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Maxwell System in harmonic regime: exp(−iωt)
ω : angular frequency: ω

c
= 2π

λ
= k0 ( wave number)

ε(ω) : permittivity (nonnegative imaginary part)

µ(ω) : permeability (real close to 1)

Optical Index: n(ω) =
√
εµ = n′ + i n′′

where n′ = refraction index , n′′ = absorption index.
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Case of disconnected dielectric inclusions
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Figure 1: Sketch of the geometry, showing one layer of rings.

The macroscopic domain Ω ⊂ R
3 contains O(η−3) periodic inclusions of diameter

O(η) filled with high permittivity dielectric (with positive filling ratio)
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Geometry and scaling

The heterogeneous structure is placed in a bounded domain Ω ⊂ R
3. It consists of

periodic high permittivity inclusions (period η) embedded in a lossless dielectric

matrix. The inclusions occupy a subregion

Ση :=
⋃

i∈Iη

η(i+ Σ) , Iη = {i ∈ Z
2 : η(i+ Σ) ⊂⊂ Ω}.

Here Σ ⊂⊂ Y := (−1/2, 1/2)3 is a regular connected domain whose complement

Y ∗ := Y \ Σ is assumed to be simply connected. The structure, whose relative

permeability is assumed to be equal to 1, is characterized by its relative permittivity

εη given by:

εη(x) :=



















εr

η2
if x ∈ Ση

εe if x ∈ Ω \ Ση

1 if x ∈ R
3 \ Ω

(1)

We assume that εr = ε′r + i ε′′r with ε′r > 0 and ε′′r ‘small”
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Two scale approach

We start with the energy bound

sup
η

∫

B

(|Hη|2 + |εη||Eη|2) < +∞ (2)

where B is a big ball containing Ω.

Then

• {Eη, Hη} is unformly bounded in L2(B)

• The rescaled displacement vectors Jη := ηεη Eη is also bounded L2(B).

We are going to identfy the zero order tem in the expansions

Eη(x) = E0(x, x/η) + η E1(x, x/η) + η2E2(x, x/η)

Hη(x) = H0(x, x/η) + η H1(x, x/η) + η2H2(x, x/η)

Jη(x) = J0(x, x/η) + η J1(x, x/η) + η2 J2(x, x/η)
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Cell problem for E0(x, ·)

From It is easy to show that for x ∈ Ω the periodic field E0(x, ·) satisfies the

equations

curly E0 = 0 in Y , divy E0 = 0 in Y \ Σ̄ , E0 = 0 in Σ. (3)

By the curl-free condition and letting E(x) =
∫

Y
E0(x, y) dy, we search a solution

E0(x, y) = E(x) + ∇yχ for a suitable periodic χ ∈W 1,2
♯ (Y ). We are led to:

E0(x, y) =

3
∑

i=1

Ei(x)E
i(y) , Ei(y) = ei+∇yχi , ∆χi = 0 on Y ∗ , χi = −yi on Σ

(4)

Note that E0(x, y) = E(x) for x /∈ Ω.

Further we define the effective permittivity tensor εeff :

Ahom

i,j :=

∫

Y

Ei ·Ej dy =

∫

Y ∗

(ei +∇yχi) · (ej +∇yχj) dy , εeff := εeA
hom .

(5)

NB: εeff is real symmetric positive and independent of the frequency.
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Cell problem for H0(x, ·) and geometric averaging

By using equations Maxwell eq. (??), the periodic fields H0(x, ·) and J0(x, ·) satisfy

curly H0 + iωε0J0 = 0 in Y , divy H0 = 0 in Y (6)

curly J0 + iεrωµ0H0 = 0 in Σ , J0 = 0 in Y \ Σ (7)

By (6), H0(x, ·) belongs to the Sobolev space W 1,2
♯ (Y ; C3) unlike J0(x, ·)

(supported in Σ) which may have a tangential jump across ∂Σ. The analysis of the

full system relies on the simple connectedness of Y \ Σ.

Geometric averaging Let u ∈W 1,2
♯ (Y ; C3) such that curl u = 0 on Y \ Σ. We

associate the circulation vector
∮

u ∈ C
3 which is characterized by the identity

∫

Y

u ·ϕdy =

(
∫

Y

ϕdy

)

·
(

∮

u

)

if ϕ periodic, divϕ = 0 and ϕ = 0 on Σ. (8)

When u is smooth, the components of
∮

u represents the circulation of u along any

curve in Y ∗ connecting opposite points on the faces of ∂Y . In general we have
∮

u 6=
∫

Y
udy (however equality holds if curlu = 0 on all Y ). On Y \ Σ (simply

connected), any u ∈ X can be written in the form

u = z + ∇yw , z =

∮

u , w ∈W 1,2
♯ (Y ∗) .
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Space of solutions H0(x, ·) is three dimensional

Claim 3. For i ∈ {1, 2, 3} there is a unique solution Hi(y) to (6)(7) with
∮

Hi = ei. Thus

H0(x, ) =

3
∑

i=1

Hi(x)H
i(y) for x ∈ Ω , H0(x, y) = H(x) for x ∈ B \ Ω

(9)

The macroscopic field H(x) = (Hi(x)) ∈ L2(B; C3) is related to the weak limit

[H0](x) :=
∫

Y
H0(x, ·) of (Hη) in L2(B; C3) by the tensorial relation

[H0](x) = µeff H(x) , µeff

i,j :=

∫

Y

(Hj · ei) dy (10)

The tensor µeff is symmetric and will be written explicitly by means of a suitable

spectral problem (see (16)). Eventually applying (8) to u = Hi and ϕ = Ej ∧ z with

Ej given in (4) (z ∈ R
3), we infer

∫

Y

(Hi ∧Ej) dy = ei ∧ ej , for every i, j ∈ {1, 2, 3} (11)
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The homogenization result

Recalling (5) and (10), we introduce the tensors valued functions

µ(ω, x) =







µeff(ω) for x ∈ Ω

I3 for x ∈ R
3 \ Ω

, ε(x) =







εeff for x ∈ Ω

I3 for x ∈ R
3 \ Ω

(12)

The limit diffraction problem as η → 0 consists in finding (E,H) ∈ L2

loc
(R3; C3)

such that














curl E = iωµ0 µ(ω, x)H

curl H = −iωε0 ε(x)E

(E −Ei, H −Hi) satisfies the O.W.C

(13)

NB: 1. The problem (13) is well posed provided εr has a positive imaginary part.

2. The field H satifies the usual transmission conditin on ∂Ω. It does not coincide

with the weak limit of Hη ∼ H0(x, x/η)
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The TM- case

If we consider cylindrical dielectric inclusions (for instance e3 parallel long rods

Σ = D × R) illuminated by a TM polarized incident wave, the situation becomes

much simpler:

H0 = u0(x, y1, y2) e3 , u0(x, ·) = u(x) on Y \ Σ , H(x) = u(x)e3

(the constancy of u0(x, ·) corresponds to the curl free condition of H0 on Y \ Σ).

The H0 cell problem reduces to u0(x, y) = u(x)w(y) where w ∈W 1,2
♯ solves

∆yw + k2 w = 0 on D , w = 1 on Y2 \D

D.Felbacq, GB, Homogenization near resonances and artificial magnetism from

dielectrics. C. R. Math. Acad. Sci. Paris 339 (2004), no. 5, 377–382.

D.Felbacq, GB Homogenization of wire mesh photonic crystals embdedded in a

medium with a negative permeability, Phys. Rev. Lett. 94, 183902 (2005)

D.Felbacq, GB, Negative refraction in periodic and random photonic crystals, New J.

Phys. 7 159 10.1088/ (2005)
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Variational formulation of the cell problem

The field Hi(y) solution of (6)(7) with
∮

Hi = ei is searched as Hi = ei + ui where

ui solves the variational equation

b0(ui, v) − k2 εr

∫

ui · v̄ dy = k2 εr

∫

ei · v̄ dy , ∀v ∈ X0 . (14)

where X0 is the Hilbert space
{

u ∈W 1,2
♯ (Y ; C3) : curl u = 0 on Y \ Σ ,

∮

u = 0

}

(note that constant functions are ruled out) equipped with the scalar product:

b0(u, v) :=

∫

Y

(curlu · curl v + div u · div v) dy .

The operator B0 on L2(Y ; R3) associated with b0 has a compact self adjoint

resolvent (by the compact embedding of W 1,2
♯ (Y ) in L2(Y ))
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Spectral problem on the unit cell

The eigenvalue problem in L2(Y ; R3)

b0(ϕ, v) = λ

∫

ϕ · ϕ′ dy , ∀ϕ′ ∈ X0 ∩ L2(Y ; R3). (15)

has a sequence of real eigenvalues 0 < λ0 < λ1 ≤ · · · ≤ λn ≤ · · · (λn → +∞) and

we denote by {ϕn, n ∈ N} an orthonormal basis of L2(Y ; R3) made of

eigenfunctions in X0. The solution ui to (14) is given by

ui =
∑

n∈N

ci,n ϕn , ci,n =
ǫrk

2

λn − ǫrk2

∫

Y

(ei · ϕn) dy

The tensor µeff defined in (10) can be therefore rewritten as an absolutely

convergent series

µeff

ij (ω) = δij +
∑

n∈N

εrk
2

λn − εrk2

(

ej .

∫

Y

ϕn

) (

ei.

∫

Y

ϕn

)

. (16)
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Numerical approach for the spectral problem

To compute eigenvectors ϕn related to (15), we transform into another spectral

problem involving the unknown f = curlϕn (supported in Σ) in the space

Z =
{

f ∈ L2(Σ,R3) / div f = 0, f.n = 0 on ∂Σ
}

Step 1. We have noticed that, in view of expansion (16) for µeff , we may restrict

spectral equation (15) taking ϕ, ϕ′ in X0
0 := X0 ∩ {div v = 0} Such ϕ ∈ X0

0 can be

uniquely represented by using a periodic divergence free field ψ:

ϕ = curlψ − z with z = z(ψ) :=

∮

curlψ (curlϕ = −∆ψ) .

Inserting this in (15) with ϕ, ϕ′ ∈ X0
0 , we are led to

∫

Σ

∆ψ∆ψ′ = λ

(

−
∫

Σ

ψ∆ψ′ + z(ψ).z(ψ′)

)

(∗)

Step 2. We rewrite (*) in term of f := −∆ψ, g := −∆ψ′ (seen as elements of Z).

Denote, for every f ∈ Z, the divergence free fields

- Hf the restriction to Σ of ψ ∈ H1

♯ (Y ) solution of −∆ψ = f,
∫

Y
ψ = 0.

- Γ f(y) := 1

4

(∫

Σ
y ∧ f(y) dy

)

∧ y.

Benasque 2009 12/15



Equivalent spectral problem on Σ

We define the operator A : Z 7→ Z by

A : f ∈ Z −→ Hf + Γf +Rf ,

where Rf = ∇ρ , ρ being is the unique solution of

∆ρ = 0 ,
∂ρ

∂n
= −(Hf + Γf).n in ∂Σ .

From (*) we are led to:
∫

Σ

Af.g =
1

λ

∫

Σ

f.g .

Summarizing, we need to compute the eigenvalues λ−1
n and eigenfunctions of of the

positive compact self adjoint operator A and the resulting µeff is recovered from (16)

exploiting relation
∫

Y

ϕn =
1

2

∫

Σ

y ∧ fn.
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Some numerical results
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Figure 2: Case εr := 100 + i and Σ := [−0.25, 0.25]3.
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More numerical results
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Figure 3: Case εr := 100 + 0.1i and Σ := [−0.25, 0.25]3.
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