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Korteweg-de Vries equation

@ Korteweg-de Vries equation (1895):
ou +03u +udu=0

@ xel(lI=R,T,(0,L), teR, u=u(x,t) eR.

@ Classical model for propagation of small amplitude long waves in
nonlinear dispersive media (e.g. water waves, plasma physics,...)
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Well-posedness

@ xcl=R
Temam [1969], Saut-Temam [1976], Bona-Scott [1976], Kato
[1983], Kruzhkov-Faminskii [1983], Kenig-Ponce-Vega
[1991,1996], Bourgain [1993],
Colliander-Keel-Staffilani-Takaoka-Tao [2003]: GWP in H°(R),
s> —3/4.
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[1983], Kruzhkov-Faminskii [1983], Kenig-Ponce-Vega
[1991,1996], Bourgain [1993],
Colliander-Keel-Staffilani-Takaoka-Tao [2003]: GWP in H°(R),
s> —3/4.

@xel=T
Bourgain [1993,1996]
Kappeler-Topalov [2006]: GWP in H~'(T)

@ xel=(0,L)+3b.c.
Bona-Sun-Zhang [2003,2009]: GWP in H='(0, L).
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Basic issues in Control Theory

() L=t m), u©0) = w

@ Exact Controllability
Given T > 0, ug and uy in some space, can we find a control input
h = h(t) driving system (S) fromupatt =0touy att=T7
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Basic issues in Control Theory

(§) = tuh), u(0) = o

@ Exact Controllability
Given T > 0, up and uq in some space, can we find a control input
h = h(t) driving system (S) fromupatt=0tou; att=T7

@ Stabilization
Can we find a closed-loop control h = h(u) such that the origin is
asymptotically (or exponentially) stable for (S)?
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Tools in Control Theory

@ Nonharmonic Fourier analysis (1D PDEs, Schrédinger)
@ Multipliers (wave, plates)

@ Carleman estimates (heat, Navier-Stokes)

@ Microlocal analysis (wave)
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Control properties of KdV: bounded domain

AU+ 93U + Oyu + U dxu =0
U(07 t) = h1(t)? U(Lv t) = h2(t)7 UX(L’ t) = h3(t)

@ Control on the right (hy = h, = 0, R. [1997])
Local exact controllability if

2 2
ng\/{zm/w, k| € N*)
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AU+ 93U + Oyu + U dxu =0
U(07 t) = h1(t)? U(Lv t) = h2(t)7 UX(La t) = h3(t)

@ Control on the right (1 = h, = 0, R. [1997])
Local exact controllability if

2 2
ng/\/_{zm/w, k.l € N*}

@ Control on the left (h, = h; = 0, R. [2004])
Local null controllability.
@ J. Bona’ observation
For a solution u(x, t) = e*=“D of Uy + Uy + Uy = 0,
w = k — k3 (dispersion relation). Hence w < 0 for k >> 1: High
frequencies propagate to the LEFT.
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Litterature (bounded domain)

@ Controllability: Zhang [1999], Coron-Crépeau [2004], Cerpa
[2007], Glass-Guerrero [2008,preprint], Cerpa-Crépeau [2009],
Chapouly [preprint]

@ Stabilization: Perla Menzala-Vasconcellos-Zuazua [2002],
Pazoto [2005], R.-Zhang [2006], Linares-Pazoto [2007],
Cerpa-Crépeau [2009]

@ Main tools: Compactness argument based upon Kato
smoothing effect: assume h; =0 (i = 1,2, 3).

Ui—o € L3(0,L) = wel?0,T,H'(0,L))

(Benasque, 2009) 8/28



Control properties of KdV: periodic domain

ou +33%u +udgu=~f(x,t), xeT=R/(2n)Z

Forcing term f supported in some given open set w C T.
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Control properties of KdV: periodic domain

°
ou 4+ 3u +udgu=fFf(x,t), xeT=R/2r)Z

Forcing term f supported in some given open set w C T.

@ To keep the mass j'T u(x, t)dx conserved, we impose the
condition [f] := fT f dx = 0. We shall assume that

f(x,t) =[Gh](x,t) = < (x,1) /g )

g being a fixed nonnegative, smooth function supported in w with
Jr9(x)dx = 1.
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T
Control properties of KdV: periodic domain

°
ou 4+ 3u +udgu=fFf(x,t), xeT=R/2r)Z
Forcing term f supported in some given open set w C T.

@ To keep the mass fT u(x, t)dx conserved, we impose the
condition [f] := fT f dx = 0. We shall assume that

f(x,t) = [Gh](x,t) = g(x) ( (x,1) /g h(y,t) dy>

g being a fixed nonnegative, smooth function supported in w with
Jr9(x)dx = 1.

@ Main contributions
Zhang [1990], Komornik-Russell-Zhang [1991], Russell-Zhang
[1993,1996]
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Russell-Zhang results [1993]

ou +3u=Gh, xeT
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T
Russell-Zhang results [1993]

ou +83u=Gh, xeT

@ Exact Controllability
Forall T > 0 and up, u1 € H*(T) (s > 0) with [up] = [u1], there
exists a control input h € L2(0, T, H5(T )) s.t. u(.,0) = wp,
u(., T) = uy.
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Russell-Zhang results [1993]

ou +d3u=Gh, xeT

@ Exact Controllability
Forall T > 0 and up, uy € H3(T) (s > 0) with [up] = [u1], there
exists a control input h € L?(0, T, H ( )) s.t. u(.,0) = wp,
u(., T) = uy.
@ Exponential Stabilization
Let h= —G*u = —Gu. Then there is some x> 0 such that for all
s>0
lu(., t) = [wo]lls < Ce™"!||uo — [wo]lls

where || - |[s = || - || s(T)-
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Russell-Zhang results [1996]

ou +3u+udu=Gh, xeT
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T
Russell-Zhang results [1996]

ou +d3u+udu=Gh, xeT

@ Local Controllability:
T > 0and s > 0 given. There is some ¢ > 0 s.t. for ug, uy € H3(T)
with [up] = [u1] and ||upl|s + ||u1]|s < 6, there exists a control input

he L2(0, T, HS(T)) s.t. u(.,0) = ug, u(., T) = uy.
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Russell-Zhang results [1996]

ou +d3u+udu=Gh, xeT

@ Local Controllability:
T > 0 and s > 0 given. There is some § > 0 s.t. for up, uy € H3(T)
with [ug] = [u1] and ||upl|s + ||ut]|s < 4, there exists a control input
h e L2(0, T, H(T)) s.t. u(.,0) = up, u(., T) = uy.

@ Local Stabilization:
Let h=—-G*u= —Gu, s=0or s > 1 given. There exist constants
M, 6, i > 0 such that for ||up — [uo]||s <

llu(., t) = [uo]lls < Ce™!||uo — [uo]lls
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Ideas of the proof

@ Kato smoothing effect no longer valid on the torus. Fortunately,
Bourgain [1993] discovered a more subtle smoothing effect thanks
to which he proved the GWP in L?(T).
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Ideas of the proof

@ Kato smoothing effect no longer valid on the torus. Fortunately,
Bourgain [1993] discovered a more subtle smoothing effect thanks
to which he proved the GWP in L2(T).

@ Tools for the proofs: contraction mapping principle in Bourgain
spaces

@ Perturbation arguments, yielding only local results
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Bourgain spaces

@ Forb,seRand u(x,t) = [u > 4z Uk, 7)€+ dr et
_+93
ol = IW(=0ullZpg.psemy [W(t) = e %]

5 Z/ k)25 (- — K3)2|i(k, )20l
2
B, = 3 ( [t k3>b|a<k,7)d7)

k
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Bourgain spaces

@ Forb,seRand u(x,t) = [ >y Uk, 7)/F70 dr let

ully, = [IW(=t)ulBpgmsmy [W(1) = e"%]

- Z/ K23 (7 — K3)20i(k, )2l
2
g, = 3 ( JRCKE k3>bm(k,7)\d7)

k

@ Xp s (resp. Yp s) completion of S(T x R) for the norm || - [|x, , (resp.
| ly,,)- Finally Zp s = Xp s N Ybf%,s' Let XbTS, bes be the
restriction spaces to (0, T).

lullxy, = inf{[[vlx, [v=uonTx (0, T)}
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Bourgain spaces (2)

° Z%Tﬁ C C([0, T], H5(T)).

° [[W(D)dllzr, < Cll¢lls Vb, s

ol [ Wit (5)asllzg < Clflzr,
@ Bilinear estimate

0
(W )xllzr, <CT HUHxT Vi -

l\)\
l\:\

(Benasque, 2009) 14/28



_____ |Mainresults |
The results

Joint work with
Camille Laurent, Université Paris-Sud (France), and
Bing-Yu Zhang, University of Cincinnati

Consider
AU + udyu + 93u = Gh = g(x)(h(x, ) — /g ay)
u(.,0) = wp

To simplify the exposition, assume [u(., t)] = [uo] = O.

(Benasque, 2009) 15/28



— L
Global exact controllability

Thm 1: Assume given s > 0, R > 0. There exists T > 0 s.t. for
Up, ty € H3(T), [uo] = [u] =0, Itolls+Iltills <R

one can find h € L2(0, T, H5(T)) driving the system from up at t = 0 to
ugatt=T

(Benasque, 2009)
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Global exponential stabilization

Thm 2: s > 0 given. There exists a constant . > 0 such that for
Up € H3(T) with [ug] = 0, we have for t > 0

lu(, lls < o(lluolls) e[| uol s

« is a nondecreasing function depending on s.
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- Manmsaults |
Sketch of the proofs

@ Thm 1 follows from Thm 2 and Russell-Zhang (local) controllability

(Benasque, 2009) 18/28



_Mainresults |
Sketch of the proofs
@ Thm 1 follows from Thm 2 and Russell-Zhang (local) controllability

@ To prove Thm 2 for s = 0, apply Zuazua’s compactness -
uniqueness strategy: using the Energy Identity (|| - || = [ - [|2()):

t
lu(t)|[> = |LIo|!2—/0 | Gu(r)|[?dr
it is sufficient to prove the Observability Inequality:
T
uol[2 < const/ |Gu(r)|[2dr
0

This is done by contradiction. If not true there is a sequence
{un} € ZT | with [|un(0)|| < Ro and
27

i
1
| 16un(Idr < 202
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— L
Proofs (continued)

Assume ||up(0)|| — a > 0.

® W, =u,—u— 0weaklyin X/ , hence strongly in X7,
29

1
5,0’ 1

@ Uplnyx — uuy — 0in XT,
-

e w, — 0in 20, T, L%(w))

@ By a propagation of compactness, this implies w, — 0 in
L2 (0, T,L3(T)).

@ u=constonw x (0, T) hence by a propagation of regularity,
ue C™(T x (0,T)). The UCP yields that u = const = 0.

@ We get the contradiction from

1

fo
[1un(0)I[§ = llun(to)Il3 +/0 | Gun|[5dt

and ||un(f)|lo — O.
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— L
Propagation of compactness/regularity

Introduced in Dehman-Gérard-Lebeau [2006] and Laurent [2009] for
NLS.

>
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- Manmsaults |
Propagation of compactness

Assume T >0,wCc T,0< b <b<1andu,e beo, f, € be,72+2b
satisfy
atUn—i‘a)S(Un:fn’ n:1,2,...

Assume further that HunHXbro < const and

Hun||xzb,72+2b T anszb,72+2b T HunHXIb',quzbl =&

If u, — 0in L?(0, T, L2(w)), then
up — 0in L2 (0, T, L3(T)).

loc

In practice, b=1/2, b’ =0
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— L
Propagation of regularity

Assume T >0,wCT,0<b<1,reRandfe X', . Letue X/,
solve

Ou + O3u = f.
If ue 2.0, T,H**(w)) for some p with
: 1
0 < p < min{1 _b’§}

Then
uel? (0, T, HP(T)).

Corollary: Let u € XlT0 solves Ut + Uxxx + Uty = 0. Then
27

ue C®wx(0,T)) = wuelC>®(Tx(0,T))

(Benasque, 2009)
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- Manmsaults |
Rapid stabilization

Thm 3. Let A > 0 and s > 0. There exists § > 0 and
K\ € L(H*(T), H3(T)) such that for ||up||s < ¢ and [ug] = 0, the
solution u of

AU + udyu 4+ 3u = —GKyu, u(.,0) = up,

satisfies
|u(., B)lls < Ce™||upl|s.

h = —K,u is the feedback law given by Slemrod [1974] for the
linearized system.
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- Manmsaults |
Time-varying feedback law

@ The feedback law h = —Gu (resp. h = —K,u) yields a global
(resp. local) exponential stabilization with a given (resp. arbitrary)
decay rate.
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Time-varying feedback law

@ The feedback law h = —Gu (resp. h = —K)u) yields a global
(resp. local) exponential stabilization with a given (resp. arbitrary)
decay rate.

@ Aim: combine both feedback laws to obtain a global stabilization
with an arbitrary decay rate.

@ |dea: use the feedback law h = —Gu far from 0 to get the global
stabilization, and the feedback law h = —K)u close do 0 to get a
large decay rate.

@ In practice: avoid discontinuous feedback laws (difficulty to define
a solution!), and use a smooth (periodic) time-varying feedback
law, coinciding successively on half periods with —Gu and with
—K)u (at least close to 0).
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- Manmsaults |
Time-varying feedback law (2)

@ Pick a 2—periodic smooth function 6(t) with 6(t) =1 on [6,1 — 4],
6(t) = 0 on [1,2], and a smooth function p(r) with p(r) = 1 for
0<r<r<1,p(ry=0forr>1
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Time-varying feedback law (2)

@ Pick a 2—periodic smooth function 6(t) with (t) =1 on [§,1 — 4],
6(t) = 0on [1,2], and a smooth function p(r) with p(r) = 1 for
0<r<rn<1,p(r)=0forr>1

@ Set

—K(u, t) := p([|ulls)[0(t/ T)Kau+6((t=T)/T) Gu] + (1—p(l]ulls)) Gu

@ For ||ul|ls > 1, K(u,t) = —Gu
For ||ulls < ro

—-Kyu if 4]

B T < (1—=0)T mod 2T
K(U’t)_{—Gu it (1+0)T <

(2—-6)T mod 2T.
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- Manmsaults |
Time-varying feedback law (3)

Thm 4: Let A\ > 0 be given. There exists Ty > 0 such that for T > Ty,
for each pair (ty, ug) with [ug] = 0, the solution of

Ut + Ulx + Uxxx = GK(u,t), u(.,fh) =W
satisfies

1u(, Dlls < flluolls)e™2 M=) |uglls,  for t> to.

(Benasque, 2009) 26 /28



___ Mainresults |
Future directions of research

@ Duration of the control process: can two states uy and uq be
connected by a trajectory of KdV in arbitrarily small time T? If not,
how T is related to the magnitude of ||ug||s and ||ui||s? Same
question for NLS.
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___ Mainresults |
Future directions of research

@ Duration of the control process: can two states uy and uy be
connected by a trajectory of KdV in arbitrarily small time T? If not,
how T is related to the magnitude of ||up||s and ||uy||s? Same
question for NLS.

@ Can we design a smooth time-invariant feedback law yielding a
global stabilization with an arbitrarily large decay rate?

@ x € (0, +00). Controllability (open for KdV) R. [2000]; Stabilization:
Linares-Pazoto [2009], R.-Pazoto [preprint]: “size” of the support
of the controler a(x) in the feedback term a(x)u.

@ Control of other water wave models: Boussinesq
Micu-Ortega-R.-Zhang [2009], Benjamin-Ono (BO), Benjamin
Bona Mahony (BBM),...
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Thank you for your attention!
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