Non-diffusive large time behaviour for a Hamilton-Jacobi equation with degenerate diffusion

Philippe Laurençot

CNRS, Institut de Mathématiques de Toulouse

Benasque, 2009

Joint works with: Jean-Philippe Bartier (Paris Dauphine) Juan Luis Vázquez (UAM, Madrid)

A semilinear diffusive Hamilton-Jacobi equation

A degenerate parabolic equation with gradient absorption
 Speed of propagation

3 Large time behaviour: $q \in (1, p - 1)$

- Convergence to self-similarity
- Waiting time

4 D N 4 B N 4 B N 4 B

Outline

A semilinear diffusive Hamilton-Jacobi equation

- A degenerate parabolic equation with gradient absorption
 Speed of propagation
- 3 Large time behaviour: q ∈ (1, p − 1)
 Convergence to self-similarity
 Waiting time

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Motivation

- Consider a parabolic PDE in \mathbb{R}^N featuring a diffusion term and a reaction term.
- During the time evolution, there is a competition between diffusion and reaction: which effect governs the large time dynamics and how?
- Question thoroughly investigated for the semilinear heat equation

$$\partial_t u - \Delta u + u^q = 0$$
, $(t, x) \in (0, \infty) \times \mathbb{R}^N$

and its quasilinear counterparts with Δu^m or $\Delta_p u$ instead of Δu .

イロト イポト イラト イラト

A semilinear diffusive Hamilton-Jacobi equation

Less was known for

$$\partial_t u - \Delta u + |\nabla u|^q = 0, \quad (t, x) \in (0, \infty) \times \mathbb{R}^N,$$

 $u(0) = u_0, \quad x \in \mathbb{R}^N,$

where

- *q* > 0,
- *u*₀ is non-negative, bounded, continuous, and compactly supported (*u*₀ ≠ 0).

イロト イポト イラト イラ

Diffusion-dominated large time behaviour

Assume that

$$q>q_{\star}:=\frac{N+2}{N+1}\,.$$

Then

$$I_1(\infty) := \lim_{t \to \infty} \|u(t)\|_1 \in (0, \|u_0\|_1),$$

and, for every $p \in [1, \infty]$,

$$\lim_{t\to\infty} t^{N(p-1)/2p} \|u(t) - I_1(\infty) g(t)\|_p = 0,$$

with

$$g(t,x) := rac{1}{t^{N/2}} \, G\left(rac{x}{t^{1/2}}
ight) \quad ext{and} \quad G(x) := rac{1}{(4\pi)^{N/2}} \, \exp\left(-rac{|x|^2}{4}
ight).$$

< ロ > < 同 > < 回 > < 回 >

Balance in the large time behaviour

Assume that

$$q_1 := 1 < q < q_\star := \frac{N+2}{N+1}$$
.

Then, for every $p \in [1, \infty]$,

 $\lim_{t\to\infty}t^{[(N+1)(q_*-q)/(2(q-1))]+[N(p-1)/2p]} \|u(t)-W(t)\|_p=0.$

The limit *W* is the very singular solution:

 $\lim_{t\to 0}\int_{B(0,r)}W(t,x)\ dx=\infty \quad \text{and} \quad \lim_{t\to 0}\int_{\{|x|\ge r\}}W(t,x)\ dx=0$

and is self-similar: $W(t, x) = t^{-(2-q)/(2(q-1))} W(1, xt^{-1/2}).$

- ロ ト - (同 ト - (回 ト -) 回 ト -) 回

Absorption-dominated large time behaviour

Assume that

 $0 < q < q_1 := 1$.

Then there is $T_{\star} > 0$ such that

$$u(t,x) = 0$$
 for $(t,x) \in [T_{\star},\infty) \times \mathbb{R}^{N}$.

In addition,

 $\|u(t)\|_{\infty} \geq \kappa \ (T_{\star}-t)^{1/(1-q)}, \quad t \in [0, T_{\star}],$

Large time behaviour: critical exponents

- *q* = *q*_⋆: Diffusion-dominated behaviour but the dynamics already feels the influence of the absorption term → extra scaling logarithmic factors. Gallay & L. (2007)
- q = q₁: Same homogeneity as a linear equation: not completely clear. Benachour, Roynette & Vallois (1996, 1997)

Large time behaviour: summary

Competition between diffusion and absorption: two critical exponents

$$q_1 := 1$$
 and $q_{\star} := \frac{N+2}{N+1}$

- $q_{\star} < q$: Diffusion-dominated behaviour. Benachour, Karch & L. (2004)
- *q*₁ < *q* < *q*_{*}: Balance between the diffusion and the absorption
 → Very Singular Solutions. Benachour & L. (2001), Qi & Wang (2001), Benachour, Koch & L.
 (2004), Benachour, Karch & L. (2004), Fang & Kwak (2007)
- 0 < q < q₁: Absorption-dominated behaviour → Extinction in finite time. Benachour, L., Schmitt & Souplet (2002), Gilding (2005)

Absorption-dominated large time behaviour: $q \in (0, 1)$

The exponent $q_1 = 1$ is somehow "doubly" critical:

- the nonlinearity governs the dynamics,
- the nonlinearity is no longer Lipschitz continuous.

The latter property gives rise to singular phenomena such as extinction in finite time.

Aim: elucidate the true role of the absorption term when it governs the dynamics without singular phenomena.

Outline

A semilinear diffusive Hamilton-Jacobi equation

A degenerate parabolic equation with gradient absorption
 Speed of propagation

3 Large time behaviour: q ∈ (1, p − 1)
 • Convergence to self-similarity
 • Waiting time

A (10) A (10) A (10)

A degenerate parabolic equation with gradient absorption

$$\partial_t u - \Delta_p u + |\nabla u|^q = 0, \quad (t, x) \in (0, \infty) \times \mathbb{R}^N, \tag{1}$$
$$u(0) = u_0, \quad x \in \mathbb{R}^N, \tag{2}$$

where

•
$$\Delta_{\rho}u := \operatorname{div} (|\nabla u|^{p-2} \nabla u)$$
 with $p > 2$,

• *q* > 1,

*u*₀ is non-negative, bounded, continuous, and compactly supported (*u*₀ ≠ 0).

p > 2: finite speed of propagation

Large time behaviour

Competition between diffusion and absorption: two critical exponents

$$q_1 := p - 1 > 1$$
 and $q_* := p - \frac{N}{N+1}$

The following behaviour is expected:

- *q*[⋆] < *q*: Diffusion-dominated behaviour
- $q_1 < q < q_{\star}$: Balance between diffusion and absorption
- 1 < q < q₁: Absorption-dominated behaviour

- 4 周 ト 4 戸 ト 4 戸 ト

Propagation of the support

For $t \ge 0$ we put

 $\varrho(t) := \inf \{R > 0 \text{ such that } u(t, x) = 0 \text{ for } |x| > R\}.$

Since *u* is a subsolution to the *p*-Laplacian equation, then

 $0 \le \varrho(t) \le C (1+t)^{1/(N(\rho-2)+\rho)} < \infty$ for all $t \ge 0$.

Question : does the absorption term slow down the expansion of the support?

(日) (周) (日) (日) (日) (000

Propagation of the support: slow expansion

• If $q \in (p-1,q_{\star})$ then $\varrho(t) \leq C \; (1+t)^{(q-p+1)/(2q-p)}$ for $t \geq 0$.

• If q = p - 1 then

 $\varrho(t) \leq C \ln(2+t)$ for $t \geq 0$.

Andreucci, Tedeev & Ughi (2004), Bartier & L. (2008)

Propagation of the support: localization

• If $q \in (1, p - 1)$ then

 $\limsup_{t\to\infty}\varrho(t)<\infty\,.$

Bartier & L. (2008)

Remark: if *h* solves $\partial_t h + |\nabla h|^q = 0$ in $(0, \infty) \times \mathbb{R}^N$ with $h(0, x) = u_0(x)$, then

 $\{x \in \mathbb{R}^N : h(t,x) > 0\} = \mathcal{P}_0 := \{x \in \mathbb{R}^N : u_0(x) > 0\}.$

Large time behaviour for the HJ equation

More precisely, if h is the viscosity solution to

$$\begin{array}{rcl} \partial_t h + |\nabla h|^q &=& 0\,, \quad (t,x) \in (0,\infty) \times \mathbb{R}^N\,, \\ h(0,x) &=& u_0(x)\,, \quad x \in \mathbb{R}^N\,, \end{array}$$

then

$$\{x \in \mathbb{R}^N : h(t,x) > 0\} = \mathcal{P}_0 := \{x \in \mathbb{R}^N : u_0(x) > 0\}.$$

and

$$\lim_{t\to\infty}\left\|t^{1/(q-1)}h(t)-h_{\infty}\right\|_{\infty}=0$$

with

$$h_\infty(x) = rac{(q-1)}{q^{q/(q-1)}} d\left(x, \mathbb{R}^N \setminus \mathcal{P}_0
ight)^{q/(q-1)}, \qquad x \in \mathbb{R}^N,$$

< ロ > < 同 > < 回 > < 回 >

Outline

1 A semilinear diffusive Hamilton-Jacobi equation

A degenerate parabolic equation with gradient absorption
 Speed of propagation

3 Large time behaviour: q ∈ (1, p − 1)
 • Convergence to self-similarity
 • Weiting time

Waiting time

A (10) × A (10) × A (10)

The positivity set

For $t \ge 0$ we put $\mathcal{P}(t) := \{x \in \mathbb{R}^N : u(t, x) > 0\}.$

Lemma

For $t_1 \in [0,\infty)$ and $t_2 \in (t_1,\infty)$ we have

 $\mathcal{P}(t_1) \subseteq \mathcal{P}(t_2)$

and

 $\mathcal{P}_{\infty} := \bigcup_{t \ge 0} \mathcal{P}(t)$ is a bounded open subset of \mathbb{R}^N .

Comparison with a suitable subsolution.

L. & Vázquez (2007)

Convergence to self-similarity

Theorem

$$\lim_{t\to\infty}\left\|t^{1/(q-1)} u(t)-V_{\infty}\right\|_{\infty}=0\,,$$

where

$$V_{\infty}(x):=rac{q-1}{q^{q/(q-1)}}\; d\left(x,\mathbb{R}^N\setminus\mathcal{P}_{\infty}
ight)^{q/(q-1)} \;\;\; ext{for} \;\;\; x\in\mathbb{R}^N$$

L. & Vázquez (2007)

Remark: $h_{\infty}(t,x) := t^{-1/(q-1)} V_{\infty}(x)$ is a self-similar (viscosity) solution to $\partial_t h_{\infty} + |\nabla h_{\infty}|^q = 0$ such that $h_{\infty}(t,x) > 0$ for $x \in \mathcal{P}_{\infty}$ and $h_{\infty}(t,x) = 0$ for $x \notin \mathcal{P}_{\infty}$.

Proof - Decay estimates

For each $t \ge 0$

$\|u(t)\|_1 + \|u(t)\|_{\infty} + \|\nabla u(t)\|_{\infty} \le C_1 t^{-1/(q-1)}.$

For each $x \in \mathcal{P}_{\infty}$, there are $T_x \ge 0$ and $\varepsilon_x > 0$ such that

 $u(t,x) \ge \varepsilon_x (1+t)^{-1/(q-1)}$ for $t \ge T_x$.

Proof - Self-similar variables

We introduce the *self-similar* variables $\tau := \ln (1 + (q-1)t)/(q-1)$ and x and put

$$u(t,x) =: (1 + (q-1)t)^{-1/(q-1)} v\left(\frac{\ln(1 + (q-1)t)}{(q-1)}, x\right)$$

for $(t, x) \in [0, \infty) \times \mathbb{R}^N$. Then *v* solves

 $\begin{array}{rcl} \partial_{\tau} v + |\nabla v|^{q} - v &=& e^{-(p-1-q)\tau} \Delta_{\rho} v \ , \quad (\tau, x) \in (0,\infty) \times \mathbb{R}^{N} \, , \\ v(0) &=& u_{0} \, , \quad x \in \mathbb{R}^{N} \, . \end{array}$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Proof - Half-relaxed limits

For $(\tau, x) \in [0, \infty) \times \mathbb{R}^N$, we introduce

$$egin{aligned} & v_*(x) & := & \liminf_{(\sigma,y,s) o (au,x,\infty)} v(\sigma+s,y) \,, \ & v^*(x) & := & \limsup_{(\sigma,y,s) o (au,x,\infty)} v(\sigma+s,y) \,. \end{aligned}$$

- v_* and v^* do not depend on $\tau \ge 0$ and $v_* \le v^*$,
- v_* is a viscosity supersolution to $|\nabla v_*|^q v_* = 0$ in \mathbb{R}^N ,
- v^* is a viscosity subsolution to $|\nabla v^*|^q v^* = 0$ in \mathbb{R}^N ,

•
$$v^*(x) = v_*(x) = 0$$
 for $x
ot\in \mathcal{P}_\infty$

• 0 <
$$v_*(x) \leq v^*(x)$$
 for $x \in \mathcal{P}_{\infty}$.

Proof - Identification of the limit

$$\mathbf{v}_* = \mathbf{v}^*$$
 and $\lim_{\tau \to \infty} \|\mathbf{v}(\tau) - \mathbf{v}_*\|_{\infty} = 0$.

Setting

$$V_*(x) = rac{q}{q-1} \ v_*(x)^{(q-1)/q}, \quad x \in \mathbb{R}^N,$$

the function V_* solves the *eikonal* equation $|\nabla V_*| - 1 = 0$ in \mathcal{P}_{∞} with $V_* = 0$ on $\partial \mathcal{P}_{\infty}$, hence

$$V_*(x) = {
m dist}\left(x, {\mathbb R}^N \setminus \mathcal{P}_\infty
ight) \ , \quad x \in \mathcal{P}_\infty \, .$$

The limit positivity set \mathcal{P}_{∞}

Unknown in the asymptotics: the limit positivity set

$$\mathcal{P}_{\infty} = \bigcup_{t \ge 0} \{ x \in \mathbb{R}^N : u(t, x) > 0 \}$$

Additional information?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Waiting time

Evolution of the positivity set

• Infinite waiting time: if *u*₀ is sufficiently flat at the edges of its positivity set then

 $\mathcal{P}(t) = \mathcal{P}(0)$ for every $t \ge 0$,

and thus $\mathcal{P}_{\infty} = \mathcal{P}(0)$. Comparison with a supersolution Knerr (1977).

 Instantaneous expansion: if u₀ vanishes sufficiently slowly in the neighbourhood of a point x₀ ∈ ∂P(0) then

 $u(t, x_0) > 0$ for all t > 0.

Local integral estimates Aronson & Caffarelli (1983).