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Maxwell System in harmonic regime:  exp(—iwt)
w: angular frequency: £ = 2T =k, ( wave number)
e(w) : permittivity (nonnegative imaginary part)

p(w) : permeability  (real close to 1)

Optical Index: n(w) = /eu = n’ + in”

where n’ = refraction index , n” = absorption index.
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Case of disconnected dielectric inclusions
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Figure 1: Sketch of the geometry, showing one layer of rings.

The macroscopic domain £ C R? contains O(n~3) periodic inclusions of diameter

O(n) filled with high permittivity dielectric (with positive filling ratio)
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Geometry and scaling

The heterogeneous structure is placed in a bounded domain Q C R®. It consists of
periodic high permittivity inclusions (period 77) embedded in a lossless dielectric

matrix. The inclusions occupy a subregion
Spi=Jn@+%), I ={i €2 :n(i+X) ccQ}.
iel,

Here ¥ CcC Y := (—1/2,1/2)3 is a regular connected domain whose complement
Y*:=Y \ X is assumed to be simply connected. The structure, whose relative
permeability is assumed to be equal to 1, is characterized by its relative permittivity

e, given by:
(&, .
— if zeX
Ua !
en(r) =19 e. if 2€Q \ 2, (1)
1 if zeR%\Q
\

We assume that ¢, = &, +i¢e; with €. > 0 and € ‘small”
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Two scale approach

We start with the energy bound

sup [ (HP + e[y ) < +oc 2)
n B

where B is a big ball containing 2.

Then

e {E,, Hn} is unformly bounded in L?(B)

e The rescaled displacement vectors .J,, := 1z, E, is also bounded L?(B).

We are going to identfy the zero order tem in the expansions

Ey(z) = Eo(z,z/n) + nEi(x,z/n) + n° Eax(z,x/n)
Hy(x) = Ho(z,z/n) + nHi(z,x/n) + 0’ Ha(z, /)
Jo(x) = Jo(z,x/n) + ndi(z,z/n) + n° Jo(z,z/n)
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Cell problem for Fy(x, -)

From It is easy to show that for = € ) the periodic field Ey(z,-) satisfies the

equations

curl, By = 0 inY , divy, Bg =0 inY\X |, Ey =0 in3X (3)
By the curl-free condition and letting E(z) = [, Eo(x,y) dy, we search a solution
Eo(x,y) = E(x) + Vx for a suitable periodic x € Wﬂl’Q(Y). We are led to:

3
Eo(z,y) = > Ei(@)E'(y), E'(y)=e+Vyxi, Axi=0 on Y*, x;=—y; on ¥
=1
(4)
Note that Fy(z,y) = E(x) for x ¢ €.

Further we define the effective permittivity tensor ¢°

A?Em = / E’Z . EJ dy — / (62' + vaz) . (63 + vaj) dy ) geff = g, Ahom .
Y *
(5)

NB: ¢°f is real symmetric positive and independent of the frequency.
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Cell problem for Hy(z,-) and geometric averaging

By using equations Maxwell eq. (??), the periodic fields Hy(x,-) and Jy(z,-) satisfy
CU.I'ly HO +iw€0J0 = 0 inY , diVy HO =0 inY (6)
curl, Jo+ic,wpoHg = 0 inX , Jp =0 inY\X (7)

By (6), Ho(x,-) belongs to the Sobolev space Wﬁ1’2(Y; C?) unlike Jo(, )

(supported in 3) which may have a tangential jump across 9%. The analysis of the
full system relies on the simple connectedness of Y \ .

Geometric averaging Let u € W2 Y;C?) such that curl u =0 on Y\ &. We
f

associate the circulation vector ¢ u € C® which is characterized by the identity

/u-gpdy — (/ gpdy)(jéu) if ¢ periodic, divip =0 and ¢ =0 on X. (8)
Y Y

When u is smooth, the components of § u represents the circulation of u along any
curve in Y* connecting opposite points on the faces of 9Y. In general we have

$u# [, udy (however equality holds if curlu = 0 on all Y'). On Y\ X (simply
connected), any u € X can be written in the form

u=z+Vyw |, z:j{u : wEWﬁ1’2(Y*).
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Space of solutions Hy(z,-) is three dimensional

Claim 3. For i € {1,2,3} there is a unique solution H'(y) to (6)(7) with
f HZ = €. Thus

3
Ho(z,) = Y Hi(x)H'(y) forz€Q , Hy(z,y) = H(x) forzeB\Q
i=1
(9)
The macroscopic field H(x) = (H;(z)) € L?(B;C?) is related to the weak limit
[Ho(z) := [, Ho(x,-) of (H,) in L*(B;C”) by the tensorial relation
M) = W H@) = | 00 dy (10)

The tensor 1% is symmetric and will be written explicitly by means of a suitable
spectral problem (see (16)). Eventually applying (8) to u = H® and ¢ = E7 A z with
EJ given in (4) (z € R?), we infer

/(Hi/\Ej)dy = e'ANed , foreveryi,je{1,2,3} (11)
Y
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The homogenization result

Recalling (5) and (10), we introduce the tensors valued functions

pt (w) for x € Q) geft for z € )
I3 for z € R®\ Q I for z € R\ Q

(12)
The limit diffraction problem as i — 0 consists in finding (E, H) € L2 _(R?;C?)
such that

pw,z) =

(

curl B =  dwpo p(w, ) H
§ curl H = —iwege(x)E (13)
| (E—FE',H—-H") satisfies the O.W.C

NB: 1. The problem (13) is well posed provided ¢, has a positive imaginary part.
2. The field H satifies the usual transmission conditin on 0€). It does not coincide
with the weak limit of H,, ~ Hy(z,x/n)
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The TM- case

If we consider cylindrical dielectric inclusions (for instance e3 parallel long rods
>, = D x R) illuminated by a TM polarized incident wave, the situation becomes
much simpler:

Hy =uo(x,y1,y2)es , up(x,)=u(x) onY\X , H(x)=u(x)es

(the constancy of ug(x,-) corresponds to the curl free condition of Hy on Y \ X0).

The Hy cell problem reduces to ug(x,y) = u(z) w(y) where w € I/Vﬂl’2 solves

Ayw+k*w=0onD | w=1lonYy\D
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Variational formulation of the cell problem

The field H*(y) solution of (6)(7) with § H* = e, is searched as H* = e; + u; where
u; solves the variational equation

bo(ui,v) — ke, /ul vdy = k25T/ei vody , Yve Xy. (14)
where X is the Hilbert space
{u € Wﬂl’Q(Y;C?’) ccurlu=0o0n Y \ X, %u :O}
(note that constant functions are ruled out) equipped with the scalar product:
bo(u,v) = /Y(Curlu -curlv + divu - dive) dy .

The operator By on L?(Y; ]R3) associated with by has a compact self adjoint
resolvent (by the compact embedding of Wﬂ1’2(Y) in L2(Y))
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Spectral problem on the unit cell

The eigenvalue problem in L?(Y;R?)

bo(p,v) = A/cp-gp’dy . Vo' € XonLA(Y;RY). (15)

has a sequence of real eigenvalues 0 < \g < A\; <--- <\, < -+ (A, = +0) and
we denote by {¢,,,n € N} an orthonormal basis of L(Y;R?) made of
eigenfunctions in X. The solution u; to (14) is given by

€ -k

Wi= Y CinPn , Cin= JW—— L(ei'wn)dy

The tensor ;% defined in (10) can be therefore rewritten as an absolutely
convergent series

y ek’ [ [
L. p— . ) . n i. n . ]-
Hij (W) = 045 + = An — €rk? (63 v 7 ) (6 . ¥ (16)

Benasque 2009 11/15



Numerical approach for the spectral problem

To compute eigenvectors ,, related to (15), we transform into another spectral
problem involving the unknown f = curly,, (supported in X) in the space

Z={feL*%,R* / divf=0, fn=0o0n0%}

Step 1. We have noticed that, in view of expansion (16) for u°, we may restrict
spectral equation (15) taking ¢, ¢’ in X0 := Xy N {dive = 0} Such ¢ € X can be
uniquely represented by using a periodic divergence free field ):

@ =-curly —z with z=2z(v) = j{cuﬂ@b (curlp = —AY) .

Inserting this in (15) with ¢, ¢’ € X{, we are led to

/E A AY =\ (— /E Py +z<w>.z<w’>) (+)

Step 2. We rewrite (*) in term of f := —A, g := —A’ (seen as elements of Z).
Denote, for every f € Z, the divergence free fields

- H f the restriction to ¥ of 1) € H; (Y) solution of —A¢) = f, [ 1 = 0.
-Tf(y) =1 (JsyA fy)dy) Ay.
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Equivalent spectral problem on X

We define the operator A : Z — Z by
A: feZ — Hf+Tf+Rf,

where Rf = Vp , p being is the unique solution of

op _
on

[ ars =5 [ ra.

Ap=0,

From (*) we are led to:

Summarizing, we need to compute the eigenvalues A~ ! and eigenfunctions of of the
positive compact self adjoint operator A and the resulting p°%

exploiting relation

1
u/ﬁSOn = Eiy/pl/”\fﬁ-
Y by

—(Hf+Tf)nin 0¥ .

is recovered from (16)

Benasque 2009

13/15



Some numerical results
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Figure 2: Case &, := 100 + 7 and X := [—0.25,0.25].
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More numerical results
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Figure 3: Case &, := 100 + 0.17 and X := [—0.25,0.25].
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