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Linear quasi-geostrophic ocean model

We use the so-called β-plane approximation, with
β = 2Ω0R−1 cos θ̃0, where Ω0 and R are the angular velocity and
radius of the Earth, respectively, and θ̃0 a reference latitude.

ut − AH∆u + γu + (f0 + βx2) k ∧ u +
1

ρ0
∇p = T in Ω× (0,T ),

div u = 0 in Ω× (0,T ),

u = 0 on Γ× (0,T ),

u(0) = u0 in Ω,
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u(x , t) and p(x , t), respectively, denote the velocity and the
pressure of the fluid at (x , t) = (x1, x2, t) ∈ IR2 × IR+.
AH represents the horizontal eddy viscosity coefficient,
γ is the bottom friction coefficient,
ρ0 is the fluid density,
T is the wind stress,
(f0 + βx2)k ∧ u is the Coriolis term, with k ∧ u = (−u2, u1).
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Formulation in terms of the stream function ψ(x , t)

Since div u = 0, u = 0 on Γ× (0,T ), and Ω is a connected subset
of IR , we can introduce the stream function ψ(x , t)


Ro

∂

∂t
(∆ψ)− εm∆2ψ + εs∆ψ +

∂ψ

∂x1
= −curl T in Ω× (0,T ),

ψ =
∂ψ

∂n
= 0 on Γ× (0,T ),

∆ψ(0) = −curl u0 = ∆ψ0 in Ω,

(1)

where the coefficients Ro , εs and εm are the non-dimensional
Rossby, Stommel and Munk numbers, respectively:

Ro =
U

βL2
, εm =

AH

βL3
, εs =

γ

βL
. (2)
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U denotes a typical horizontal velocity, L is a representative
horizontal length scale of ocean circulation. Ω = [0, 1]× [0, 1] and
T0 = 0.05. For the Rossby, Munk and Stommel numbers, we
consider :

Ro = 1.5× 10−3, εm = 1× 10−4, εs = 5× 10−3,

which correspond to

γ = 1× 10−7 s−1, AH = 2× 103m2s−1,

L = 106 m, T = 1 year,

U = 0.03m s−1, β = 2× 10−11m−1s−1, D0 = 800 m.
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Existence results

We can easily prove, by adapting the arguments of
Bernardi-Godlewski-Raugel to the presence of a skew-symmetric
Coriolis term in the equations, the following existence result:

Theorem

For a given ψ0 ∈ H1
0 (Ω) and T ∈ L2(H−1(Ω))2, problem (1) has a

unique solution ψ, with ψ ∈ L2(H2
0 (Ω)) ∩ C 0(H1

0 (Ω)) and
∆ψ ∈ H1(H−2(Ω)). Moreover,∣∣∣ψ∣∣∣

L2(H2
0 (Ω))∩C0(H1

0 (Ω))
+
∣∣∣∆ψt

∣∣∣
L2(H−2(Ω))

≤
∣∣∣T ∣∣∣

L2(H−1(Ω))2
+
∣∣∣ψ0

∣∣∣
1,Ω
.
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In fact, we can improve the regularity of the solution obtained in
Theorem 1 .

Theorem

For a given ψ0 ∈ H2
0 (Ω) and T ∈ L2(L2(Ω))2, problem (1) has a

unique solution ψ ∈ L2(H3(Ω) ∩ H2
0 (Ω)) ∩ C 0(H2

0 (Ω)) and
ψt ∈ L2(H1

0 (Ω)).

Corollary

For any ψ0 ∈ H1
0 (Ω), T ∈ L2(L2(Ω))2, and δ > 0, the solution of

(1) satisfies ψ ∈ C 0([δ,T ],H2
0 (Ω)).
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Preliminaries

The problem encountered in oceanology is to simulate the
evolution of the ocean circulation. Using the previous (simplified)
model, everything is known, EXCEPT the initial value at time
t = 0.
On the other hand, we know a history of measurements of the
solution (observations ψobs) in some subdomain O during the time
period (0,T0).
A classical method, called Variational Data Assimilation, based on
Optimal Control, is to take the unknown initial value as a control
and try to minimize, with respect to this control, the error between
the actual measurements and the solution associated with the
given control.
This problem is known to be ill-posed and requires to be
regularized by a Tychonov method.
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If ψ(ψ0) is the solution corresponding to the initial value ψ0, we
consider the functional

H̃r (ψ0) =

∫ T0

0

∫
O
|ψobs − ψ(ψ0)|2 dx dt + r

∣∣∣ψ0

∣∣∣2
1,Ω
.

and the minimization problem : Find ψ0
r such that

H̃r (ψ0
r ) = min

ψ0

H̃r (ψ0).

Here r > 0 is the Tychonov parameter.
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New method

The idea is to recover the final state value (state value at time
t = T0) without knowledge of ψ0.
For the reconstruction of ψ(T0) we will introduce a control
problem for the following backward adjoint system: For z(T0) in
H1

0 (Ω) and h in L2(L2(O)), let us consider the following equation:
−Ro

∂

∂t
(∆z)− εm∆2z + εs∆z − ∂z

∂x1
= −h1O in Ω× (0,T0),

z =
∂z

∂n
= 0 on Γ× (0,T0),

z(T0) = ϕ0 in Ω.

(3)

For the existence of a solution of (3), we will use the transposition
method.
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Definition

For each ϕ0 ∈ L2(Ω) and h ∈ L2(L2(O)), we say that (z , z0) is a
weak solution of (3) if z ∈ L2(H1

0 (Ω)), z0 ∈ H1
0 (Ω) and∫ T0

0
< f , z > dt − Ro

∫
Ω
∇θ0 · ∇z0 dx =

−
∫ T0

0

∫
O

hθ dx dt + Ro

∫
Ω
ϕ0∆θ(T0) dx ,

for every f ∈ L2(H−1(Ω)) and θ0 ∈ H1
0 (Ω), where θ is the solution

of
Ro

∂

∂t
(∆θ)− εm∆2θ + εs∆θ +

∂θ

∂x1
= f in Ω× (0,T0),

θ =
∂θ

∂n
= 0 on Γ× (0,T0),

θ(0) = θ0 in Ω.

(4)

Here, θ satisfies the same regularity as in (1).
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Theorem

For every ϕ0 ∈ L2(Ω) and h ∈ L2(L2(O))), there exists a unique
solution (z , z0) in L2(H1

0 (Ω))× H1
0 (Ω). Moreover,

∆z ∈ C 0(H−2(Ω)) and ∆z(0) = ∆z0.

We now give a result of null controllability for this adjoint system,
namely we claim that we can find h (control) such that the
corresponding solution z satisfies z(0) = 0.
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Theorem

For any non empty O ⊂ Ω, T0 > 0 and ϕ0 ∈ L2(Ω), there exists
h = h(ϕ0) in L2(L2(O))) such that the solution z of problem
(3)-(4) satisfies

z(0) = 0 in Ω. (5)

This result requires a global Carleman estimate for the adjoint of
this adjoint system...., essentially the original system with zero
right hand side.

Using this control h we can prove the following reconstruction for
the component of ∆ψ(T0) on the function ϕ0.
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Theorem

For any unknown ψ0 ∈ H1
0 (Ω), for any given T ∈ L2(L2(Ω))2,

∀ϕ0 ∈ L2(Ω), (∆ψ(T0), ϕ0) =
1

Ro

{∫ T0

0

∫
O
ψobsh(ϕ0) dx dt

+

∫ T0

0

∫
Ω
T · curl z(ϕ0) dx dt

}
. (6)

Moreover, there exists a positive constant C depending on Ω, O
and T0 such that (stability estimate)∣∣∣∆ψ(T0)

∣∣∣2
0,Ω
≤ C

{∫ T0

0

∫
O
|ψobs |2 dx dt +

∫ T0

0

∫
Ω
|T |2 dx dt

}
.

(7)
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Formally, the first equality can be shown essentially by multiplying
the equation for ψ by z(ϕ0) and integrating by parts. As we have
z(ϕ0)(0) = 0, this kills the unknown term containing ψ0.

Taking successively for ϕ0 elements of a Hilbert basis of L2(Ω), we
can therefore reconstruct exactly ∆ψ(T0).
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We can also show that this reconstruction is equivalent to finding
the (final) state value for ψ which minimizes the functional

H(ψ) =

∫ T0

0

∫
O
|ψobs − ψ|2 dx dt (8)

among the trajectories ψ of the system (without initial values)
such that ∫ T0

0

∫
O
|ψ|2 dx dt < +∞.
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The price of this strategy is to solve a null controllability problem
for the adjoint system for every element ϕ0 of a Hilbert basis. We
can consider an approximation of this null controllability problem
by a standard optimal control problem : Let z = z(h) be the
solution of the adjoint system corresponding to the control h. We
now fix a parameter α > 0 and we define the cost functional

Jα(h) =

∫ T0

0

∫
O
|h|2 dxdt +

1

2α

∣∣∣z(0)
∣∣∣2
1,Ω
, (9)

where we have penalized the final condition (5). We look for
hα ∈ L2(L2(O)) such that

Jα(hα) = min
h∈L2(L2(O))

Jα(h). (10)

This problem has a unique solution hα and we call zα = z(hα).
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We can prove the following convergence{∫ T0

0

∫
O
ψobshα(ϕ0) dx dt −

∫ T0

0

∫
Ω
T · curl zα(ϕ0) dx dt

}
→ (∆ψ(T0), ϕ0).

Therefore, we will have to compute hα(ϕ0) and zα(ϕ0) for
different values of ϕ0, elements of a Hilbert basis. Of course we
will take a finite number of these elements for computations. It is
therefore important to use a reduced basis. We will present here
computations for a choice of basis given by eigenfunctions of the
Laplace operator. Other basis like POD basis could be interesting
but would require large computations for choosing the basis
functions.
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We will use an implicit Euler scheme for time discretization, and
for the space discretization, a finite element method with a regular
family of triangulations {Th} of Ω. We take approximations of
L2(Ω), H1(Ω) and H1

0 (Ω) by piecewise P1 polynomials.
In fact we will have an underlying finite element method with
which we make all computations, but the basis functions on which
we want to recover the final state ψ(T0) is not the finite element
basis, but a reduced basis, here eigenfunctions of the Laplace
operator.
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The following series of test problems have been done with
∆t = T0/50 and the choice for the penalty parameter is α = 0.025
As we have no real measurements for testing our method, we will
compare the results of our experiments with the results of the
original model (1), i.e., we compute the ocean circulation using (1)
over the time interval (0,T0), for initial given value
∆ψ(0) = − sin(πx1) sin(πx2) and surface wind stress (12). Then,
we save ψh in the observatory O × (0,T0) and ψN

h , which will be
our exact target values.
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First test

For a first test we use the following wind stress

T = (τ1, τ2) = exp(π2t)

(
− 1

π
cos(π

x2

L
), 0

)
.

The observatory for this test is

O = [0, 1]× [0.3, 0.7].
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Contour lines of stream function at T0 using real physical parameters.
Exact (left), recovered using 11 eigenvalues (center) and recovered
using 64 eigenvalues (right). The area between the dotted lines
corresponds to the observatory O. The regularizing parameter is
α = 0.025.
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Relative error in percentage between the recovered stream function
using 11 eigenvalues (above) and 64 eigenvalues (below) and the exact
solution. The observatory is O = [0, 1]× [0.3, 0.7]. The regularizing

parameter is α = 0.025.
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For the following experiment, we consider different observatory
sizes and some perturbation in the observations ψn

obs,h given by:

ψ̂n
obs,h = ψn

obs,h + A sin

(
kπx

L

)
sin
(mπy

L

)
sin(wt), (11)

where A is the noise amplitude (0.5 ∗max(ψn
obs,h)) and k , m, w

were taken big enough. In Table 6, we present the relative errors in
L2(Ω) and H1(Ω) for the final recovered stream function in both
case, with noise and in absence of it in the observatory set, using
64 eigenvalues. We obtain small values for each case.
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O = [0, L]×

∣∣∣ψN
h −ψrec,h

∣∣∣
0,Ω∣∣∣ψN

h

∣∣∣
0,Ω

|ψN
h −ψrec,h|1,Ω

|ψN
h |1,Ω

∣∣∣ψN
h −ψ

noise
rec,h

∣∣∣
0,Ω∣∣∣ψN

h

∣∣∣
0,Ω

|ψN
h −ψ

noise
rec,h|1,Ω

|ψN
h |1,Ω

[0.4L, 0.6L] 0.1043 0.2561 0.1054 0.2582

[0.3L, 0.7L] 0.0634 0.2260 0.0668 0.2284

[0.2L, 0.8L] 0.0540 0.2137 0.0562 0.2159

[0.1L, 0.9L] 0.0460 0.2069 0.0471 0.2082

[0, L] 0.0454 0.2063 0.0465 0.2077
Relative errors in L2(Ω) and H1(Ω) for the final recovered stream

function with noise in the observatory set (ψnoise
rec,h) and in the absence

of noise (ψrec,h) versus the observatory size O.
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Second test

Second set of numerical experiments
Here we divide the wind stress by 102 in order to have less forcing
in the system.

T = (τ1, τ2) = 10−2 exp(π2t)

(
− 1

π
cos(π

x2

L
), 0

)
. (12)

and we assume that the observation data (ψn
obs,h) have certain

observation error of random distribution:

ψ̂n
obs,h = ψn

obs,h(1 + δR(x1, x2, t)),

where R(x1, x2, t) denotes a random function varying in the range
[−1, 1], and δ is the parameter representing the noise level.
We also consider different observatories which are disconnected.
In a first figure, we show the evolution of the stream function for
different interval of time.

Jean-Pierre Puel Data assimilation for a large scale ocean circulation model



Linear quasi-geostrophic ocean model Data Assimilation. Theory Numerical computationsDiscretization First series of numerical tests Second series of numerical tests

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Evolution of the exact stream function in time.
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Next figure shows the distribution of the observatories, numerical
reconstruction of stream function, and relative percentage of error
between recovered stream function and exact solution at T0.
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Left: Location of the observatories. Center: Recovered stream
function at T0 using 4 observatories. Right: Relative percentage of
error between recovered stream function and exact solution at T0.

The regularizing parameter is α = 0.025.
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Using the information of the last figure, we added two observatories
in the zones where the errors are important ((0.1, 0.1), (0.5, 0, 5)).
In the next figure we can see how the errors decrease considerably.
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Left: Location of the observatories. Center: Recovered stream
function at T0 using 6 observatories. Right: Relative percentage error
between recovered stream function and exact solution at T0. Notice
the change of grey scale with respect to Figure 3. The regularizing

parameter is α = 0.025.
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In the Table below, we present the relative errors in L2(Ω) and
H1(Ω) for the final recovered stream function in both cases, with
and without noise in the observatory set, using 64 eigenvalues.
Notice that, increasing the number of observatories we can
increase to the noise level in the observatory maintaining a
satisfactory reconstruction of the stream function at T0.
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Number of O Noise level δ

∣∣∣ψN
h −ψrec,h

∣∣∣
0,Ω∣∣∣ψN

h

∣∣∣
0,Ω

|ψN
h −ψrec,h|1,Ω

|ψN
h |1,Ω

4 0 0.1813 0.2776

4 0.01 0.1852 0.2786

4 0.05 0.2034 0.2850

4 0.1 0.2314 0.3018

6 0 0.1007 0.2130

6 0.08 0.1045 0.2232

6 0.1 0.1154 0.2295

6 0.15 0.1357 0.2440
Relative errors in L2(Ω) and H1(Ω) for the final recovered stream

function with noise in the observatory set and in the absence of noise
(δ = 0) versus the observatory size O.
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