Blow-up and global sign-changing solutions of the nonlinear heat equation

T. Cazenave¹ F. Dickstein² F. B. Weissler³

¹Univ. Paris 6 & CNRS

²Univ. Fed. Rio de Janeiro

³Univ. Paris 13

BenasquelII, August 2009

TC, FD, FBW ()

sign-changing solutions

◆母 → < 重 → < 重 → Ξ < つ < つ < つ < つ < □
</p>

Benasquelli, August 2009 1 / 24

The nonlinear heat equation

$$\begin{cases} u_t - \Delta u = |u|^{\alpha} u & \text{in } (0, T) \times \Omega, \\ u(0) = u_0 & \text{in } \Omega, \end{cases}$$
(NLH)

 Ω is a bounded domain or the whole \mathbb{R}^N , lpha > 0, $u_0 \in C_0(\Omega).$

TC, FD, FBW ()

Image: Image:

$$\begin{split} \mathcal{G} &= \{u_0, u(t) \text{ is global}\}, \\ \mathcal{G}_0 &= \{u_0 \in \mathcal{G}, u(t) \to 0, t \to +\infty\}, \\ \mathcal{B} &= \{u_0, u(t) \text{ blows up}\}. \end{split}$$

• There exists $0 \neq u_0 \in \mathcal{G}_0$.

• Given $\varphi \neq 0$, $\lambda \varphi \in \mathcal{B}$ if λ is large.

• $\varphi \geq 0, \ \varphi \in \mathcal{G} \Longrightarrow \lambda \varphi \in \mathcal{G} \text{ if } 0 < \lambda < 1.$

 $(\mathcal{G}^+ \text{ is starshaped with respect to 0.})$

Some Questions:

• Is \mathcal{G} , \mathcal{G}_0 convex?

• Is \mathcal{G} , \mathcal{G}_0 starshaped with respect to 0?

(日) (周) (三) (三)

- $$\begin{split} \mathcal{G} &= \{u_0, u(t) \text{ is global}\}, \\ \mathcal{G}_0 &= \{u_0 \in \mathcal{G}, u(t) \to 0, t \to +\infty\}, \\ \mathcal{B} &= \{u_0, u(t) \text{ blows up}\}. \end{split}$$
 - There exists $0 \neq u_0 \in \mathcal{G}_0$.
 - Given $\varphi \neq 0$, $\lambda \varphi \in \mathcal{B}$ if λ is large.
 - $\varphi \geq 0, \ \varphi \in \mathcal{G} \Longrightarrow \lambda \varphi \in \mathcal{G} \text{ if } 0 < \lambda < 1.$

 $(\mathcal{G}^+ \text{ is starshaped with respect to 0.})$

Some Questions:

• Is \mathcal{G} , \mathcal{G}_0 convex?

• Is \mathcal{G} , \mathcal{G}_0 starshaped with respect to 0?

イロト イポト イヨト イヨト 二日

$$\begin{split} \mathcal{G} &= \{u_0, u(t) \text{ is global}\},\\ \mathcal{G}_0 &= \{u_0 \in \mathcal{G}, u(t) \to 0, t \to +\infty\},\\ \mathcal{B} &= \{u_0, u(t) \text{ blows up}\}. \end{split}$$

- There exists $0 \neq u_0 \in \mathcal{G}_0$.
- Given $\varphi \neq 0$, $\lambda \varphi \in \mathcal{B}$ if λ is large.
- $\varphi \geq 0, \ \varphi \in \mathcal{G} \Longrightarrow \lambda \varphi \in \mathcal{G} \text{ if } 0 < \lambda < 1.$

 $(\mathcal{G}^+ \text{ is starshaped with respect to 0.})$

Some Questions:

• Is \mathcal{G} , \mathcal{G}_0 convex?

• Is \mathcal{G} , \mathcal{G}_0 starshaped with respect to 0?

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\begin{split} \mathcal{G} &= \{u_0, u(t) \text{ is global}\}, \\ \mathcal{G}_0 &= \{u_0 \in \mathcal{G}, u(t) \to 0, t \to +\infty\}, \\ \mathcal{B} &= \{u_0, u(t) \text{ blows up}\}. \end{split}$$

- There exists $0 \neq u_0 \in \mathcal{G}_0$.
- Given $\varphi \neq 0$, $\lambda \varphi \in \mathcal{B}$ if λ is large.
- $\varphi \geq 0$, $\varphi \in \mathcal{G} \Longrightarrow \lambda \varphi \in \mathcal{G}$ if $0 < \lambda < 1$.

 $(\mathcal{G}^+ \text{ is starshaped with respect to 0.})$

Some Questions:

- Is \mathcal{G} , \mathcal{G}_0 convex?
- Is \mathcal{G} , \mathcal{G}_0 starshaped with respect to 0?

$$\begin{split} \mathcal{G} &= \{u_0, u(t) \text{ is global}\}, \\ \mathcal{G}_0 &= \{u_0 \in \mathcal{G}, u(t) \rightarrow 0, t \rightarrow +\infty\}, \\ \mathcal{B} &= \{u_0, u(t) \text{ blows up}\}. \end{split}$$

- There exists $0 \neq u_0 \in \mathcal{G}_0$.
- Given $\varphi \neq 0$, $\lambda \varphi \in \mathcal{B}$ if λ is large.
- $\varphi \geq 0$, $\varphi \in \mathcal{G} \Longrightarrow \lambda \varphi \in G$ if $0 < \lambda < 1$.

 $(\mathcal{G}^+ \text{ is starshaped with respect to 0.})$

Some Questions:

- Is \mathcal{G} , \mathcal{G}_0 convex?
- Is \mathcal{G} , \mathcal{G}_0 starshaped with respect to 0?

$$\begin{split} \mathcal{G} &= \{u_0, u(t) \text{ is global}\}, \\ \mathcal{G}_0 &= \{u_0 \in \mathcal{G}, u(t) \to 0, t \to +\infty\}, \\ \mathcal{B} &= \{u_0, u(t) \text{ blows up}\}. \end{split}$$

- There exists $0 \neq u_0 \in \mathcal{G}_0$.
- Given $\varphi \neq 0$, $\lambda \varphi \in \mathcal{B}$ if λ is large.

•
$$\varphi \geq 0$$
, $\varphi \in \mathcal{G} \Longrightarrow \lambda \varphi \in \mathcal{G}$ if $0 < \lambda < 1$.

 $(\mathcal{G}^+ \text{ is starshaped with respect to 0.})$

Some Questions:

• Is \mathcal{G} , \mathcal{G}_0 convex?

• Is \mathcal{G} , \mathcal{G}_0 starshaped with respect to 0?

$$\begin{split} \mathcal{G} &= \{u_0, u(t) \text{ is global}\}, \\ \mathcal{G}_0 &= \{u_0 \in \mathcal{G}, u(t) \to 0, t \to +\infty\}, \\ \mathcal{B} &= \{u_0, u(t) \text{ blows up}\}. \end{split}$$

- There exists $0 \neq u_0 \in \mathcal{G}_0$.
- Given $\varphi \neq 0$, $\lambda \varphi \in \mathcal{B}$ if λ is large.

•
$$\varphi \geq 0$$
, $\varphi \in \mathcal{G} \Longrightarrow \lambda \varphi \in \mathcal{G}$ if $0 < \lambda < 1$.

 $(\mathcal{G}^+ \text{ is starshaped with respect to 0.})$

Some Questions:

- Is \mathcal{G} , \mathcal{G}_0 convex?
- Is \mathcal{G} , \mathcal{G}_0 starshaped with respect to 0?

The Neumann Problem Consider

.

$$\begin{cases} u_t - \Delta u = |u|^{\alpha} u & \text{in } (0, T) \times \Omega, \\ u(0) = u_0 & \text{in } \Omega, \\ \partial_{\eta} u = 0 & \text{on } \partial \Omega. \end{cases}$$
(NP)

- $\{u_0 \geq 0, u_0 \neq 0\} \subset \mathcal{B}.$
- How about sign-changing solutions?

3

The Neumann Problem Consider

.

$$\begin{cases} u_t - \Delta u = |u|^{\alpha} u & \text{in } (0, T) \times \Omega, \\ u(0) = u_0 & \text{in } \Omega, \\ \partial_{\eta} u = 0 & \text{on } \partial \Omega. \end{cases}$$
(NP)

• $\{u_0 \geq 0, u_0 \neq 0\} \subset \mathcal{B}.$

• How about sign-changing solutions?

TC, FD, FBW ()

3

(日) (周) (三) (三)

The Neumann Problem Consider

.

$$\begin{cases} u_t - \Delta u = |u|^{\alpha} u & \text{in } (0, T) \times \Omega, \\ u(0) = u_0 & \text{in } \Omega, \\ \partial_{\eta} u = 0 & \text{on } \partial \Omega. \end{cases}$$
(NP)

•
$$\{u_0 \geq 0, u_0 \neq 0\} \subset \mathcal{B}.$$

• How about sign-changing solutions?

3

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem - Suppose $\int \varphi \neq 0$. Then $\lambda \varphi \in \mathcal{B}$ if $\lambda > 0$ is small.

Proof - Assume $\int \varphi > 0$ and let $v(t, x) = u(t, x)/\lambda$. Then, $v = \Delta v = \lambda^{\alpha} |v|^{\alpha} v |v(0) = \omega$

Consider, $z = e^{t\Delta}\varphi$. Since $\int \varphi > 0$, z(t) > 0 for t large. Thus, v(t) > 0 if λ is small.

Remark - Let u be a stationary solution in \mathbb{R} : $-u^{''} = |u|^{\alpha}u, u'(-1) = u'(1) = 0.$ Then $\lambda u \in \mathcal{G}_0$ for $|\lambda| < 1$.

Theorem - Suppose $\int \varphi \neq 0$. Then $\lambda \varphi \in \mathcal{B}$ if $\lambda > 0$ is small.

Proof - Assume $\int \varphi > 0$ and let $v(t,x) = u(t,x)/\lambda$. Then,

 $v_t - \Delta v = \lambda^{\alpha} |v|^{\alpha} v, v(0) = \varphi.$ Consider, $z = e^{t\Delta} \varphi$. Since $\int \varphi > 0, z(t) > 0$ for t large. Thus, v(t) > 0 if λ is small.

Remark - Let u be a stationary solution in \mathbb{R} : $-u^{''} = |u|^{\alpha}u, u'(-1) = u'(1) = 0.$ Then $\lambda u \in \mathcal{G}_0$ for $|\lambda| < 1$.

イロト イポト イヨト イヨト 二日

Theorem - Suppose $\int \varphi \neq 0$. Then $\lambda \varphi \in \mathcal{B}$ if $\lambda > 0$ is small.

Proof - Assume $\int \varphi > 0$ and let $v(t,x) = u(t,x)/\lambda$. Then,

 $v_t - \Delta v = \lambda^{\alpha} |v|^{\alpha} v, v(0) = \varphi.$ Consider, $z = e^{t\Delta} \varphi$. Since $\int \varphi > 0, z(t) > 0$ for t large. Thus, v(t) > 0 if λ is small.

Remark - Let u be a stationary solution in \mathbb{R} : $-u^{''} = |u|^{\alpha}u, u'(-1) = u'(1) = 0.$ Then $\lambda u \in \mathcal{G}_0$ for $|\lambda| < 1.$

イロト イポト イヨト イヨト 二日

Theorem - There exists $u_0 \in \mathcal{G}_0$ such that $\int u_0 \neq 0$.

Proof - The linearization of (NP) around 0 is the heat equation. Let M be the nonlinear stable manifold near 0, $S = [1]^{\perp}$ the linear stable manifold, C = [1].

Theorem - There exists $u_0 \in \mathcal{G}_0$ such that $\int u_0 \neq 0$.

Proof - The linearization of (NP) around 0 is the heat equation. Let M be the nonlinear stable manifold near 0, $S = [1]^{\perp}$ the linear stable manifold, C = [1].

The Neumann Problem For $\varphi_s \in S$ we may choose $u_0 = \varepsilon \varphi_s + c \in M$. Suppose $c \equiv 0$. Define $I(t) = \int u(t)$. Then

$$I'(t) = \int |u(t)|^{lpha} u(t) \Longrightarrow I'(0) = \int |arphi_s|^{lpha} arphi_s.$$

We pick φ_s such that $I'(0) \neq 0$. Then $I(t) \neq 0$ for $t \approx 0$.

(日) (周) (三) (三)

The Neumann Problem For $\varphi_s \in S$ we may choose $u_0 = \varepsilon \varphi_s + c \in M$. Suppose $c \equiv 0$. Define $I(t) = \int u(t)$. Then

$$I'(t) = \int |u(t)|^{lpha} u(t) \Longrightarrow I'(0) = \int |\varphi_s|^{lpha} \varphi_s.$$

We pick φ_s such that $I'(0) \neq 0$. Then $I(t) \neq 0$ for $t \approx 0$.

글 > - + 글 >

The Neumann case

TC, FD, FBW (

BenasquelII, August 2009 8 / 24

3

<ロ> (日) (日) (日) (日) (日)

The Neumann case

TC, FD, FBW (

BenasquelII, August 2009 8 / 24

3

<ロ> (日) (日) (日) (日) (日)

The Cauchy Problem Consider

$$\begin{cases} u_t - \Delta u = |u|^{\alpha} u, & \text{in } (0, T) \times \mathbb{R}^N \\ u(0) = u_0, & \text{in } \mathbb{R}^N, \end{cases}$$
(CP)

(CP) for $\alpha < 2/N$ corresponds to the Neumann problem in the following sense.

The Cauchy Problem Consider

$$\begin{cases} u_t - \Delta u = |u|^{\alpha} u, & \text{in } (0, T) \times \mathbb{R}^N \\ u(0) = u_0, & \text{in } \mathbb{R}^N, \end{cases}$$
(CP)

(CP) for $\alpha < 2/N$ corresponds to the Neumann problem in the following sense.

- $u_0 \geq 0$, $u_0 \neq 0$, then $u_0 \in \mathcal{B}$ (Fujita, '66).
- If $\varphi \in L^1$, $\int \varphi \neq 0$ then $\lambda \varphi \in \mathcal{B}$ if λ is small.
- There exists $\varphi \in L^1 \cap \mathcal{G}$, $\int \varphi \neq 0$.
- 0 is stable in L^{∞} .
- There exists $\varphi \in L^1 \cap \mathcal{G}_0$, $\int \varphi = 0$. $\lambda \varphi \in \mathcal{G}_0$ for all $|\lambda| < 1$ and $\lambda \varphi \in \mathcal{B}$ if λ is large.

- $u_0 \geq 0$, $u_0 \neq 0$, then $u_0 \in \mathcal{B}$ (Fujita, '66).
- If $\varphi \in L^1$, $\int \varphi \neq 0$ then $\lambda \varphi \in \mathcal{B}$ if λ is small.
- There exists $\varphi \in L^1 \cap \mathcal{G}$, $\int \varphi \neq 0$.
- 0 is stable in L^{∞} .
- There exists $\varphi \in L^1 \cap \mathcal{G}_0$, $\int \varphi = 0$. $\lambda \varphi \in \mathcal{G}_0$ for all $|\lambda| < 1$ and $\lambda \varphi \in \mathcal{B}$ if λ is large.

イロト イポト イヨト イヨト 二日

- $u_0 \geq 0$, $u_0 \neq 0$, then $u_0 \in \mathcal{B}$ (Fujita, '66).
- If $\varphi \in L^1$, $\int \varphi \neq 0$ then $\lambda \varphi \in \mathcal{B}$ if λ is small.
- There exists $\varphi \in L^1 \cap \mathcal{G}$, $\int \varphi \neq 0$.
- 0 is stable in L^{∞} .
- There exists $\varphi \in L^1 \cap \mathcal{G}_0$, $\int \varphi = 0$. $\lambda \varphi \in \mathcal{G}_0$ for all $|\lambda| < 1$ and $\lambda \varphi \in \mathcal{B}$ if λ is large.

イロト イポト イヨト イヨト 二日

- $u_0 \geq 0$, $u_0 \neq 0$, then $u_0 \in \mathcal{B}$ (Fujita, '66).
- If $\varphi \in L^1$, $\int \varphi \neq 0$ then $\lambda \varphi \in \mathcal{B}$ if λ is small.
- There exists $\varphi \in L^1 \cap \mathcal{G}$, $\int \varphi \neq 0$.
- 0 is stable in L^{∞} .
- There exists $\varphi \in L^1 \cap \mathcal{G}_0$, $\int \varphi = 0$. $\lambda \varphi \in \mathcal{G}_0$ for all $|\lambda| < 1$ and $\lambda \varphi \in \mathcal{B}$ if λ is large.

- $u_0 \geq 0$, $u_0 \neq 0$, then $u_0 \in \mathcal{B}$ (Fujita, '66).
- If $\varphi \in L^1$, $\int \varphi \neq 0$ then $\lambda \varphi \in \mathcal{B}$ if λ is small.
- There exists $\varphi \in L^1 \cap \mathcal{G}$, $\int \varphi \neq 0$.
- 0 is stable in L^{∞} .
- There exists $\varphi \in L^1 \cap \mathcal{G}_0$, $\int \varphi = 0$. $\lambda \varphi \in \mathcal{G}_0$ for all $|\lambda| < 1$ and $\lambda \varphi \in \mathcal{B}$ if λ is large.

TC, FD, FBW ()

3

イロト イポト イヨト イヨト

$$\begin{cases} u_t - \Delta u = |u|^{\alpha} u, & \text{in } (0, T) \times \Omega \\ u(0) = u_0, & \text{in } \Omega, \\ u = 0 & \text{in } \partial \Omega \end{cases}$$
(DP)

- If $\varphi \ge 0$, $\varphi \ne 0$ then there exists $\lambda^* > 0$ such that $\lambda \varphi \in \mathcal{G}_0$ if $\lambda < \lambda^*$, $\lambda \varphi \in \mathcal{B}$ if $\lambda > \lambda^*$.
- \mathcal{G}^+ , \mathcal{G}_0^+ are convex.
- If α < α_s = 4/(N 2) then (DP) admits stationary sign-changing solutions Ψ.

$$\begin{cases} u_t - \Delta u = |u|^{\alpha} u, & \text{in } (0, T) \times \Omega \\ u(0) = u_0, & \text{in } \Omega, \\ u = 0 & \text{in } \partial \Omega \end{cases}$$
(DP)

- If $\varphi \ge 0$, $\varphi \ne 0$ then there exists $\lambda^* > 0$ such that $\lambda \varphi \in \mathcal{G}_0$ if $\lambda < \lambda^*$, $\lambda \varphi \in \mathcal{B}$ if $\lambda > \lambda^*$.
- \mathcal{G}^+ , \mathcal{G}_0^+ are convex.
- If α < α_s = 4/(N 2) then (DP) admits stationary sign-changing solutions Ψ.

$$\begin{cases} u_t - \Delta u = |u|^{\alpha} u, & \text{in } (0, T) \times \Omega \\ u(0) = u_0, & \text{in } \Omega, \\ u = 0 & \text{in } \partial \Omega \end{cases}$$
(DP)

- If $\varphi \ge 0$, $\varphi \ne 0$ then there exists $\lambda^* > 0$ such that $\lambda \varphi \in \mathcal{G}_0$ if $\lambda < \lambda^*$, $\lambda \varphi \in \mathcal{B}$ if $\lambda > \lambda^*$.
- \mathcal{G}^+ , \mathcal{G}_0^+ are convex.
- If α < α_s = 4/(N 2) then (DP) admits stationary sign-changing solutions Ψ.

$$\begin{cases} u_t - \Delta u = |u|^{\alpha} u, & \text{in } (0, T) \times \Omega \\ u(0) = u_0, & \text{in } \Omega, \\ u = 0 & \text{in } \partial \Omega \end{cases}$$
(DP)

- If $\varphi \geq 0$, $\varphi \neq 0$ then there exists $\lambda^* > 0$ such that $\lambda \varphi \in \mathcal{G}_0$ if $\lambda < \lambda^*$, $\lambda \varphi \in \mathcal{B}$ if $\lambda > \lambda^*$.
- \mathcal{G}^+ , \mathcal{G}_0^+ are convex.
- If α < α_s = 4/(N 2) then (DP) admits stationary sign-changing solutions Ψ.

- 本間下 本臣下 本臣下 三臣

Proposition - Take Ψ a stationary sign-changing solution. Let φ_1 be a first eigenvector of $-\Delta - (\alpha + 1)|\Psi|^{\alpha}$. If $I = \int \Psi \varphi_1 \neq 0$ then $\lambda \Psi \in \mathcal{B}$ if $\lambda \approx 1$, $\lambda \neq 1$. In particular, \mathcal{G} is not star-shaped around 0.

Proof - Assume l > 0, call u_{λ} the solution starting at $\lambda \Psi$ and set $z_{\lambda} = \frac{u_{\lambda} - \Psi}{\lambda - 1}$. Then

$$\begin{cases} \partial_t z_{\lambda} - \Delta z_{\lambda} = \frac{|u|^{\alpha} u - |\Psi|^{\alpha} \Psi}{\lambda - 1} \approx (\alpha + 1) |\Psi|^{\alpha} z_{\lambda}, \\ z_{\lambda}(0) = \Psi \end{cases}$$

TC, FD, FBW ()

Proposition - Take Ψ a stationary sign-changing solution. Let φ_1 be a first eigenvector of $-\Delta - (\alpha + 1)|\Psi|^{\alpha}$. If $I = \int \Psi \varphi_1 \neq 0$ then $\lambda \Psi \in \mathcal{B}$ if $\lambda \approx 1$, $\lambda \neq 1$. In particular, \mathcal{G} is not star-shaped around 0.

Proof - Assume l > 0, call u_{λ} the solution starting at $\lambda \Psi$ and set $z_{\lambda} = \frac{u_{\lambda} - \Psi}{\lambda - 1}$. Then

$$egin{aligned} &\partial_t z_\lambda - \Delta z_\lambda = rac{|u|^lpha u - |\Psi|^lpha \Psi}{\lambda - 1} pprox (lpha + 1) |\Psi|^lpha z_\lambda, \ &z_\lambda(0) = \Psi \end{aligned}$$

Since $\int \Psi \varphi_1 > 0$, z(t) becomes positive and so does $z_{\lambda}(t)$. This means $u_{\lambda} > \Psi$ for $\lambda > 1$ and $u_{\lambda} < \Psi$ for $\lambda < 1$.

But we know that u blows up if $u_0 > \Psi$ or $u_0 < \Psi$.

TC, FD, FBW ()

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国
$$egin{aligned} & z_\lambda(t) o z(t) ext{ in } C^1 ext{, where} \ & \left\{ egin{aligned} & \partial_t z - \Delta z - (lpha+1) |\Psi|^lpha z = 0, \ & z(0) = \Psi \end{aligned}
ight. \end{aligned}$$

Since $\int \Psi \varphi_1 > 0$, z(t) becomes positive and so does $z_{\lambda}(t)$. This means $u_{\lambda} > \Psi$ for $\lambda > 1$ and $u_{\lambda} < \Psi$ for $\lambda < 1$.

But we know that u blows up if $u_0 > \Psi$ or $u_0 < \Psi$.

Theorem - If $\alpha < \alpha_s$ then \mathcal{G} is not convex.

Proof - We may assume that I = 0. For $u_0 \in \mathcal{G}$ let $u_{0,\lambda} = \lambda u_0 + (1 - \lambda)\Psi$ and let $z_\lambda = (u_\lambda - \Psi)/\lambda$. Then,

$$\left\{ egin{aligned} \partial_t z_\lambda - \Delta z_\lambda &= rac{|u_\lambda|^lpha u_\lambda - |\Psi|^lpha \Psi}{\lambda} pprox (lpha+1) |\Psi|^lpha z_\lambda,\ z_\lambda(0) &= u_0 - \Psi \end{aligned}
ight.$$

TC, FD, FBW ()

Theorem - If $\alpha < \alpha_s$ then \mathcal{G} is not convex.

Proof - We may assume that I = 0. For $u_0 \in \mathcal{G}$ let $u_{0,\lambda} = \lambda u_0 + (1 - \lambda)\Psi$ and let $z_{\lambda} = (u_{\lambda} - \Psi)/\lambda$. Then,

$$\left\{ egin{aligned} &\partial_t z_\lambda - \Delta z_\lambda = rac{|u_\lambda|^lpha u_\lambda - |\Psi|^lpha \Psi}{\lambda} pprox (lpha+1) |\Psi|^lpha z_\lambda, \ &z_\lambda(0) = u_0 - \Psi \end{aligned}
ight.$$

$$egin{aligned} & z_\lambda(t) o z(t) ext{ in } C^1 ext{, where} \ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\$$

 $\int z(0)\varphi_1 = \int u_0\varphi_1$. If $\int u_0\varphi_1 > 0$ then z becomes positive and so does z_λ for $\lambda \approx 0$. Thus $u_\lambda < \Psi \Longrightarrow u_{0,\lambda} \in \mathcal{B}$.

To show the existence of $u_0 \in \mathcal{G}$ such that $\int u_0 \varphi_1 > 0$ we use a dynamical system argument.

$$egin{aligned} & z_\lambda(t) o z(t) ext{ in } C^1 ext{, where} \ & \left\{ egin{aligned} & \partial_t z - \Delta z - (lpha+1) |\Psi|^lpha z = 0 ext{,} \ & z(0) = u_0 - \Psi \end{aligned}
ight. \end{aligned}$$

 $\int z(0)\varphi_1 = \int u_0\varphi_1$. If $\int u_0\varphi_1 > 0$ then z becomes positive and so does z_λ for $\lambda \approx 0$. Thus $u_\lambda < \Psi \Longrightarrow u_{0,\lambda} \in \mathcal{B}$.

To show the existence of $u_0 \in \mathcal{G}$ such that $\int u_0 \varphi_1 > 0$ we use a dynamical system argument.

イロト 不得下 イヨト イヨト 二日

$$egin{aligned} & z_\lambda(t) o z(t) ext{ in } C^1 ext{, where} \ & \left\{ egin{aligned} & \partial_t z - \Delta z - (lpha+1) |\Psi|^lpha z = 0 ext{,} \ & z(0) = u_0 - \Psi \end{aligned}
ight. \end{aligned}$$

 $\int z(0)\varphi_1 = \int u_0\varphi_1$. If $\int u_0\varphi_1 > 0$ then z becomes positive and so does z_λ for $\lambda \approx 0$. Thus $u_\lambda < \Psi \Longrightarrow u_{0,\lambda} \in \mathcal{B}$.

To show the existence of $u_0 \in \mathcal{G}$ such that $\int u_0 \varphi_1 > 0$ we use a dynamical system argument.

The case of a ball

Consider $\Omega = B_1$. If $\alpha < \alpha_s = 4/(N-2)$ there are infinitely many stationnary (radial) solutions.

If N = 1, Ψ is symmetric, $I(\alpha) = 0$ for all α . $\Psi_s(r) = (1 + (N(N-2))^{-1}r^2)^{-(N-2)/2}$ is a stationary global solution for $\alpha = \alpha_s$.

The case of a ball

Consider $\Omega = B_1$. If $\alpha < \alpha_s = 4/(N-2)$ there are infinitely many stationnary (radial) solutions.

If N = 1, Ψ is symmetric, $I(\alpha) = 0$ for all α . $\Psi_s(r) = (1 + (N(N-2))^{-1}r^2)^{-(N-2)/2}$ is a stationary global solution for $\alpha = \alpha_s$.

The case of a ball

Consider $\Omega = B_1$. If $\alpha < \alpha_s = 4/(N-2)$ there are infinitely many stationnary (radial) solutions.

If N = 1, Ψ is symmetric, $I(\alpha) = 0$ for all α . $\Psi_s(r) = (1 + (N(N-2))^{-1}r^2)^{-(N-2)/2}$ is a stationary global solution for $\alpha = \alpha_s$.

17 / 24

Proof -Consider $\alpha = \alpha_s$ and $\Psi_s(r)$. There exists φ_1 the first eigenvector of $-\Delta - (\alpha_s + 1)\Psi_s^{\alpha_s}$ in \mathbb{R}^N . Clearly $\int_{\mathbb{R}^N} \Psi_s \varphi_1 > 0$. A limiting argument shows that $I(\alpha) > 0$ for $\alpha \approx \alpha_s$.

Proof -

Consider $\alpha = \alpha_s$ and $\Psi_s(r)$.

There exists φ_1 the first eigenvector of $-\Delta - (\alpha_s + 1)\Psi_s^{\alpha_s}$ in \mathbb{R}^N . Clearly $\int_{\mathbb{R}^N} \Psi_s \varphi_1 > 0$. A limiting argument shows that $I(\alpha) > 0$ for $\alpha \approx \alpha_s$.

Proof -Consider $\alpha = \alpha_s$ and $\Psi_s(r)$. There exists φ_1 the first eigenvector of $-\Delta - (\alpha_s + 1)\Psi_s^{\alpha_s}$ in \mathbb{R}^N . Clearly $\int_{\mathbb{R}^N} \Psi_s \varphi_1 > 0$.

イロト 不得下 イヨト イヨト 二日

Proof -Consider $\alpha = \alpha_s$ and $\Psi_s(r)$. There exists φ_1 the first eigenvector of $-\Delta - (\alpha_s + 1)\Psi_s^{\alpha_s}$ in \mathbb{R}^N . Clearly $\int_{\mathbb{R}^N} \Psi_s \varphi_1 > 0$. A limiting argument shows that $I(\alpha) > 0$ for $\alpha \approx \alpha_s$.

Proof - Call ρ_{α} the second zero of ϕ_{α} and consider $\Omega = B(\rho_0)$.

 $\Psi_{\alpha}(r) = \gamma^{2/\alpha} \Phi_{\alpha}(\gamma r)$, where $\gamma = \rho_{\alpha}/\rho_0$. If η_1 is the first eigenvalue associated to Φ_{α} then $\varphi_1(r) = \eta_1(\gamma r)$ and $I(\alpha) = \int_{B_0} \Psi \varphi_1 = \gamma^{2/\alpha - N} \int_{B_\alpha} \Phi \eta_1 = \gamma^{2/\alpha - N} J(\alpha)$. So it suffices to study the sign of J.

Proof - Call ρ_{α} the second zero of ϕ_{α} and consider $\Omega = B(\rho_0)$.

 $\Psi_{\alpha}(r) = \gamma^{2/\alpha} \Phi_{\alpha}(\gamma r)$, where $\gamma = \rho_{\alpha}/\rho_0$. If η_1 is the first eigenvalue associated to Φ_{α} then $\varphi_1(r) = \eta_1(\gamma r)$ and $I(\alpha) = \int_{B_0} \Psi \varphi_1 = \gamma^{2/\alpha - N} \int_{B_\alpha} \Phi \eta_1 = \gamma^{2/\alpha - N} J(\alpha)$. So it suffices to study the sign of J.

Proof - Call ρ_{α} the second zero of ϕ_{α} and consider $\Omega = B(\rho_0)$.

 $\Psi_{lpha}(r)=\gamma^{2/lpha}\Phi_{lpha}(\gamma r)$, where $\gamma=
ho_{lpha}/
ho_{0}.$

If η_1 is the first eigenvalue associated to Φ_{α} then $\varphi_1(r) = \eta_1(\gamma r)$ and $I(\alpha) = \int_{B_0} \Psi \varphi_1 = \gamma^{2/\alpha - N} \int_{B_\alpha} \Phi \eta_1 = \gamma^{2/\alpha - N} J(\alpha).$ So it suffices to study the sign of J.

Proof - Call ρ_{α} the second zero of ϕ_{α} and consider $\Omega = B(\rho_0)$.

 $\Psi_{\alpha}(r) = \gamma^{2/\alpha} \Phi_{\alpha}(\gamma r)$, where $\gamma = \rho_{\alpha}/\rho_0$. If η_1 is the first eigenvalue associated to Φ_{α} then $\varphi_1(r) = \eta_1(\gamma r)$ and $I(\alpha) = \int_{B_0} \Psi \varphi_1 = \gamma^{2/\alpha - N} \int_{B_\alpha} \Phi \eta_1 = \gamma^{2/\alpha - N} J(\alpha)$. So it suffices to study the sign of J.

TC, FD, FBW ()

Proof - Call ρ_{α} the second zero of ϕ_{α} and consider $\Omega = B(\rho_0)$.

 $\Psi_{\alpha}(r) = \gamma^{2/\alpha} \Phi_{\alpha}(\gamma r)$, where $\gamma = \rho_{\alpha}/\rho_0$. If η_1 is the first eigenvalue associated to Φ_{α} then $\varphi_1(r) = \eta_1(\gamma r)$ and $I(\alpha) = \int_{B_0} \Psi \varphi_1 = \gamma^{2/\alpha - N} \int_{B_\alpha} \Phi \eta_1 = \gamma^{2/\alpha - N} J(\alpha)$. So it suffices to study the sign of J.

$$egin{aligned} -\Delta \Phi &= |\Phi|^lpha \Phi \ -\Delta \eta_1 &= (lpha+1) |\Phi|^lpha \eta_1 + \lambda_1 \eta_1. \end{aligned}$$

$$\lambda_1 J(\alpha) = \alpha \int_{B_{\alpha}} |\Phi|^{\alpha} \Phi \eta_1 \Rightarrow J'(\alpha) = J(0)/\lambda_1(0) = 0.$$

 $J(lpha)/lpha^2
ightarrow (\lambda_1(0))^{-1} \int_{B_0} \log |\Phi_0| \Phi_0 \eta_{1,0}.$

TC, FD, FBW ()

Benasquelli, August 2009 20 / 24

$$egin{aligned} -\Delta \Phi &= |\Phi|^lpha \Phi \ -\Delta \eta_1 &= (lpha+1) |\Phi|^lpha \eta_1 + \lambda_1 \eta_1. \end{aligned}$$

$$\lambda_1 J(\alpha) = \alpha \int_{B_{\alpha}} |\Phi|^{\alpha} \Phi \eta_1 \Rightarrow J'(\alpha) = J(0)/\lambda_1(0) = 0.$$

But

$$J(\alpha)/\alpha^2 \rightarrow (\lambda_1(0))^{-1} \int_{B_0} \log |\Phi_0| \Phi_0 \eta_{1,0}.$$

TC, FD, FBW ()

Benasquelll, August 2009 20 / 24

$$egin{aligned} -\Delta \Phi &= |\Phi|^lpha \Phi \ -\Delta \eta_1 &= (lpha+1) |\Phi|^lpha \eta_1 + \lambda_1 \eta_1. \end{aligned}$$

$$\lambda_1 J(\alpha) = \alpha \int_{B_{\alpha}} |\Phi|^{\alpha} \Phi \eta_1 \Rightarrow J'(\alpha) = J(0)/\lambda_1(0) = 0.$$

But

$$J(\alpha)/lpha^2
ightarrow (\lambda_1(0))^{-1} \int_{B_0} \log |\Phi_0| \Phi_0 \eta_{1,0}.$$

TC, FD, FBW ()

Benasquelli, August 2009 20 / 24

$$egin{aligned} -\Delta \Phi &= |\Phi|^lpha \Phi \ -\Delta \eta_1 &= (lpha+1) |\Phi|^lpha \eta_1 + \lambda_1 \eta_1. \end{aligned}$$

$$\lambda_1 J(\alpha) = \alpha \int_{B_{\alpha}} |\Phi|^{\alpha} \Phi \eta_1 \Rightarrow J'(\alpha) = J(0)/\lambda_1(0) = 0.$$

But

$$J(\alpha)/lpha^2
ightarrow (\lambda_1(0))^{-1} \int_{B_0} \log |\Phi_0| \Phi_0 \eta_{1,0}.$$

TC, FD, FBW ()

Benasquelli, August 2009 20 / 24

$$\int_{0}^{\pi} \log|\sin jr|/r \sin jr \sin r = -\int_{0}^{\pi} \log r \sin jr \sin r < 0.$$

This shows that J(lpha)> 0 for lpha small.

TC, FD, FBW ()

1 / / /

A /

Benasquelli, August 2009 21 / 24

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

When
$${\it N}=$$
 3, $\eta_j=\sin jr/r$. For $j>$ 1,

$$\int_0^\pi \log|\sin jr|/r\,\sin jr\sin r = -\int_0^\pi \log r\,\sin jr\sin r < 0.$$

This shows that $J(\alpha) > 0$ for α small.

TC, FD, FBW ()

Nehari Functional Consider

$$E(u) = \frac{1}{2} \int |\nabla u|^2 - \frac{1}{\alpha + 2} \int |u|^{\alpha + 2},$$
$$N(u) = \int |\nabla u|^2 - \int |u|^{\alpha + 2},$$
$$e_* = \inf\{E(u), N(u) = 0\}.$$

TC, FD, FBW ()

3

<ロ> (日) (日) (日) (日) (日)

- $e_* > 0$.
- If u is a stationary solution, N(u) = 0.
- E(u(t)) is nonincreasing.
- $E^- \subset \mathcal{B}$.
- $W = \{E \le e_*\} \cap \{N > 0\} \subset \mathcal{G}_0.$
- $Z = \{E \leq e_*\} \cap \{N < 0\} \subset \mathcal{B}.$
- $u_0 \in Gz \Longrightarrow u(t) \in W$ for t large.
- $u_0 \in B \Longrightarrow u(t) \in Z$ for $t \approx T$.
- $d/dt ||u||^2 = -2N(u(t)).$

• $e_* > 0$.

- If u is a stationary solution, N(u) = 0.
- E(u(t)) is nonincreasing.
- $E^- \subset \mathcal{B}$.
- $W = \{E \le e_*\} \cap \{N > 0\} \subset \mathcal{G}_0.$
- $Z = \{E \leq e_*\} \cap \{N < 0\} \subset \mathcal{B}.$
- $u_0 \in Gz \Longrightarrow u(t) \in W$ for t large.
- $u_0 \in B \Longrightarrow u(t) \in Z$ for $t \approx T$.
- $d/dt ||u||^2 = -2N(u(t)).$

- $e_* > 0$.
- If u is a stationary solution, N(u) = 0.
- E(u(t)) is nonincreasing.
- $E^- \subset \mathcal{B}$.
- $W = \{E \le e_*\} \cap \{N > 0\} \subset \mathcal{G}_0.$
- $Z = \{E \leq e_*\} \cap \{N < 0\} \subset \mathcal{B}.$
- $u_0 \in Gz \Longrightarrow u(t) \in W$ for t large.
- $u_0 \in B \Longrightarrow u(t) \in Z$ for $t \approx T$.
- $d/dt ||u||^2 = -2N(u(t)).$

- $e_* > 0$.
- If u is a stationary solution, N(u) = 0.
- E(u(t)) is nonincreasing.
- $E^- \subset \mathcal{B}$.
- $W = \{E \leq e_*\} \cap \{N > 0\} \subset \mathcal{G}_0.$
- $Z = \{E \leq e_*\} \cap \{N < 0\} \subset \mathcal{B}.$
- $u_0 \in Gz \Longrightarrow u(t) \in W$ for t large.
- $u_0 \in B \Longrightarrow u(t) \in Z$ for $t \approx T$.
- $d/dt ||u||^2 = -2N(u(t)).$

- $e_* > 0$.
- If u is a stationary solution, N(u) = 0.
- E(u(t)) is nonincreasing.
- $E^- \subset \mathcal{B}$.
- $W = \{E \leq e_*\} \cap \{N > 0\} \subset \mathcal{G}_0.$
- $Z = \{E \leq e_*\} \cap \{N < 0\} \subset \mathcal{B}.$
- $u_0 \in Gz \Longrightarrow u(t) \in W$ for t large.
- $u_0 \in B \Longrightarrow u(t) \in Z$ for $t \approx T$.
- $d/dt ||u||^2 = -2N(u(t)).$

- $e_* > 0$.
- If u is a stationary solution, N(u) = 0.
- E(u(t)) is nonincreasing.
- $E^- \subset \mathcal{B}$.
- $W = \{E \le e_*\} \cap \{N > 0\} \subset \mathcal{G}_0.$
- $Z = \{E \leq e_*\} \cap \{N < 0\} \subset \mathcal{B}.$
- $u_0 \in Gz \Longrightarrow u(t) \in W$ for t large.
- $u_0 \in B \Longrightarrow u(t) \in Z$ for $t \approx T$.
- $d/dt ||u||^2 = -2N(u(t)).$

- $e_* > 0$.
- If u is a stationary solution, N(u) = 0.
- E(u(t)) is nonincreasing.
- $E^- \subset \mathcal{B}$.
- $W = \{E \le e_*\} \cap \{N > 0\} \subset \mathcal{G}_0.$
- $Z = \{E \leq e_*\} \cap \{N < 0\} \subset \mathcal{B}.$
- $u_0 \in Gz \Longrightarrow u(t) \in W$ for t large.
- $u_0 \in B \Longrightarrow u(t) \in Z$ for $t \approx T$.
- $d/dt ||u||^2 = -2N(u(t)).$

- $e_* > 0$.
- If u is a stationary solution, N(u) = 0.
- E(u(t)) is nonincreasing.
- $E^- \subset \mathcal{B}$.
- $W = \{E \le e_*\} \cap \{N > 0\} \subset \mathcal{G}_0.$
- $Z = \{E \leq e_*\} \cap \{N < 0\} \subset \mathcal{B}.$
- $u_0 \in Gz \Longrightarrow u(t) \in W$ for t large.
- $u_0 \in B \Longrightarrow u(t) \in Z$ for $t \approx T$.
- $d/dt ||u||^2 = -2N(u(t)).$

- $e_* > 0$.
- If u is a stationary solution, N(u) = 0.
- E(u(t)) is nonincreasing.
- $E^- \subset \mathcal{B}$.
- $W = \{E \le e_*\} \cap \{N > 0\} \subset \mathcal{G}_0.$
- $Z = \{E \leq e_*\} \cap \{N < 0\} \subset \mathcal{B}.$
- $u_0 \in Gz \Longrightarrow u(t) \in W$ for t large.
- $u_0 \in B \Longrightarrow u(t) \in Z$ for $t \approx T$.

• $d/dt ||u||^2 = -2N(u(t)).$

- $e_* > 0$.
- If u is a stationary solution, N(u) = 0.
- E(u(t)) is nonincreasing.
- $E^- \subset \mathcal{B}$.
- $W = \{E \le e_*\} \cap \{N > 0\} \subset \mathcal{G}_0.$
- $Z = \{E \leq e_*\} \cap \{N < 0\} \subset \mathcal{B}.$
- $u_0 \in Gz \Longrightarrow u(t) \in W$ for t large.
- $u_0 \in B \Longrightarrow u(t) \in Z$ for $t \approx T$.

• $d/dt ||u||^2 = -2N(u(t)).$

Question: $N^- \subset \mathcal{B}$?

The answer is no. Let Ψ be a stationary sign-changing solution of (DP) and let $u_0 = \Psi + \varepsilon \varphi_s + o(\varepsilon) \varphi_u \in M$. Since $N(\Psi) = 0$,

$$N(u_0) = \varepsilon N'(\Psi)\varphi_s + o(\varepsilon).$$

 $\mathcal{N}'(\Psi)\varphi_s = \mathbf{0} \Longrightarrow |\Psi|^{lpha}\Psi \in [\varphi_1, \varphi_2, \dots, \varphi_k] \subset \mathcal{C}^{[lpha]+2}.$

This is not possible if α is not an even integer.

TC, FD, FBW ()
Question: $N^- \subset \mathcal{B}$?

The answer is no. Let Ψ be a stationary sign-changing solution of (DP) and let $u_0 = \Psi + \varepsilon \varphi_s + o(\varepsilon) \varphi_u \in M$. Since $N(\Psi) = 0$,

$$N(u_0) = \varepsilon N'(\Psi)\varphi_s + o(\varepsilon).$$

 $N'(\Psi)\varphi_s = 0 \Longrightarrow |\Psi|^{lpha}\Psi \in [\varphi_1, \varphi_2, \dots, \varphi_k] \subset C^{[lpha]+2}$

This is not possible if α is not an even integer.