
THE MONGE PROBLEM IN R
dTHIERRY CHAMPION AND LUIGI DE PASCALEAbstrat. We onsider the Monge problem in a onvex bounded subset of R

d. Theost is given by a general norm, and we prove the existene of an optimal transportmap under the lassial assumption that the �rst marginal is absolutely ontinuouswith respet to the Lebesgue measure. The approah we propose to solve this problemdoes not use the disintegration of measures.1. IntrodutionThe Monge problem has origin in the Mémoire sur la théorie des déblais et remblaiswritten by G. Monge [23℄, and may be stated as follows:
inf

{
∫

Ω
|x − T (x)|dµ(x) : T ∈ T (µ, ν)

}

, (1.1)where Ω is the losure of a onvex open subset of R
d, | · | denotes the usual Eulideannorm of R

d, µ, ν are Borel probability measures on Ω and T (µ, ν) denotes the set oftransport maps from µ to ν, i.e. the lass of Borel maps T suh that T♯µ = ν (where
T♯µ(B) := µ(T−1(B)) for eah Borel set B).In this paper we prove the following existene result for a generalization of the problem,where the Eulidean norm | · | is replaed by a general norm on R

d.Theorem 1.1. Let ‖ · ‖ be a norm on R
d and assume that µ is absolutely ontinuouswith respet to the Lebesgue measure Ld, then the problem

min

{
∫

Ω
‖x − T (x)‖dµ(x) : T ∈ T (µ, ν)

} (1.2)has at least one solution.We emphasize the fat that we make no regularity assumption on the norm ‖ · ‖. Onthe other hand, the assumption that the �rst marginal µ should be absolutely ontinuouswith respet to the Lebesgue measure is lassial and may be justi�ed by Theorem 8.3in Ambrosio et al. [4℄, whih states that for any s < d there exists a measure µ << Hsfor whih (1.2) does not have any solution.The main di�ulties in (1.2) are due to the fats that the objetive funtional isnon-linear in T and the set T (µ, ν) does not possess the right ompatness propertiesto apply the diret methods of the Calulus of Variations. A suitable relaxation wasDate: 25 april 2009.2000 Mathematis Subjet Classi�ation. 49Q20, 49K30, 49J45.Key words and phrases. Monge-Kantorovih problem, optimal transport problem, ylial monotoniity.1



2 THIERRY CHAMPION AND LUIGI DE PASCALEintrodued by Kantorovih [21, 22℄ and it proved to be a deisive tool to deal with thisproblem. De�ne the set of transport plans from µ to ν as
Π(µ, ν) := {γ ∈ P(Ω × Ω) | π1

♯ γ = µ, π2
♯ γ = ν},where P(Ω × Ω) denotes the set of Borel probability measures on Ω× Ω and πi denotesthe standard projetion in the Cartesian produt. The set Π(µ, ν) is always non-emptyas it ontains at least µ ⊗ ν. Then Kantorovih proposed to study the problem

min

{
∫

Ω×Ω
‖x − y‖dγ(x, y) : γ ∈ Π(µ, ν)

}

. (1.3)Problem (1.3) is onvex and linear in γ, then the existene of a minimizer may beobtained by the diret method of the Calulus of Variations. To obtain the existene ofa minimizer for (1.2) it is then su�ient to prove that some solution γ ∈ Π(µ, ν) of (1.3)is in fat indued by a transport T ∈ T (µ, ν), i.e. may be written as γ = (id × T )♯µ.Before desribing the present work, let us review brie�y other existene results for(1.2). Sudakov [31℄ �rst proposed an e�ient strategy to solve (1.2) for a general norm ‖·‖on R
d. However this method involved a ruial step on the disintegration of an optimalmeasure γ for (1.3) whih was not ompleted orretly at that time, and has reentlybeen justi�ed in the ase of a stritly onvex norm by Caravenna [11℄. Meanwhile,the problem (1.1) has been solved by Evans et al. [19℄ with the additional regularityassumption that µ and ν have Lipshitz-ontinuous densities with respet to Ld, andthen by Ambrosio [1℄ and Trudinger et al. [32℄ for µ and ν with integrable density. For

C2 uniformly onvex norms the problem (1.2) has been solved by Ca�arelli et al. [10℄and Ambrosio et al. [4℄, and �nally for rystalline norms in R
d and general norms in

R
2 by Ambrosio et al. [3℄. The original proof of Sudakov was based on the redutionof the transport problems to a�ne regions of smaller dimension, and all the proof welisted above are based on the redution of the problem to a 1-dimensional problem via ahange of variable or area-formula. In [12℄, we designed a di�erent method whih doesnot require the redution to 1-dimensional settings. However, we were able to arry onone of the steps of our proof only in the ase of stritly onvex norms.In this paper, we prove the existene of a solution to (1.2) for a general norm ‖ · ‖ on

R
d. The originality of our method for the proof of Theorem 1.1 above is that it doesnot require disintegration of measures and relies on a simple but powerful regularityresult (see Lemma 3.3 below), whih is inspired by a previous regularity result obtainedin the study of an optimal transportation problem with ost funtional in non-integralform in [13℄. In setion �2, we introdue a variational approximation to selet solutions of(1.3) that have a partiular monotoniity property. Setion �3 is devoted to the notion ofdensity-regular points of a transport γ and in partiular to Lemma 3.3, whih states thata transport map γ ∈ Π(µ, ν) is onentrated on suh points. In the following setion �4,we infer from the preeding some tehnial regularity result for the partiular solutionsof (1.3) previously seleted. The proof of our main result Theorem 1.1 is �nally derivedin �5, while some �nal omments are olleted in �6.



THE MONGE PROBLEM 32. Variational approximation to selet monotone transport plansFollowing the line of [3, 10, 29℄, we introdue a variational approximation to seletoptimal transport plans for (1.3) whih have some additional properties, and in the nextsetions we shall prove that these partiular optimal transport plans are indued bytransport maps. This proedure of hoosing partiular minimizers is the root of the ideaof asymptoti development by Γ-onvergene (see [5℄ and [6℄) .We denote by O1(µ, ν) the set of optimal transport plans for (1.3), and onsider theauxiliary problem:
min

{
∫

Ω×Ω
|y − x|2dγ(x, y) : γ ∈ O1(µ, ν)

}

, (2.1)where we remark the fat that the ost in onsideration involves the eulidean norm | · | of
R

d. Following �3.1 in [29℄, we introdue an approximating proedure for some partiularsolutions of (2.1) (see Lemma 2.3 below). Given two Borel probability measures α and
β on Ω, we denote by

W1(α, β) := min

{
∫

Ω×Ω
‖x − y‖dγ : γ ∈ Π(α, β)

}the usual 1−Wasserstein distane assoiated to the norm ‖ ·‖. Notie that problem (1.3)then orresponds to W1(µ, ν). For ε > 0, we also set
Cε(γ; ν) :=

1

ε
W1(π

2
♯ γ, ν) +

∫

Ω×Ω
‖x − y‖dγ + ε

∫

Ω×Ω
|x − y|2dγ + ε3d+2Card(π2

♯ γ)for any γ ∈ P(Ω × Ω), where Card(·) denotes the ardinality of the support of themeasure. We emphasize the fat that the norm ‖ · ‖ appears in the two �rst terms of
Cε while the Eulidean norm | · | appears only in the third term. We then onsider thefollowing family of minimization problems (Dε)ε>0 assoiated to (1.3) and (2.1):

(Dε) min{Cε(γ; ν) : γ ∈ P(Ω × Ω), π1
♯ γ = µ}.For any ε > 0 the problem (Dε) admits at least one solution γε, with disrete seondmarginal π2

♯ γε.We �nally introdue the standard family of interpolated projetions.De�nition 2.1. For t ∈ [0, 1] we will denote by P t the map
P t : Ω × Ω → Ω

(x, y) 7→ (1 − t)x + ty.The following Proposition ollets some properties of the minimizers of (Dε) for lateruse, mainly inspired from [29℄.Proposition 2.2. Let B be a Borel subset of Ω × Ω. Let ε > 0 and γε be a solution for
(Dε), and set µε,B := π1

♯ γε⌊B and νε,B := π2
♯ γε⌊B. Then it holds(1) the measure γε⌊B is a solution of the problem

(Dε,B) min

{
∫

Ω×Ω
(‖x − y‖ + ε|x − y|2)dγ : γ ∈ Π(µε,B, νε,B)

}



4 THIERRY CHAMPION AND LUIGI DE PASCALEwhere Π(µε,B, νε,B) denotes the set of non-negative Borel measures with marginals
µε,B and νε,B;(2) if µε,B ∈ L∞(Ω) then for any t ∈ (0, 1) it holds

‖P t
♯(γε⌊B)‖L∞ ≤ (1 − t)−d‖µε,B‖L∞ .Proof. Sine γε is a solution of (Dε), it is a solution of

min

{
∫

Ω×Ω
(‖x − y‖ + ε|x − y|2)dγ : γ ∈ Π(µ, π2

♯ γε)

}

. (2.2)The laim (1) then follows from the linearity of the funtional in problem (2.2) (e.g. seeproof of Lemma 4.2 in [3℄).The laim (2) is a diret appliation of Lemma 2 in �3.2 of [29℄, sine by (1) themeasure γε⌊B is an optimal transport plan between µε,B, whih is absolutely ontinuouswith respet to Ld, and the disrete measure νε,B for the stritly onvex ost (x, y) 7→
‖x − y‖ + ε|x − y|2 (see also the Appendix below). �The link between the family of problems (Dε) and (2.1) is given in the followingLemma, whose proof oinides with that of Lemma 1 in �3.1 of [29℄ and will be given inthe appendix for sake of ompleteness.Lemma 2.3. For any ε > 0 let γε be a solution of (Dε), then the sequene (π2

♯ γε) w∗-onverges to ν as ε → 0. Moreover, any w∗-limit as εk → 0 of a subsequene of solutions
(γεk

)k∈N is a solution of (2.1).The above Lemma suggests to introdue the following set of optimal transport plansfor (1.3).De�nition 2.4. We shall denote by O2(µ, ν) the minimizers for (2.1) whih are w∗-limitsas εk → 0 of a subsequene (γεk
)k∈N of minimizers of (Dεk

).We observe that, by de�nition, the minimizers γε of problem (Dε) are all probabilitymeasures on Ω × Ω, and sine their marginals onverge as ε → 0 to µ and ν, we inferthat O2(µ, ν) is not empty.It is an important fat in the following that the loal properties stated in Proposition2.2 pass to the limit and are still valid for the elements of O2(µ, ν). Notie that, ingeneral, the restritions of a sequene of weakly onverging measures does not onvergewithout additional assumptions. The following lemma states that this is the ase whenonsidering a sequene of transport plans with the same �rst marginals.Lemma 2.5. Let (γε)ε a sequene in P(Ω × Ω) with w∗−limit γ ∈ P(Ω × Ω) as ε → 0,and suh that π1
♯ γε = π1

♯ γ = µ for any ε > 0, with µ << Ld. Then for any Borel set
G ⊂ Ω it holds γε⌊G × Ω

∗
⇀ γ⌊G × Ω.Proof. We have to prove that ∀ ϕ ∈ Cb(Ω × Ω)

∫

Ω×Ω
χG(x)ϕ(x, y)dγε(x, y) →

∫

Ω×Ω
χG(x)ϕ(x, y)dγ(x, y) as ε → 0. (2.3)



THE MONGE PROBLEM 5Sine µ << Ld, it follows from Lusin's Theorem that for all α > 0 there exists a losedset Fα suh that
χG|Fα

is ontinuous and µ(Ω \ Fα) ≤ α.As a onsequene for every α > 0 one hasthe restrition of (x, y) 7→ χG(x)ϕ(x, y) to Fα × Ω is ontinuousand
lim sup

ε→0
γε((Ω \ Fα) × Ω) ≤ µ(Ω \ Fα) ≤ α.Then sine (x, y) 7→ χG(x)ϕ(x, y) is bounded and then equiintegrable with respet to

(γε)ε>0, (2.3) follows from Proposition 5.1.10 of [2℄. �Finally, sine an element ofO2(µ, ν) is a solution of (2.1), it enjoys a ylial-monotoniityproperty inherited from the ost (x, y) 7→ |y − x|2 (see remark 2.7 below), stated in thefollowing Proposition, whose proof may be derived from that of Lemma 4.1 in [3℄ and isgiven in [12℄ (see Proposition 3.2 therein).Proposition 2.6. Let γ be a solution of (2.1), then γ is onentrated on a σ-ompatset Γ with the following property:
∀(x, y), (x′, y′) ∈ Γ, x ∈ [x′, y′] ⇒ (x − x′) · (y − y′) ≥ 0, (2.4)where · denotes the usual salar produt on R

d.Remark 2.7. A solution γ of the lassial transport problem assoiated to | · |2:
min

{
∫

Ω×Ω
|y − x|2dλ(x, y) : λ ∈ Π(µ, ν)

}

,is known to be onentrated on a | · |2-ylially monotone set Γ, that is:
∀(x, y), (x′, y′) ∈ Γ, (x − x′) · (y − y′) ≥ 0.In (2.4), the restrition that x should be in [x′, y′] to get the inequality has origin in thefat that the onstraint in (2.1) is O1(µ, ν) in plae of Π(µ, ν).Remark 2.8. The reason to deal with σ-ompat sets Γ, in the above proposition as wellas in the following, is that the projetion π1(Γ) is also σ-ompat, and in partiular is aBorel set. 3. A property of transport plansWe begin by onsidering some general properties of transport plans. This setion isindependent of the transport problem (1.3), and some of the tehniques detailed beloware re�nements of similar ones whih were �rst applied in [13℄ in the framework of non-lassial transportation problems involving ost funtionals not in integral form.De�nition 3.1. Let γ ∈ Π(µ, ν) be a transport plan and Γ a σ-ompat set on whih itis onentrated. For y ∈ Ω and r > 0 we de�ne

Γ−1(B(y, r)) := π1(Γ ∩ (Ω × B(y, r))).



6 THIERRY CHAMPION AND LUIGI DE PASCALEIn other words, when given a σ-ompat set Γ on whih γ is onentrated, the set
Γ−1(B(y, r)) is the set of those points whose mass (with respet to µ) is partially orompletely transported to B(y, r) by the restrition of γ to Γ. We may justify this slightabuse of notations by the fat that γ should be thought of as a devie that transportsmass. Notie also that Γ−1(B(y, r)) is a σ-ompat set.Sine this notion is important in the sequel, we reall that when a funtion f is loallyintegrable for the Lebesgue measure Ld, one has

lim
r→0

1

Ld(B(x, r))

∫

B(x,r)
|f(z) − f(x)|dz = 0for almost every x in Ω. These points x are usually alled Lebesgue points of f . When

A is an Ld-measurable subset of Ω, we shall all Lebesgue point of A any element x ∈ Awhih is a Lebesgue point of the harateristi funtion f = χA of A, and then satis�es
lim
r→0

Ld(A ∩ B(x, r))

Ld(B(x, r))
= 1.In the following, we shall denote by Leb(f) (resp. Leb(A)) the set of points x ∈ Ω (resp.

x ∈ A) whih are Lebesgue points of f (resp. A). Moreover we will denote by support(f)the set of points x ∈ Ω suh that ∫
B(x,r) f(z)dz > 0 for any r > 0.De�nition 3.2. We will all density of an absolutely ontinuous measure λ the funtion

g(x) = lim sup
r→0

λ(B(x, r))

Ld(B(x, r))
.Then the Lebesgue points of the density of λ are uniquely determined as well as thevalue of g at those points.The following Lemma is an essential step in the proof of Proposition 4.2 and Theorem5.1 below. This result is a re�nement of Lemma 5.2 from [13℄ and Lemma 4.3 in [12℄,and its proof follows the line of those Lemmas. It in fat enompasses those results, asRemark 3.5 below shows.Lemma 3.3. Assume that µ << Ld with density denoted by f . Let γ ∈ Π(µ, ν), and

Γ a set on whih γ is onentrated. Then there exists a σ-ompat subset D(Γ) of
Γ ∩ support(γ) on whih γ is onentrated, and suh that for any (x, y) ∈ D(Γ) and
r > 0, there exist ỹ ∈ Ω and r̃ > 0 suh that

y ∈ B(ỹ, r̃) ⊂ B(y, r), x ∈ Leb(f) ∩ Leb(f̃), f(x) < +∞ and f̃(x) > 0 (3.1)where f̃ is the density of π1
♯ γ⌊Ω × B(ỹ, r̃) with respet to Ld.Proof. Let (yn)n be a dense sequene in Ω. For eah (n, k) ∈ N

2 we set γn,k := γ⌊Ω ×
B(yn, 1

k+1) and de�ne fn,k to be the density of π1
♯ γn,k with respet to Ld. We notie thatfor any (x, y) ∈ Ω×Ω and r > 0 there exists n, k ∈ N suh that y ∈ B(yn, 1

k+1) ⊂ B(y, r),and that if (x, y) is in the support of γ then it is in the support of γn,k and x is in thesupport of fn,k. Let now
An,k := [Ω \ (Leb(f) ∩ Leb(fn,k) ∩ {f < +∞} ∩ {fn,k > 0})] × B(yn,

1

k + 1
).



THE MONGE PROBLEM 7for all n, k ∈ N.We laim that γ(∪n,kAn,k) = 0. Indeed for �xed n, k ∈ N, the set Ω \ (Leb(f) ∩
Leb(fn,k) ∩ {f < +∞}) has Ld measure 0, so that it also has µ-measure 0 and then
π1

♯ γn,k measure 0. The set Ω \ {fn,k > 0} also has π1
♯ γn,k measure 0, so that γ(An,k) =

γn,k(An,k) = 0. This proves the laim and we onlude that γ is onentrated on the set
(support(γ) ∩ Γ)\∪n,kAn,k, whih has all the desired properties but the σ-ompatness.This last property is ahieved thanks to the inner regularity of γ. �The above disussion and Lemma yield us to introdue the following notions:De�nition 3.4. The ouple (x, y) ∈ Γ is a Γ-regular point if x is a Lebesgue point of
Γ−1(B(y, r)) for any positive r; it is a Γ-density-regular point if for any r > 0 there exists
(ỹ, r̃) suh that (3.1) holds.Remark 3.5. By de�nition any element (x, y) ∈ D(Γ) (with the notations of Lemma 3.3)is a Γ-density-regular point, we notie that it is also a Γ-regular point. Indeed, for r > 0there exists (ỹ, r̃) suh that (3.1) holds, then sine f̃(x) > 0 and x ∈ Leb(f̃) it followsthat x belongs to Leb({f̃ > 0}). By the de�nition of f̃ it omes

∫

{f̃>0}\Γ−1(B(y,r))
f̃dLd = γ(Ω × B(ỹ, r̃) \ Γ) = 0so that Ld({f̃ > 0}\Γ−1(B(y, r))) = 0. As a onsequene, x belongs to Leb(Γ−1(B(y, r))).Lemma 3.3 above therefore states that any transport plan γ is onentrated on a Borelset onsisting of regular as well as density-regular points.4. A property of the seleted optimal transport plansIn this setion, we obtain a regularity result (Proposition 4.2 below) for the transportplans whih belong to O2(µ, ν) (see De�nition 2.4). Following the formalism of [4℄ weintrodue the notion of transport set related to a subset Γ of R

d × R
d.De�nition 4.1. Let Γ be a subset of R

d × R
d, the transport set T (Γ) of Γ is

T (Γ) := {(1 − t)x + ty | (x, y) ∈ Γ, t ∈ (0, 1)}.Notie that if Γ is σ-ompat then T (Γ) is also σ-ompat.Proposition 4.2. Assume that µ << Ld and let γ ∈ O2(µ, ν) be onentrated on a
σ-ompat set Γ. Then for any (x, y) ∈ D(Γ) (obtained by Lemma 3.3) with x 6= y andfor r > 0 small enough it holds

lim inf
δ→0+

Ld
[

T
(

Γ ∩
[

B(x, δ
2) × B(y, r)

])

∩ B(x, δ)
]

Ld(B(x, δ))
> 0. (4.1)Proof. We denote by f the density of µ. Consider (x, y) ∈ D(Γ) with x 6= y and

0 < r << |x − y|. Let ỹ and r̃ be as in Lemma 3.3; we reall that π1
♯ γ⌊Ω × B(ỹ, r̃) isabsolutely ontinuous with respet to Ld, with density denoted by f̃ , that f̃(x) > 0 and

lim
s→0

1

Ld(B(x, s))

∫

B(x,s)
|f̃(z) − f̃(x)| = lim

s→0

1

Ld(B(x, s))

∫

B(x,s)
|f(z) − f(x)| = 0.



8 THIERRY CHAMPION AND LUIGI DE PASCALELet G := {z ∈ Ω | 1
2 f̃(x) ≤ f̃(z) and f(z) ≤ f(x) + 1}. Possibly subtrating a set of

Ld-measure 0 we may onsider G a Borel set and
lim
s→0

Ld(G ∩ B(x, s))

Ld(B(x, s))
= 1.Fix δ > 0 so that

δ

|x − y| + r
< 1 and ∀s ∈ (0, δ), Ld(G ∩ B(x, s)) ≥

1

2
L(B(x, s)) (4.2)and �x t ∈ (0, δ

2(|x−y|+r)). Then for every z ∈ B(x, δ
2) and every w ∈ B(y, r) it holds

(1 − t)z + tw ∈ B(x, δ). (4.3)For suh a hoie of δ de�ne the subset Gδ := B(x, δ
2 ) ∩ G of G and notie that

Ld(Gδ ∩ B(x,
δ

2
)) ≥

1

2
Ld(B(x,

δ

2
)). (4.4)Let Aδ := Gδ × B(ỹ, r̃) and onsider the measure γAδ

:= γ⌊Aδ. We observe that π1
♯ γAδis absolutely ontinuous with respet to Ld and we denote by fAδ

its density. Then onehas
1

2
f̃(x) ≤ fAδ

≤ f ≤ f(x) + 1 on Gδ . (4.5)It then follows from (4.3), (4.4) and (4.5) that
f̃(x)

4
Ld(B(x,

δ

2
)) ≤ π1

♯ γAδ
(B(x,

δ

2
)) ≤ P t

♯ γAδ
(B(x, δ)). (4.6)Sine γ belongs to O2(µ, ν), it is a w∗-limit of a subsequene (γεk

)k of minimizers of
(Dεk

). We notie that laim (2) of Proposition 2.2 holds for γεk
⌊Gδ × Ω, so that:

‖P t
♯ γεk

⌊Gδ × Ω‖L∞ ≤ (1 − t)−d‖π1
♯ γεk

⌊Gδ × Ω‖∞ = (1 − t)−d‖f⌊Gδ‖∞.By Lemma 2.5 it follows that γ⌊Gδ ×Ω is the w∗-limit of the subsequene (γεk
⌊Gδ ×Ω)k.The sequene (P t

♯ γεk
⌊Gδ × Ω)k then onverges weakly in L∞(Ω) to P t

♯ γ⌊Gδ × Ω, and inpartiular letting k → +∞ in the above estimate yields
‖P t

♯ γAδ
‖L∞ ≤ ‖P t

♯ γ⌊Gδ × Ω‖L∞ ≤ 2d(f(x) + 1). (4.7)On the other hand we laim that whenever a measure λ ∈ M(Ω × Ω) is supported on aBorel set Λ the measure P t
♯ λ is supported on T (Λ). Indeed

P t
♯ λ(Ω \ T (Λ)) = λ((P t)−1(Ω \ T (Λ))) ≤ λ(Ω × Ω \ Λ) = 0.As a onsequene P t

♯ γAδ
is supported on T (Γ ∩

[

B(x, δ
2) × B(y, r)

]

).Then again the hoie of t and (4.7) imply that
P t

♯ γAδ
(B(x, δ)) = P t

♯ γAδ

(

T (Γ ∩ [B(x,
δ

2
) × B(y, r)]) ∩ B(x, δ)

)

≤ 2d(f(x) + 1)Ld

(

T (Γ ∩ [B(x,
δ

2
) × B(y, r)]) ∩ B(x, δ)

)

. (4.8)



THE MONGE PROBLEM 9The proof is now omplete sine (4.6) and (4.8) yield
Ld(T (Γ ∩ [B(x,

δ

2
) × B(y, r)]) ∩ B(x, δ)) ≥

f̃(x)

2d+2(f(x) + 1)
Ld(B(x,

δ

2
))for any δ > 0 small enough for (4.2) to hold. �5. Proof of the main theoremWe now onlude with the proof of Theorem 1.1, whih is a onsequene of the fol-lowing result.Theorem 5.1. Assume that µ << Ld. Then every element γ of O2(µ, ν) is indued bya transport map Tγ ∈ T (µ, ν), i.e. γ = (id × Tγ)♯µ.Proof. Let γ ∈ O2(µ, ν), we prove that it is indued by a transport map Tγ ∈ T (µ, ν).By Proposition 2.1 in [1℄, it is su�ient to prove that γ is onentrated on a Borel graph.It follows from Proposition 2.6 that γ is onentrated on a σ-ompat set Γ satisfying(2.4). We then apply Proposition 4.2 to get that γ is onentrated on a σ-ompat subset

D(Γ) of Γ ∩ supp(γ) and on whih (4.1) is satis�ed.We laim that D(Γ) is ontained in a graph. To prove this, we show that if (x0, y0) and
(x0, y1) both belong to D(Γ) then y0 = y1. We argue by ontradition, and assume that
y1 6= y0. As a onsequene, one either has (y1−y0)·(y0−x0) < 0 or (y0−y1)·(y1−x0) < 0.Without loss of generality, we assume that

(y1 − y0) · (y0 − x0) < 0.We �x r > 0 small enough so that
∀x ∈ B(x0, r), ∀y′ ∈ B(y0, r), ∀y ∈ B(y1, r), (y − y′) · (y′ − x) < 0. (5.1)Sine (x0, y1) ∈ D(Γ), we infer that x0 is a Lebesgue point for Γ−1(B(y1, r)). Moreover,we also get from (x0, y0) ∈ D(Γ) and (4.1) that

lim inf
δ→0+

Ld
(

T
(

Γ ∩
[

B(x0,
δ
2) × B(y0, r)

])

∩ B(x0, δ)
)

Ld(B(x0, δ))
> 0.As a onsequene, for δ small enough there exists (x′, y′) and (x, y) in Γ suh that

x′ ∈ B(x0,
δ

2
), y′ ∈ B(y0, r), x ∈ [x′, y′] ∩ B(x0, δ) and y ∈ B(y1, r).It follows from (2.4) applied to (x′, y′) and (x, y) that

(y − y′) · (x − x′) ≥ 0but sine x ∈ [x′, y′] one also has x − x′ = |x−x′|
|y′−x| (y

′ − x) whih ontradits (5.1). �Remark 5.2. It seems natural to expet that the set O2(µ, ν) has a unique element, usingthe same type of uniqueness argument as in the Step 5 of the proof of Theorem B in [3℄.However the set O2(µ, ν), as de�ned in De�nition 2.4, is not neessarily onvex, and thisargument does not apply here.



10 THIERRY CHAMPION AND LUIGI DE PASCALE6. CommentsThe strategy for proving Theorem 5.1 above relies on two fundamental ingredients:the ylial-monotoniity for partiular solutions of (1.3) obtained in Proposition 2.6,and the density result for the set of transport rays obtained in Proposition 4.2. Thisstrategy was already that developed in [12℄ for the speial ase of a stritly onvex norm.The originality in the use of Proposition 2.6 is that, sine the norm ‖·‖ is not assumedto be stritly onvex, it may happen that the points x, x′, y, y′ in onsideration are notaligned. In the stritly onvex ase this property of alignment is fundamental sine itbasially allows to redue the problem (1.3) to a family of one-dimensional problems, onwhih one an use the property of monotoniity of the seleted optimal transport plan(solution of (2.1)). In the general - not neessarily stritly onvex - ase, we need to usethe full information that the seleted partiular solution is onentrated on a set whihis ylially monotone in the lassial sense of onvex analysis.The fat that the result stated in Proposition 4.2, although quite natural, happenssomewhat di�ult to obtain (and in partiular was not derived in its full generality inProposition 5.2 of [12℄), may be illustrated by the following example. Let us �rst reallthe following result in [3℄:Theorem 6.1 (Theorem A of [3℄). There exist a Borel set M ⊂ [−1, 1]3 with |M | = 8and two Borel maps fi : M → [−2, 2] × [−2, 2] for i = 1, 2 suh that the following holds.For x ∈ M denote by lx the segment onneting (f1(x),−2) to (f2(x), 2) then(1) {x} = lx ∩ M for all x ∈ M ,(2) lx ∩ ly = ∅ for all x, y ∈ M di�erent.If one onsiders Γ := {(x, F (x)) : x ∈ M} with F (x) := (f2(x), 2), then we observethat the open transport set T (Γ) has density 0 at every point of π1(Γ) = M (although
M has full measure in [−1, 1]3). We notie that Γ supports the transport plan (id ×
F )♯(L

3⌊M) whih is an optimal transport plan between its marginals for the ost ‖x‖ :=
max{|x1|, |x2|, 3|x3|}. The Lemma 3.3 (and the notion of Γ-density-regular points) aswell as the approximating proedure provided in [29℄ (and realled in �2) then appearas the neessary ornerstones to derive Proposition 4.2. In fat, it had been notied insetion �7 of [12℄, that using some estimate for the so alled �transport density� mayallow to obtain some tehnial result analogous to Proposition 4.2. Altough this is notexatly what we did in the present paper, the inequality (4.6) in the proof of Proposition4.2 ontains that type of estimate.We now disuss further possible extensions of the methodology developed here to proveTheorem 5.1. The above example �rst indiates that for some very bad ases, the opentransport T (Γ) may have density 0 at any point of π1(Γ) when the norm is not stritlyonvex. This may be a limit of the de�nition of the open transport set that we use:a possible alternative would be to onsider the set of all geodesis joining two pointsinstead of onsidering only the segments. This would give a �fat� transport set. For themoment, our approah annot be extended to this kind of transport sets without somesubstantial addition. We also notie that the onstrution we make in this paper doesnot make expliit use of the geometry of the segments, but it is based on some propertyof segments whih may be enjoyed by more general family of urves. Then we believe



THE MONGE PROBLEM 11that there is the possibility that the same approah ould bring to the proof of existeneof optimal transports also in other geometri settings where this result is urrently outof sight.We �nally onlude by notiing that our strategy also provides a very e�ient wayto reover the existene result for an optimal transport map for the lassial ase of theEulidean norm (or a C2 stritly onvex norm). Indeed, in that ase the approximatingproedure of �2 is useless and Proposition 4.2 holds for any solution γ of (1.3) beauseof the following property: if u is a potential for (1.3) (i.e. a solution of the lassialdual problem for (1.3)), then there exists a ountable union of sets ∪iTi on whih µis onentrated and suh that the gradient ∇u is Lipshitz-ontinuous on eah Ti (forinstane see [1, 10, 32℄). This, together with the fat that the transport rays do notross, allows to derive the desired density.AppendixFor the sake of ompleteness, we give some details of the arguments of the proofs ofProposition 2.2 as well as Lemma 2.3. These proofs are adapted from that of Theorem1 and Lemmas 1 and 2 of [29℄.Proof of Proposition 2.2 (2). Fix ε > 0 and t > 0. Let {yi}i∈I be the �nite support of
νε,B. For i ∈ I we set Ωi := support(γε⌊Ω×{yi}) and Ωi(t) := Pt(Ωi ×{yi}). Then if Ais a Borel subset of Ω we have

P t
♯ (γε⌊B)(A) ≤

∑

i∈I

(γε⌊B)((P t)−1(A ∩ Ωi(t)))

=
∑

i∈I

µε,B

(

1

1 − t
(A ∩ Ωi(t) − t yi)

)

≤
∑

i∈I

(1 − t)−d‖µε,B‖L∞Ld(A ∩ Ωi(t)).The onlusion then follows whenever
∑

i∈I

Ld(A ∩ Ωi(t)) = Ld

(

⋃

i∈I

A ∩ Ωi(t)

)

(≤ Ld(A)).This equality indeed follows from the fat that the sets Ωi(t) and Ωj(t) are disjoint when
i 6= j. We prove this by ontradition, and assume that (1−t)xi +tyi = (1−t)xj +tyj forsome xi ∈ Ωi, xj ∈ Ωj with i 6= j. Notie that sine yi 6= yj, one also has yi−xi 6= yj−xj.The ost c : (x, y) 7→ ‖x−y‖+ε|x−y|2 being ontinuous, the support of γε is a c-yliallymonotone set, and thus one has

c(yi − xi) + c(yj − xj) ≤ c(yj − xi) + c(yi − xj).Sine yj − xi = t(yi − xi) + (1 − t)(yj − xj) and yi − xj = (1 − t)(yi − xi) + t(yj − xj),we onlude from the strit onvexity of c that
c(yj − xi) + c(yi − xj) < c(yi − xi) + c(yj − xj)whih is a ontradition. �



12 THIERRY CHAMPION AND LUIGI DE PASCALEProof of Lemma 2.3. Assume that Ω ⊂ B(0, R). For n ≥ 1 let pn be a measurable mapfrom Ω to a grid of at most (2Rn)d points with the property that |pn(x) − x| ≤ 1
n
forany x ∈ Ω. Let γ be a solution of (2.1), for every n ≥ 1 we set γn := (id × pn)♯γ.We now write the optimality of γε for (Dε) so that for any ε > 0 and n ≥ 1 it holds

Cε(γε; ν) =
1

ε
W1(π

2
♯ γε, ν) +

∫

Ω×Ω
‖x − y‖dγε + ε

∫

Ω×Ω
|x − y|2dγε + ε3d+2Card(π2

♯ γε)

≤ Cε(γ
n; ν)

=
1

ε
W1(pn♯ν, ν) +

∫

Ω×Ω
‖x − y‖dγn + ε

∫

Ω×Ω
|x − y|2dγn + ε3d+2Card(pn♯ν)

≤
1

n ε
+

∫

Ω×Ω
‖x − y‖dγn + ε

∫

Ω×Ω
|x − y|2dγn + ε3d+2(2Rn)d.Keeping the �rst term in Cε(γε; ν), multiplying by ε and letting ε → 0 then yields

∀n ≥ 1, lim sup
ε→0

W1(π
2
♯ γε, ν) ≤

1

n
.Letting n → +∞ we get the w∗-onvergene of π2

♯ γε to ν. As a onsequene, any
w∗-luster point of (γε)ε as ε → 0 belongs to Π(µ, ν).Keeping the seond term in Cε(γε, ν) and taking n(ε) ≈ ε−2 yields
∫

Ω×Ω
‖x − y‖dγε ≤ ε +

∫

Ω×Ω
‖x − y‖dγn(ε) + ε

∫

Ω×Ω
|x − y|2dγn(ε) + εd+2(2R)d.We let ε → 0 and notie that

∫

Ω×Ω
‖x − y‖dγn(ε) →

∫

Ω×Ω
‖x − y‖dγ = W1(µ, ν),so that any w∗-luster point of (γε)ε is a solution of (1.3).We now notie that

∫

Ω×Ω
‖x − y‖dγε ≥ W1(µ, π2

♯ γε) ≥ W1(µ, ν) −W1(ν, π2
♯ γε)and

∫

Ω×Ω
‖x − y‖dγn ≤

∫

Ω×Ω
‖x − y‖dγ +

∫

Ω×Ω
‖pn(y) − y‖dγn ≤ W1(µ, ν) +

1

nwhere we used the optimality of γ for (1.3). Keeping the three �rst terms in Cε(γε, ν),we then obtain that
(
1

ε
− 1)W1(ν, π2

♯ γε) + ε

∫

Ω×Ω
|x − y|2dγε ≤

1 + ε

n ε
+ ε

∫

Ω×Ω
|x − y|2dγn + ε3d+2(2Rn)d.The �rst term on the right hand side is non-negative for ε small enough, then dividingby ε and taking n(ε) ≈ ε−3 yield

∫

Ω×Ω
|x − y|2dγε ≤ (1 + ε)ε +

∫

Ω×Ω
|x − y|2dγn(ε) + ε(2R)d.so that any w∗-luster point of (γε)ε is a solution of (2.1). �
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