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Introduction: Example of Active Contours

We look for a salient object in an image 1.
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Figure 2. The contours computed using GAC’s model
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Introduction: Example of Active Contours

We look for a closed curve C : [0, L(C)] — R?, C = 9*E, which
minimizes the Riemann metric (GAC’s model) plus an inflating force

. . _ N—-1
min Py(E) = plB = [ g(o)dn* =B

where the coefficient g depends on the image gradient:

B 1
90) = T VG, s D

This problem was first approached with a level set formulation leading
to the PDE (V.C., R. Kimmel and G. Sapiro, IJCV, 1997):

ou Vu
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Introduction: Example of Active Contours

Figure 3: Segmenting the tumor of a breast echo-
graphic image (M. Aleman, L. Alvarez and V.C.,
2005.)

FLDE. -p. 5/3



Introduction: Example of Active Contours

Figure 4. Several steps of the evolution of the
curve.
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Introduction: Region Based Active Contours

Inspired by the Mumford-Shah model, Chan-Vese proposed a region
based data attachment term:

min Pg(F)—I—)\/

EgQ,Cl,CQER E

(I(z) — c1)? dzx + )\/ (I(z) — c2)?dz, (1)

Q\E
where )\ > 0.

Iterative solution: If the set E is fixed, then the minimum of the energy
with respect to ¢y, co € R gives us the values

L = Jr ﬁ;) 9 and Co = fg\ﬁzigf dw, and then the problem is

min Py(E) + A [ (1) = )* = (@) = e2)?) o
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Introduction: Edge linking problems

Let I' be a set of curves (or surfaces) which can be computed by en
edge detector (i.e. by thresholding the modulus of the gradient of the
Image).

Let dr(z) be the distance to I':

N-1
g s (U8)) — i8] = dr( )JdH pl E|

= eio

Figure 5. Segmentation and edge linking with
barriers.
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The total variation with respect to an anisotropy

¢ : Q2 x RY — [0, 00) is a metric integrand if ¢ is a Borel function
satisfying the conditions:

fora.e. x € Q, themap & € RY — ¢(x, €) is convex,
¢(z,t) = [tlp(z,€) VzeQ, VEeERY, VteR, 2)
JA > 0s.t.0 < ¢(x, &) < Al|€]] Ve e Q, VEeRY.

Let
Ko ==1{0€ Xoo(Q) : ¢’ (x,0(x)) < 1forae. z € Q, [o -1 = 0}.

Let u € L1(Q). We define the ¢-total variation of « in Q as

/|Du\¢::sup{/udivadw:a€K¢}, (3)
Q Q

We set BV4(Q2) :={u e L'(Q) : [, |Duls < oo}.
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The total variation with respect to an anisotropy

Let QO cC Q € RY open bounded with Lipschitz boundary. Let
¢ : Q x RY — R be a metric integrand continuous and coercive in a
neighborhood of @ \ €.

For f € L*(2), h € L>=(Q), h(z) > 0 a.e. in Q, with [, 1/hdx < oo,
A > 0, let us consider the energy functional

1
Eontw) = [ 1Duls+ 55 [ M= pdos [ owsuldH . @

The E-L equation related to &, x(u) is
hu — A\div (o) = hf (5)

where o(x) € O¢¢p(x, Du)), i.e. ¢°(z,0(x)) < 1,
o - Du = |Duly,
[0 - V%] € sign(—u)¢(z, v%(x)) HN ~-ae..

FLDE. —-p. 10/3



ATV: Existence of solutions

Theorem
() The energy functional is lower semicontinuous.
(i2) There is a unique solution of the problem

(Q)A : min 5¢,,\(u). (6)

u€BV,(Q2)NL2(Q,h dx)

(7i7) Assume that f € L°°(2). There is a unique solution
u € BV,(Q) N L?(Q, hdx) of the Euler-Lagrange equation. Moreover
the solution v € L>°(2) and minimizes £ x(u).

Proof of (¢) uses results of Amar - Bellettini and Bellettini - Bouchité -
Fragala.
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ATV: relation with the geometric problem

Proposition Let uy € BV(Q) N L*(Q, hdz) be the solution of the
variational problem

1
min Du —|——/hu—12d:1:—i— :I:,I/Q ul dHN "1 (1)
min Dl 55 [ hu=1Pde+ [ ot

Then 0 < uy, < 1.
Let Es :={uy) > s}, s € (0,1]. Then for any s € (0, 1] we have

py(E) ~ ), < pyr) - LD, ®

forany F' C Q.

Comment: Type of problem for active contours or edge linking problem.
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Proof:

(A) Coarea formula:
[ 1Dule+ [ olasMulan™ = [ Py(u> )y ds,
Q oS 0
(B) Multiplying the E-L equation by v and integrating by parts :
/ o- Du+ oz, v Ju| dHN 1 = )\/ (1 —u)uhdz.
Q 1919 Q
(C) Multiplying the E-L equation by Xg_ and integrating by parts :

/ o DXg. —/ o -V Xg, dHN ! = A/ (1 —u)hXg, dz.
Q oS Q
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Proof:

(D)

[ et [ ote v a = [ oo Duk [ ol ar
2 o8 Q o9

by(B)—)\/(l—u)uhdx— / /1—uhXE dz ds

// DXEds—/ /mau Xg, dH™ ! ds.
/ J

/ o(z, v (x))Xg, dHY tds =
1919

=Lw4N

by (4) = / Duly+ [ ol ful dr™

— /OOO Py(E,) ds.
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Proof:

Conclusion:

P¢(ES) = / o - DXES —/ [O‘ . I/Q]XES dHN_l.
Q o2

Let F' C () be a set of ¢-finite perimeter. Multiply (E-L) by Xr — Xg_:
Then

P¢(F) —P¢(ES) Z —/QdiVO'(XF —XES)CZZC

:)\/Q(l—u)h(XF—XES) :)\/Q((l—s)—l—(s—u))h(XF—XES).

Since (s — u)(Xgp — Xg_) > 0, we have

Py(F) = Py(Es) 2 A(1 = s) /Q h(Xp = Xg,) = A1 = s)(|F|n — [Es[n).
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The ¢-Cheeger set

Proposition Let a=!, 571 > m Then

{ua 2 ||talloc} = {uﬁ > HUBHOO]” and

P({ua 2 |luallso})
[{ta 2 [tuallco}n

— Cheeger constant. (9)

The set {u, > ||ualloo} IS the maximal ¢p-Cheeger set of (.

In the Euclidean case, if ) Is convex, the Cheeger set is unique
(C-Chambolle-Novaga, Alter-C).
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Example: the GAC model, the edge linking problem

Consider the problem

- lu = fI7
min U 4 \J,(u), where J,(u)= Z gi.i| (V)i . (10)
0<7,5<N
We solve the dual problem
o= ATHG L
min > + 5 Jg (), (11)

0 If w e IC .
J* = 7 g with I, = {—di &l < g 'V., .

(12)
Therefore (11) is a projection over the set /C,

o L )\—1 2 . 13
gy |w o (13)
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Numerical scheme

Note that any solution w € K,, must satisfy w; ; = —div(g; jp; ;) With
pigl < 1.

Introducing the Lagrange multipliers «; ; for the constraint we obtain
the functional

Flp,a)= D> [divgp)i; +bijl? + D ijllpiy

0<i,j<N 0<i,j<N

- 1).

Numerical scheme:

el _ pt 4T {gV[diV(gp”) + A‘lf]}
1+ 7|gV[div(gp™) + A1 f]]

p
(14)

Solution: © = f + )\h_ldiv(gp)
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Cheeger sets for the euclidean perimeter

12.960 12.949 12.961

8.628 8.650 8.602 8.664

Figure 6: ¢(z,&) = £
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Cheeger sets for the euclidean perimeter
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Figure 7. Cheeger set of a cube.
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The GAC model and edge linking

Take ¢(x, &) = g(x)[£|. Solve

1

min x)|Du —|——/hu—12da:—|— z, V) | dHN 71
wmin [ g@Ipul+ 55 [ a=12det [ ol

For active contours:

B 1
9(z) = 1+ |V(G, *xI)(x)]2

For edge linking I’ is a set of edges and
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Examples: GAC model, edge linking
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Linking

o i

Figure 9: Segmentation and edge linking with
barriers.
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GAC Cheeger sets

Figure 10: Pipeline for computing gradient
Cheegers, applied to a synthetic 3D image. From
left to right: slices of the original image I, slices

of the metric g = |V_11\’ gradient Cheeger.
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Segmentation: examples of images

Figure 11: a) projection of image b) projection of gradient
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Difficulties of thresholding

Thrashald: |/

i . <
A |185.606 1

| \ Thrashold: |/ “135_22}'
Vessel LOST -

Vessel OK
Neck LOST

Figure 12: Problem of loss of contrast
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Results

Figure 13: Result of edge detection in CTA
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Results

Global distance Cheegers of the “cta” image. Left: Cheeger of the
whole image domain. Right: Cheeger of the whole image domain
minus some manually selected voxels at the neck of the aneurism.
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Results

Global gradient Cheegers of the “cta” image. Left.: Cheeger of the
whole image domain. Right: Cheeger of the whole image domain
minus some manually selected voxels at the neck of the aneurism.
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Results

Figure 14: This Figure displays the best six local
distance Cheegers.
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Results

Figure 15: This Figure displays the best six local
distance Cheegers, labelled, from a different point
of view.
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Anisotropic diffusion for colorization

Give a gray level image I. Extract from I the vector field of directions of
level lines:
VI(z)

Ok

Consider the matrix
A(x) = V(:zf;)L X V(ZC)J'.

We may also take

€

V1+|VI(2)]?

Then we define ¢(x, &) = |A(x)&| and solve

Alz) =V(z)t @ V(z)*t + Viz) ® V().

min /¢ z, ) —|——/(u—f)2dx—|— aQ¢(x,VQ)\u|dHN_1

ue BV, ()

where f is the data (manually colored part of the image). FLDE. - b, 32/3



Anisotropic diffusion for colorization
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Anisotropic diffusion for interpolation

' It

Figure 17: Disparity interpolation in an urban dig-
ital elevation model. reference image, incomplete
data set (30% of the image), interpolation with the
minimal surface interpolation (RMSE 0.239) and
with the proposed algorithm (RMSE 0.190).
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Anisotropic total variation in stereo problems

Stereo: Convexification of the disparity computation in rectified images
(Chambolle-Pock-Schoenemann-Graber-Bischof-Cremers)

Problem: given a pair of stereo images I (x), Ir(x) which has been
rectified (corresponding epipolars are horizontal lines)

FIND u(z) such that I (z) ~ Igr(x + (u(z),0)).
MINIMIZE

A /Q Dul + /Q I(x) — In(e + (u(z), 0)) (15)

Write p(z, u(z))) = |I1(z) — Ir(z + (u(z),0))|*.
Is a nonlinear, nonconvex optimization problem. It can be convexified
adding an additional variable ¢(z,t) = xy># (7).

Assume that « takes values in [a, b].
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Anisotropic total variation in stereo problems

Then

L|Du\=LLb\D¢|

/Qp(:v,u(:v)) = // (z,t)0(u(x) —t) dx dt
-/ pr<x,t>\at¢<x,t>\

The problem can be written as

// DY| + pl, )]G, 1)

BC: ¢(z,a) =1, ¢(x,b) = 0.
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