEAM (September 2008)
- CRAFT: Cosmic Run At Four Teslas (Fall 2008)

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Magnet Test and Cosmic Challenge (MTCC, Summer 2006)

- a) Tests of CMS on surface with cosmic rays
- b) Detailed measurements of the magnetic field maps at different field strengths

Portions of the five subdetectors taking simultaneously data for the first time

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

First physics results from CMS CMS Note 2008/016

- 15 M cosmics through 5% of the muon barrel detector at B=3.8 T
- Stringent test of the alignment parameters in the muon detector

• Interesting measurement of the cosmic charge ratio!

J. Alcaraz, CMS Status Report and Early Physics Plans, 9 February 2009

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Fraction of CMS Systems in Global Runs

August 2008: all subsystems operational and ready for beam

J. Alcaraz, CMS Status Report and Early Physics Plans, 9 February 2009

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

iemat

First LHC beams seen in CMS

- 1. 10⁹ protons incident on (closed) collimators at 150 m upstream CMS (September 10th 2008):
 - a) Dedicated triggering system was used
 - b) Time synchronization and energy correlation studies were performed

Muon hits

Centro de Investigaciones Energéticas, Medioambientales v Tecnológicas

emot

First LHC beams seen in CMS

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Cosmic Runs At Four Teslas (CRAFT, Fall08, after LHC incident)

~ 1 month (Oct-Nov 2008) of continuous/smooth running, mostly at 3.8 T, with the whole CMS detector:

- 370M cosmics collected (~ 200M with all relevant components in)
- ~ 60-70% operational efficiency

•Some runs with > 15 horus lifetime, 2 Tbytes/hour

• ~ 400 Tbytes of raw and processed data

•Whole reconstruction/analysis chain in place (Tier0+Tier1+Tier2)

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Some highlights of CRUZET/CRAFT

• Impressive evolution of the Si-tracker internal alignment with time (and using only cosmic muons):

• We already have a reasonably well aligned tracker detector NOW!

Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

Some highlights of CRUZET/CRAFT

- Pixel-detector operational (99% barrel, 94% end-cap) and reasonably aligned:
 - 55k tracks, ~ 300 hits/module collected

Energéticas, Medioambientales

Centro de Investigaciones

y Tecnológicas

Barrel muon chambers almost 100% efficient and providing the expected resolution/wire

v Tecnológicas

Early physics with CMS

- NOT discussed: initial LHC "engineering" runs at √s = 900 GeV (injection energy), very low luminosities (< 10³⁰ cm⁻² s⁻¹).
- We mostly discuss physics studies at √s = 14 TeV, for instantaneous luminosities in the range10³⁰⁻10³² cm⁻² s⁻¹. The very first data (2009) will be collected at an energy near √s = 10 TeV (see next slide).
- We discuss physics for integrated luminosities << 1 fb⁻¹ in the CMS detector.
- In summary: the focus will be on:

EARLY PYHSICS MEASURENTS WITH THE CMS DETECTOR

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

The LHC at $\sqrt{s} = 10$ TeV

- Major changes with respect to \sqrt{s} = 14 TeV:
 - Cross sections reduced by a factor of two:
 - W/Z cross sections ~ 70% (slightly compensated by larger acceptance at lower rapidities)
 - ✓ Ttbar cross section ~ 50%
 - Higgs (m=200 GeV) ~ 50%
- Strong reduction of the energy reach for high masses and energy scales
 - \checkmark Z' resonance (m=2 TeV) ~ 30%
 - ✓ One order of magnitude less reach for new physics effects at scales of ≥ 4 TeV
- ✓ Subtle effects:
 - Less gluon-gluon relative to qqbar hard interactions (PDF effect)

J. Alcaraz, CMS Status Report and Early Physics Plans, 9 February 2009

ualy 2009

How does it compared with previous hadron colliders?

Ciemat

J. Alcaraz, CMS Status Report and Early Physics Plans, 9 February 2009

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

30

Typical amount of events in 1 pb⁻¹

Process	# events in 1 pb ⁻¹		
QCD jets with $p_T > 150 \text{ GeV}$	1000 (10% trigger bandwidth)		
J/Ψ → μ⁺μ⁻	15000		
Υ → μ⁺μ⁻	3000		
₩→μν	6000		
Z → μ⁺μ⁻	600		
Top-antitop → μν + jets	20, but distinguishable from background?		
Jets with $p_T > 1 \text{ TeV}$	10		

At $\sqrt{s} = 14$ TeV, per experiment, in the acceptance

•Understanding the LHC underlying event environment:

- •The underlying activity mainly affects the "transverse" region (in red)
- •This is a necessary step to tune our Monte Carlos (multiple interactions, ...)

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

• Understanding the charged hadron spectrum:

•LHC is a new energy domain, track multiplicities are huge.

•Studying the tracker performance: low pT, tracking, pattern recognition, dE/dX particle identification, ..

Ciemat Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

- Understanding jets. First steps (CMS):
 - •L1: offsets. Basic calibrations, pedestals, noise treatment, ...
 - •L2: equalize response as a function of pseudo-rapidity

• Understanding the lepton resolutions using mass constraints:

•Thousands of di-muons from J/Psi and Upsilon for 1 pb⁻¹, hundreds from Z.

•Opportunity to measure very precisely tracking and muon resolutions as a function of p_T (multiple scattering, alignment, magnetic field map, ...)

Ciemat

Centro de Investigaciones J. AICAIAZ, CI^{VI} Energéticas, Medioambientales y Tecnológicas

Why are early EW measurements interesting?

- 1) Because they are related with 'known' physics...
 - EW properties precisely 'measured' in previous colliders like LEP, HERA, Tevatron.
 - W/Z/γ*/top production already 'studied' in previous hadronic colliders (Tevatron)

- ... they become a unique tool to
 - Calibrate our detectors and their response (muons, electrons/photons, jets)
 - Understand detector details and develop sophisticated tools (b-tagging, b-jets, measurement of missing transverse energy)
 - Study the detector response in difficult kinematic regions (for new physics searches)

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Why are early EW measurements interesting?

J. Alcaraz, CMS Status Report and Early Physics Plans, 9 February 2009

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Why are early EW measurements interesting?

 3) Because physics channels involving Z,W,γ*,top production are easily distorted by almost any new physics sources at the new energy scales opened up by the LHC, even with low luminosity:

 \sqrt{s} (LHC) ~ 7-10 \sqrt{s} (Tevatron, LEP) !!

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Inclusive W/Z production

First 'electroweak' signals to be observed. Already at a luminosity of 1 pb⁻¹, thousands of W/Z leptonic decays will be at our disposal: σ(LHC) ~ several nb ~ 10 σ(Tevatron).

✓ Main guidelines:

- ✓ Selection W and Z samples with decays into leptons of high purity
- ✓ Simple criteria
- Minimally dependent on calibration uncertainties and limited knowledge of the detector response (i.e. start-up oriented).

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Example: Z/W->leptons

- Safe definitions of 'hard' leptons (L=10³² cm⁻²s⁻¹):
 - ✓ P_t > 20-25 GeV (well above trigger thresholds)
 - ✓ Well inside the detector acceptance (good control of trigger and detector efficiencies).
 - ✓ Loose isolation criteria.
- Efficiencies and backgrounds determined from data as much as possible.

 Relaxed cuts in general on reconstructed masses for Z, on missing transverse energy/mass for W

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

invariant mass are required

selection criteria OK to get initial samples for alignment and energy scale calibration

y Tecnológicas

Extracting efficiencies from data lepton probe lepton tag

•Extensive use of tag-and-probe methods with $L \ge 10 \text{ pb}^{-1}$: •Select pure Z samples by tightening criteria on the 'tag' lepton •Measure directly the efficiency on the unbiased 'probe'

Energéticas, Medioambientales

v Tecnológicas

Tag-and-probe method: simple example

•Important comments:

The method must be validated on Monte Carlo simulations
Some biases may arise due to intrinsic correlations between sides

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Determining backgrounds from data

Backgrounds are relatively small after cuts, but there can be disagreements with simulations: estimate them from data too

J. Alcaraz, CMS Status Report and Early Physics Plans, 9 February 2009

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

emot

Determining backgrounds from data

Methods to determine QCD backgrounds in W->lv

pp->W/Z + jets CMS: visible cross sections [pb]

This channel is relevant for:

• Physics: QCD studies, understanding of QCD jet production in initial state

• Reduce jet energy scale uncertainties (via Z + jet)

• It is an important background for many new particle searches (when looking for leptons and jets)

v Tecnológicas

 Not so different from inclusive W/Z production. Jet must be identified and the QCD background must eliminated via very stringent lepton isolation cuts

Analysis from CMS (E_T(jet) > 50 GeV)

Number of W+jets events for L = 1 fb⁻¹

Channels	W+≥1jet	W+≥2jet	W+≥3jet	W+≥4jet
W+jets	260652 ± 828	56702 ± 390	10964 ± 178	2164 ± 81
Z+jets	9340 ± 96.6	3237 ± 56.9	972 ± 31.2	259 ± 16.1
tī+jets	12897 ± 113.6	11842 ± 108.8	9052 ± 95.2	5420 ± 73.6
WW/WZ/ZZ+jets	1077 ± 32.8	714 ± 26.7	386 ± 19.6	151 ± 12.3
total	283966 ± 842	72495 ± 409	21374 ± 205	7994 ± 111

sizeable top background in W+jet channels

Number of Z+jets events for L = 1 fb⁻¹

Channels	Z+≥1jet	Z+≥2jet	Z+≥3jet	Z+4≥jet
Z+jets	35109 ± 187	6185 ± 78.6	977 ± 31.3	156 ± 12.5
tī+jets	64 ± 8.0	58 ± 7.6	49 ± 7.0	32 ± 5.6
WW/WZ/ZZ+jets	33 ± 5.8	17 ± 4.2	5 ± 2.3	2 ± 1.4
total	35206 ± 188	6260 ± 79.1	1031 ± 32.2	190 ± 13.8

Z + 2 jets 'easily observable' with L ~ 10 pb⁻¹

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Diboson production

Di-boson production is important for:

- TGC measurements (but not early)
- Understand backgrounds for new physics (H->WW, for instance)

WZ production already observable in CMS with $L = 150 \text{ pb}^{-1} !!$

Centro de Investigaciones

Energéticas, Medioambientales

y Tecnológicas

Top production

✓ Top production is huge at the LHC: σ ~ 800 pb, dominant process is gg->ttbar , rate ~ 100 times Tevatron for the same luminosity.

 Understanding top production => understanding the whole detector: lepton identification, resolutions, isolation, jets, missing energy, btagging, ... => spin-offs: jet scale calibration, b-tagging efficiencies,...

Energéticas, Medioambientales

v Tecnológicas

Top production

✓ Progressive scenarios considered by CMS:

- L ~ 10 pb⁻¹: rediscover the top (leptonic W decays, semi-leptonic channels, measure cross sections for the first time)
- L ~ 100 pb⁻¹: establish methods, precise measurement of cross sections, first measurements of the top mass, start to understand detector effects in more detail.
- L ~ 1 fb⁻¹: detector 'almost' understood, exploit full physics potential.

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Final states ~ 2 jets + ll + MET

Final state ~ 4 jets + μ + MET

Top studies at L > 10 pb⁻¹

General misconception?

- ✓ There is the general assumption that detectors in hadronic colliders take too much time to calibrate and understand. This might not be the case at the LHC.
 - ✓ Note that at Tevatron top cross sections are small and collecting large EW samples for calibration took some time.
 - LHC detectors with an integrated luminosity of L ~ 100 pb⁻¹ will have an enormous amount of dilepton events at resonances (J/Psi. Y, Z) and ttbar events to understand jet resolutions and b-tagging.
 - The challenge is rather on the organizational side: we need to process and analyze all these useful data as soon as possible.

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

What about early discoveries?

• Using di-jet invariant mass spectrum. CMS: use ratios in different angular regions (new physics manifests at low eta).

J. Alcaraz, CMS Status Report and Early Physics Plans, 9 February 2009

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

iemot

What about early discoveries?

• 100 pb⁻¹ are enough to discover di-lepton resonances in the TeV range, as predicted in some extensions of the Standard Model.

iemot

Centro de Investigaciones

y Tecnológicas

Energéticas, Medioambientales

What about early discoveries?

Higgs and SUSY discoveries are not simple for L ~ 100 pb⁻¹
 One needs to understand backgrounds and tails in detail first...

•Many data-driven methods being developed (trying not to depend on Monte Carlo assumptions)

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Conclusions

- The CMS detector is essentially ready to analyze collisions at the LHC:
 - Our sub-detectors seem to work according to expectations
 - This has been extensively shown in several commissioning and test phases (MTCC, CRUZET, LHC beams, CRAFT).
 - The degree of understanding of our detector performance is already impressive (and we are still improving it). Probably we have never seen in the past such a degree of detector understanding previous to a running phase !
- LHC will provide sizeable EWK samples already at luminosities as low as 1 pb⁻¹ (jets, W/Z). Many processes will become observable before reaching 1 fb⁻¹: top (~10 pb⁻¹), W/Z + 4 jets (~100 pb⁻¹), dibosons (WZ, ~150 pb⁻¹). They will allow us to understand the CMS detector response in detail.
- Many new physics searches will be carried out in detail in CMS with L≤100 pb⁻¹
- CMS is now developing strategies and organizing efforts to understand as soon as possible our detectors and the basic QCD/EWK processes. This is very important for the success of the LHC physics programme.

Energéticas, Medioambientales

Centro de Investigaciones

v Tecnológicas

Backup

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

The LHC environment

Inelastic cross section ~ 100 mb

 10^{3} - 10^{6} events/s already at startup (L ~ 10^{28} - 10^{31} cm⁻²s⁻¹)

Very 'busy' events: mostly hadronic activity Huge radiation levels !!

Energéticas, Medioambientales

y Tecnológicas

Beam dumped in collimators

Time synchronization: time at a given detector position approximately known (protons spend ~ 15 ns travelling from one side to the other of the detector)

Internal HCAL synchronization

Ciemat

J. Alcaraz, CMS Status Report and Early Physics Plans, 9 February 2009

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

First LHC beams seen in CMS

Before capture

After capture

3. Circulating beams -> captured beams in RF cavities

J. Alcaraz, CMS Status Report and Early Physics Plans, 9 February 2009

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

iemat