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Introduction

Korteweg-de Vries equation

Korteweg-de Vries equation (1895):

∂tu + ∂3
x u + u ∂xu = 0

x ∈ I (I = R, T, (0, L)), t ∈ R, u = u(x , t) ∈ R.

Classical model for propagation of small amplitude long waves in
nonlinear dispersive media (e.g. water waves, plasma physics,...)
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Introduction

Well-posedness

x ∈ I = R
Temam [1969], Saut-Temam [1976], Bona-Scott [1976], Kato
[1983], Kruzhkov-Faminskii [1983], Kenig-Ponce-Vega
[1991,1996], Bourgain [1993],
Colliander-Keel-Staffilani-Takaoka-Tao [2003]: GWP in Hs(R),
s > −3/4.
x ∈ I = T
Bourgain [1993,1996]
Kappeler-Topalov [2006]: GWP in H−1(T)

x ∈ I = (0, L) + 3 b.c.
Bona-Sun-Zhang [2003,2009]: GWP in H−1(0, L).
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Introduction

Basic issues in Control Theory

(S)
du
dt

= f (u, h), u(0) = u0

Exact Controllability
Given T > 0, u0 and u1 in some space, can we find a control input
h = h(t) driving system (S) from u0 at t = 0 to u1 at t = T?

Stabilization
Can we find a closed-loop control h = h(u) such that the origin is
asymptotically (or exponentially) stable for (S)?

(Benasque, 2009) 5 / 28
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Introduction

Tools in Control Theory

Nonharmonic Fourier analysis (1D PDEs, Schrödinger)
Multipliers (wave, plates)
Carleman estimates (heat, Navier-Stokes)
Microlocal analysis (wave)
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Control of KdV

Control properties of KdV: bounded domain

∂tu + ∂3
x u + ∂xu + u ∂xu = 0

u(0, t) = h1(t), u(L, t) = h2(t), ux(L, t) = h3(t)

Control on the right (h1 = h2 = 0, R. [1997])
Local exact controllability if

L 6∈ N = {2π

√
k2 + l2 + kl

3
, k , l ∈ N∗}

Control on the left (h2 = h3 = 0, R. [2004])
Local null controllability.
J. Bona’ observation
For a solution u(x , t) = ei(kx−ωt) of ut + uxxx + ux = 0,
ω = k − k3 (dispersion relation). Hence ω < 0 for k >> 1: High
frequencies propagate to the LEFT.
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Control of KdV

Litterature (bounded domain)

Controllability: Zhang [1999], Coron-Crépeau [2004], Cerpa
[2007], Glass-Guerrero [2008,preprint], Cerpa-Crépeau [2009],
Chapouly [preprint]
Stabilization: Perla Menzala-Vasconcellos-Zuazua [2002],
Pazoto [2005], R.-Zhang [2006], Linares-Pazoto [2007],
Cerpa-Crépeau [2009]
Main tools: Compactness argument based upon Kato
smoothing effect: assume hi = 0 (i = 1, 2, 3).

u|t=0 ∈ L2(0, L) ⇒ u ∈ L2(0, T , H1(0, L))

(Benasque, 2009) 8 / 28



Control of KdV

Control properties of KdV: periodic domain

∂tu + ∂3
x u + u ∂xu = f (x , t), x ∈ T = R/(2π)Z

Forcing term f supported in some given open set ω ⊂ T.
To keep the mass

∫
T u(x , t)dx conserved, we impose the

condition [f ] := (2π)−1 ∫
T f dx = 0. We shall assume that

f (x , t) = [Gh](x , t) = g(x)

(
h(x , t)−

∫
T

g(y)h(y , t) dy
)

g being a fixed nonnegative, smooth function supported in ω with∫
T g(x)dx = 1.

Main contributions
Zhang [1990], Komornik-Russell-Zhang [1991], Russell-Zhang
[1993,1996]
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Control of KdV

Russell-Zhang results [1993]

∂tu + ∂3
x u = Gh, x ∈ T

Exact Controllability
For all T > 0 and u0, u1 ∈ Hs(T) (s ≥ 0) with [u0] = [u1], there
exists a control input h ∈ L2(0, T , Hs(T)) s.t. u(., 0) = u0,
u(., T ) = u1.
Exponential Stabilization
Let h = −G∗u = −Gu. Then there is some µ > 0 such that for all
s ≥ 0

||u(., t)− [u0]||s ≤ Ce−µt ||u0 − [u0]||s
where || · ||s = || · ||Hs(T).
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Control of KdV

Russell-Zhang results [1996]

∂tu + ∂3
x u + u ∂xu = Gh, x ∈ T

Local Controllability:
T > 0 and s ≥ 0 given. There is some δ > 0 s.t. for u0, u1 ∈ Hs(T)
with [u0] = [u1] and ||u0||s + ||u1||s ≤ δ, there exists a control input
h ∈ L2(0, T , Hs(T)) s.t. u(., 0) = u0, u(., T ) = u1.
Local Stabilization:
Let h = −G∗u = −Gu, s = 0 or s ≥ 1 given. There exist constants
M, δ, µ > 0 such that for ||u0 − [u0]||s ≤ δ

||u(., t)− [u0]||s ≤ Ce−µt ||u0 − [u0]||s
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Control of KdV

Ideas of the proof

Kato smoothing effect no longer valid on the torus. Fortunately,
Bourgain [1993] discovered a more subtle smoothing effect thanks
to which he proved the GWP in L2(T).
Tools for the proofs: contraction mapping principle in Bourgain
spaces
Perturbation arguments, yielding only local results

(Benasque, 2009) 12 / 28
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Control of KdV

Bourgain spaces

For b, s ∈ R and u(x , t) =
∫

R
∑

k∈Z û(k , τ)ei(kx+τ t) dτ, let

||u||2Xb,s
= ||W (−t)u||2Hb(R;Hs(T)) [W (t) = e−t∂3

x ]

=
∑

k

∫
R
〈k〉2s〈τ − k3〉2b|û(k , τ)|2dτ

||u||2Yb,s
=

∑
k

(∫
R
〈k〉s〈τ − k3〉b|û(k , τ)|dτ

)2

Xb,s (resp. Yb,s) completion of S(T×R) for the norm || · ||Xb,s (resp.
|| · ||Yb,s ). Finally Zb,s = Xb,s ∩ Yb− 1

2 ,s. Let X T
b,s, Z T

b,s be the
restriction spaces to (0, T ).

||u||X T
b,s

= inf{||v ||Xb,s |v = u on T× (0, T )}

(Benasque, 2009) 13 / 28
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Control of KdV

Bourgain spaces (2)

Z T
1
2 ,s

⊂ C([0, T ], Hs(T)).

||W (t)φ||Z T
b,s
≤ C||φ||s ∀b, s

||
∫ t

0
W (t − s)f (s)ds||Z T

1
2 ,s
≤ C||f ||Z T

− 1
2 ,s

Bilinear estimate

||(uv)x ||Z T
− 1

2 ,s
≤ CT θ||u||X T

1
2 ,s
||v ||X T

1
2 ,s

.

(Benasque, 2009) 14 / 28



Main results

The results

Joint work with
Camille Laurent, Université Paris-Sud (France), and
Bing-Yu Zhang, University of Cincinnati
Consider

∂tu + u∂xu + ∂3
x u = Gh = g(x)(h(x , t)−

∫
T

g(y)h(y , t) dy)

u(., 0) = u0

To simplify the exposition, assume [u(., t)] = [u0] = 0.

(Benasque, 2009) 15 / 28



Main results

Global exact controllability

Thm 1: Assume given s ≥ 0, R > 0. There exists T > 0 s.t. for

u0, u1 ∈ Hs(T), [u0] = [u1] = 0, ||u0||s + ||u1||s ≤ R

one can find h ∈ L2(0, T , Hs(T)) driving the system from u0 at t = 0 to
u1 at t = T

(Benasque, 2009) 16 / 28



Main results

Global exponential stabilization

Thm 2: s ≥ 0 given. There exists a constant µ > 0 such that for
u0 ∈ Hs(T) with [u0] = 0, we have for t ≥ 0

||u(., t)||s ≤ α(||u0||s)e−µt ||u0||s

α is a nondecreasing function depending on s.

(Benasque, 2009) 17 / 28



Main results

Sketch of the proofs

Thm 1 follows from Thm 2 and Russell-Zhang (local) controllability
To prove Thm 2 for s = 0, apply Zuazua’s compactness -
uniqueness strategy: using the Energy Identity (|| · || = || · ||L2(T)):

||u(t)||2 = ||u0||2 −
∫ t

0
||Gu(τ)||2dτ

it is sufficient to prove the Observability Inequality:

||u0||2 ≤ const
∫ T

0
||Gu(τ)||2dτ

This is done by contradiction. If not true there is a sequence
{un} ⊂ Z T

1
2 ,0

with ||un(0)|| ≤ R0 and∫ T

0
||Gun(τ)||2dτ <

1
n
||un(0)||2.

(Benasque, 2009) 18 / 28
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Main results

Proofs (continued)

Assume ||un(0)|| → α > 0.
wn = un − u → 0 weakly in X T

1
2 ,0

, hence strongly in X T
− 1

2 ,−1

unun,x − uux → 0 in X T
− 1

2 ,−1

wn → 0 in L2(0, T , L2(ω))

By a propagation of compactness, this implies wn → 0 in
L2

loc(0, T , L2(T)).
u = const on ω × (0, T ) hence by a propagation of regularity,
u ∈ C∞(T× (0, T )). The UCP yields that u = const = 0.
We get the contradiction from

||un(0)||20 = ||un(t0)||20 +

∫ t0

0
||Gun||20dt

and ||un(t0)||0 → 0.

(Benasque, 2009) 19 / 28



Main results

Propagation of compactness/regularity

Introduced in Dehman-Gérard-Lebeau [2006] and Laurent [2009] for
NLS.

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

ω
x

t

T
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Main results

Propagation of compactness

Assume T > 0, ω ⊂ T, 0 ≤ b′ ≤ b ≤ 1 and un ∈ X T
b,0, fn ∈ X T

−b,−2+2b
satisfy

∂tun + ∂3
x un = fn, n = 1, 2, ...

Assume further that ||un||X T
b,0
≤ const and

||un||X T
−b,−2+2b

+ ||fn||X T
−b,−2+2b

+ ||un||X T
−b′,−1+2b′

→ 0.

If un → 0 in L2(0, T , L2(ω)), then

un → 0 in L2
loc(0, T , L2(T)).

In practice, b = 1/2, b′ = 0

(Benasque, 2009) 21 / 28



Main results

Propagation of regularity

Assume T > 0, ω ⊂ T, 0 ≤ b < 1, r ∈ R and f ∈ X T
−b,r . Let u ∈ X T

b,r
solve

∂tu + ∂3
x u = f .

If u ∈ L2
loc(0, T , H r+ρ(ω)) for some ρ with

0 < ρ ≤ min{1− b,
1
2
}

Then
u ∈ L2

loc(0, T , H r+ρ(T)).

Corollary: Let u ∈ X T
1
2 ,0

solves ut + uxxx + uux = 0. Then

u ∈ C∞(ω × (0, T )) ⇒ u ∈ C∞(T× (0, T ))

(Benasque, 2009) 22 / 28



Main results

Rapid stabilization

Thm 3. Let λ > 0 and s ≥ 0. There exists δ > 0 and
Kλ ∈ L(Hs(T), Hs(T)) such that for ||u0||s ≤ δ and [u0] = 0, the
solution u of

∂tu + u∂xu + ∂3
x u = −GKλu, u(., 0) = u0,

satisfies
||u(., t)||s ≤ Ce−λt ||u0||s.

h = −Kλu is the feedback law given by Slemrod [1974] for the
linearized system.

(Benasque, 2009) 23 / 28



Main results

Time-varying feedback law

The feedback law h = −Gu (resp. h = −Kλu) yields a global
(resp. local) exponential stabilization with a given (resp. arbitrary)
decay rate.
Aim: combine both feedback laws to obtain a global stabilization
with an arbitrary decay rate.
Idea: use the feedback law h = −Gu far from 0 to get the global
stabilization, and the feedback law h = −Kλu close do 0 to get a
large decay rate.
In practice: avoid discontinuous feedback laws (difficulty to define
a solution!), and use a smooth (periodic) time-varying feedback
law, coinciding successively on half periods with −Gu and with
−Kλu (at least close to 0).

(Benasque, 2009) 24 / 28
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Main results

Time-varying feedback law (2)

Pick a 2−periodic smooth function θ(t) with θ(t) = 1 on [δ, 1− δ],
θ(t) = 0 on [1, 2], and a smooth function ρ(r) with ρ(r) = 1 for
0 ≤ r ≤ r0 < 1, ρ(r) = 0 for r ≥ 1
Set

−K (u, t) := ρ(||u||s)[θ(t/T )Kλu+θ((t−T )/T ) Gu] + (1−ρ(||u||s)) Gu

For ||u||s > 1, K (u, t) = −Gu
For ||u||s < r0

K (u, t) =

{
−Kλu if δT ≤ t ≤ (1− δ)T mod 2T
−Gu if (1 + δ)T ≤ t ≤ (2− δ)T mod 2T .
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Main results

Time-varying feedback law (3)

Thm 4: Let λ > 0 be given. There exists T0 > 0 such that for T > T0,
for each pair (t0, u0) with [u0] = 0, the solution of

ut + uux + uxxx = G K (u, t), u(., t0) = u0

satisfies

||u(., t)||s ≤ α(||u0||s)e−
1
2 λ(t−t0)||u0||s, for t ≥ t0.
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Main results

Future directions of research

Duration of the control process: can two states u0 and u1 be
connected by a trajectory of KdV in arbitrarily small time T? If not,
how T is related to the magnitude of ||u0||s and ||u1||s? Same
question for NLS.
Can we design a smooth time-invariant feedback law yielding a
global stabilization with an arbitrarily large decay rate?
x ∈ (0,+∞). Controllability (open for KdV) R. [2000]; Stabilization:
Linares-Pazoto [2009], R.-Pazoto [preprint]: “size” of the support
of the controler a(x) in the feedback term a(x)u.
Control of other water wave models: Boussinesq
Micu-Ortega-R.-Zhang [2009], Benjamin-Ono (BO), Benjamin
Bona Mahony (BBM),...
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Main results

Thank you for your attention!
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