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Abstract

A pre-processing step in image restoration consists of smoothing
the image in order to reduce the noise. Regarding the grey-scale im-
age as a mapping from a plane region to the unit interval (where the
intensity of each pixel is a number ranging from zero to one), the evo-
lution approach is to take the raw image as initial data, then solve,
for small time, a certain partial differential equation. We analyse the
properties of the Darboux operator to this effect; it is a hyperbolic
operator, hence preserves discontinuities and edges, yet has interme-
diate smoothing properties which it shares with the traditional linear
diffusion methods (“low-pass filters” in the Engineering literature).

1 Introduction

Image processing, the treatment of acquired images, has now become an ex-
tensive field of study. In the mathematical model, we assume that an image
is a function over a certain domain, the frame, taking values in a certain
range. In the case of grey-scale intensity image, the range is the interval
[0, 1]. For stochastic models, replace single function by stochastic process (or
“random field”). Good introductions to the field of mathematical image pro-
cessing are [AK02], [CS05]. One of the tasks involved is image restoration,
which typically consists of trying to diminish noise or blur imposed on the
image. These two phenomena are usually distinct; blur is a systematic and
repeatable process, imposed by the optical instrument, and typically mod-
elled by convolution by a certain kernel. Noise is the effect of random natural
phenomena.

One of the recent development in image denoising has been the use of
PDE (partial differential equations) methods; we regard the acquired image



as the initial value for some initial-value problem associated with a partial
differential equation, and we generate from it a time sequence of images,
where time plays the role of an artificial parameter. For instance, solving the
heat equation where the “dirty image” plays the role of initial data, is very
effective at reducing the fluctuations due to random noise, but since the heat
operator (convolution by the heat kernel) has isotropic effect, this not only
reduces noise, but also blurs and erases the edges which make for the sharp-
ness of the image. A fix around this is to use anisotropic diffusion; see [CS05],
[AKO02], [tHR94]. For an excellent survey of the scope and applicability of
PDE methods, see also [LAM93].

A desirable feature then, of a PDE method, is to have some smoothing
property. Before we continue, let us mention explicitly the models of noise
which we use in our numerical experiments:

1. Gaussian noise is a field of pointwise random fluctuations, with Gaus-
sian probability density function, each having zero mean, common vari-
ance and satisfying certain technical assumptions of isotropy of the
spatial correlation of fluctuations. In this model, the noise is additive:

u(z) = a(zr) + n(x)
where w is the ideal image and n is the noise.

2. Speckle noise uses the same model, but in a multiplicative way:
u(z) = u(z)(1 +n(z))

3. Salt-and-pepper noise models the appearance of random grains on the
television screens of time past, and consists of randomly coloring some
dots on the image in black or white, according to a certain density:

u(z) = (1 = s(x))u(r) + s(x)c(x)
where both s(z) and ¢(x) are random variables taking the value 0 or 1.

This work was inspired by the article [Kic96], which lists certain results, but
does not show the numerical experiments.



2  The Euler-Poisson-Darboux equation

The partial differential equation
Uy + %Ut —Au=0 (].)

arises in solving the wave equation in higher dimensions (with « =n—1ifn
is the dimension of space) and is referred to, in the literature, variously as the
Euler-Poisson-Darboux equation ([DH53], [Weib5], [Johb5]) or the Darboux
equation ([CH62]). We will name it thereafter the Darboux equation (keeping
to the observation ascribed, maybe to Lagrange, that objects in mathematics
are often named after the first person who rediscovers them after Euler. In
this case, it would be the second). We will allow « to have values other than
n — 1, but in the scope of this work, our numerical experiments use mostly
a=n—1=2.

2.1 Equation over R"

Over the entire space, the associated initial-value problem to (1) consists of
specifying the value f(z) of u at time zero, and the compatibility condition
u; = 0 at time zero (note that (1) is singular at the initial time). It is well-
known (see [CH62]) that, for &« = n — 1, the solution to the initial-value
problem consists of taking for u(¢, z) the spherical mean of f over the sphere
of centre x and radius t. In [DH53], Diaz and Weinberger generalise this
result to other values of o in two steps:

- For integer o > n—1, they show, using the descent method of Hadamard,
that the solution is still obtained by spherical means, or, more descrip-
tively, cylindrical means over o« — (n — 1) dimensional cylinders.

- By a continuation argument, they extend this formula to the whole
complex plane, excluding negative odd value of «.

Two remarks:
1) Uniqueness hold for o with nonegative real part, but not otherwise.

2) By replacing t by —t, we see that the equation is reversible.



2.2 Equation over a rectangular domain

One surmises that, in the case of the initial-value problem over a bounded
domain with periodic boundary conditions, one should derive similar results
using elementary means. This turns out to be indeed the case. By imposing
periodic boundary conditions over, say, the square [0,27] x [0, 27|, we look
for solutions of the form

u(t,z) = Z cp(t)eip"””, G =Cp
peZ?

where the condition on the coefficients expresses that u is real-valued. Trans-
ferred to the coefficients of the Fourier expansion, the Darboux equation
becomes

tc"(t) + ad (t) + |pl*te(t) = 0

where we suppressed the dependence of ¢(¢) on the mode p. The Fraebenius
method then consists, for each p belonging to the integer lattice, of looking
for c of the form

c(t) = ant"™", ag #0.
n=0

Taking into account the initial-value conditions, and considering the resulting
recurrence relations, we obtain that:

- For a > 0, there is an unique solution (the case o = 0 may be omitted,
since it corresponds to the wave equation).

- For real, noninteger o < 0, there are in general two linearly independent
solutions. If a is a negative integer, then there are infinitely many
solutions if « is even, and, in general, no solutions if « is odd.

- A result mentioned in [Kic96] is that, if f(z) € H®(R?), then, for
each positive time, u(t,z) € H*"'/2(R?). In the context of the periodic
boundary-value problem, one obtains this result by observing that (1) if
of Bessel type, and by using the characterisation of HPS(RZ) (space of pe-
riodic H* functions) via the Fourier transform: if v(x) = ¥ ,¢ 2 c,e?,
then

ve (R & Y (bP) /e, € 2

peEZ?

and the fact that Jy(¢|¢]) decays at infinity like |£]71/2.

4



It is this intermediate smoothing property which lends this method its in-
terest. Of course, we must keep in mind that the scale of spaces H?, which
allows easy analysis of smoothing, is not the natural one where to consider
images, along with their edges and discontinuity types. In this scale, the
adequate space where to chose f would be H°. On the other hand, studying
the smoothing properties of the Darboux operator in the space BV is beyond
the scope of the present work.

3 Numerical results

For a more complete account of the numerical experiments, we refer to
[Cal09]. In this summary, we merely highlight some of the conclusions, and
state some additional remarks.

The results we show use two images, one synthetic, containing high-level
information, the other, cropped from a photograph.

Image 1 Image 2
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3.1 Discrete scheme

We used an explicit finite-difference method, choosing uniform space and
time steps Ax = Ay and At. The first time derivative is approximated by a
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single-step formula

n 1

— un_

At
which is of order of accuracy O(At), and the second time derivative by

u
n __
Uy =

u — 2un71 + un72

At? ’

n __
Uy =

and the Laplacian of u, by the standard four-point discrete Laplacian. Solv-
ing the periodic boundary-value problem makes it easy to deal with the
boundary. An analysis of stability indicates that the scheme is stable if
A < 0.5, A being the ratio At/Az. One drawback of this simple scheme is
that it does not strictly preserve the range of the image: the weights involved
in computing u" from v ! and «" 2 are affine, but not convex, as some are
negative. Since we only use the method for small time, the effect is not
significant.

Of concern is the effect of the choice of time step over the value of u at
a certain time. Or, put another way, while the ideal image is over the unit
square, the actual instance of the image is as a matrix of pixels, the size of
which is determined by the resolution. The value of u(t) at time ¢ should
depend essentially on ¢, but not on the number of time-steps required to
reach t. The following tables list, as a first column, the amount of noise (at
time zero) in the L' norm, then, the discrepancy between u and @ at a chosen
fixed time, with u corresponding to A = 0.4 and u corresponding to A = 0.1.
The difference in u due to different values of A is seen, at least, not to exceed
the size of the noise. In the remaining experiments, we chose A = 0.2.

Table 1: Image 1

noise |u —a|, |u—1a|

speckle 0.09 0.02
gaussian 0.05 0.01
salt & pepper | 0.03 0.02
no noise 0.01 0.14



Table 2: Image 2

noise |u —a|, |u—1|

speckle 0.08 0.01
gaussian 0.08 0.01
salt & pepper | 0.02 0.01
no noise 0.007 0.07

3.2 Quantifying denoising

A measure used in signal processing, for signal denoising or compression,
is the “signal-to-noise ratio”, and the closely related “peak signal-to-noise
ratio”. The aforementioned are usually defined using the squared-error, but
it is possible to define a related measure relying on the L' error. We choose
the following:

SNR = —100log(|u — ul,),

where w is the restored image, and u the clean image. Of course, in practice
this quantity is unknown (for lack of knowing @), but it is still of interest to
check whether the empirical measure in question agrees with subjective per-
ception in the case of images. For certain iterations of the Darboux process,
we list the corresponding SNR. In order better to compare, we used noise
density and variance respectively of 0.08 and 0.02 for speckle and Gaussian
noise. For image 1, we obtain:

Table 3: Image 1, speckle noise

iteration 2 3 4 5t 6 7
SNR 211.32 212.28 212.97 213.18 212.77 211.65
Table 4: Image 1, gaussian noise

iteration 2 3 4 5t 6 7
SNR 259.80 260.37 260.20 259.06 256.79 253.37

We then show side-by-side the images corresponding to highest SNR, and
best perceived fit ( figures 3, 4, 5, 6).
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For image 2, we used speckle noise only.
lower high-level information content, it is our impression that, while the SNR
seems roughly to correlate with perception,

exact (figures 7, 8, 9, 10).
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Figure 4:
In the case of this image with

the agreement is by no means

Table 5: Image 2, speckle noise

iteration 4
SNR

3.3 Comparison with filters

8

9

10

11 12 13

242,56 283.54 290.13 292.12 289.96 285.05 279.01

A traditional denoising method in engineering involves the use of filters.
Filtering an image consists in applying to it a local averaging-like operator,
defined by a fixed mask of a certain size. The smaller the size, the more local
the operator. If the effect of the filter is true averaging, then this amount
to convolution by a certain kernel. It is a linear operation, and generalises
in a certain sense solving the heat equation. The effect of such a filter is
to diminish the noise (by decreasing random oscillations) but also to blur
separation between image regions, akin to what isotropic diffusion does. A
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Figure 5: Figure 6:

fix around this is to use a “median filter”, which is nonlinear, and uses
order statistics instead of convolution. It has the advantage of preserving
boundaries between solid segments (i.e., regions of nonzero measure), but
not thin curves. As a contrast to the effect of evolving by the Darboux
process, we show the effect of using filters to both images. For both filters,
we chose masks of size 3 x 3, having the smallest support; the choice of
larger masks would further aggravate blurring. It must be mentioned that
another difference between a PDE based method such as this, and filter
methods, is that while the filter is applied to get a single restored image, and
is an irreversible procedure, the evolution method generates a sequence of
smoothed images along the time scale. See figures 11, 12, 13, 14, 15, 16, 17
and 18.

3.4 Other choices of parameter

As mentioned earlier, negative values of the parameter « yield multiple so-
lutions of the Darboux equation. This is not necessarily the case for the
discretisation, but it is of interest to compare the effect. We show a sample
result for a = —0.2, starting from a clean image: figures 19, 20.

As can be inferred from the analysis in [DH53], the higher the value of «,
the more smoothing the effect of the solution operator. Extensive tests for
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different values of « are beyond the scope of this work, but we show below
some sample results, also starting from a clean image. See figures 21, 22, 23,
24.

The reversibility property is of potential use. Because of the singularity of
the Darboux equation at time zero, we cannot expect the discretised method
to revert all the way back to the initial time. We show the result of running
a certain number of iterations forward, then backtracking: figures 25, 26

However, by increasing the value of A\, we obtain a striking effect, of
potential use in edge enhancement: see figure 27.

Acknowledgement We thank Prof. K. Rézga for pointing out the result
about decay of the Bessel function of order zero, and its role in proving the
smoothing property.
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gaussian noise, average filtre
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speckle noise, average filtre
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gaussian noise, average filtre
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Figure 17:

after 10 iterations, a = -0.2
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after 30 iterations, a = -0.2

Figure 20:



after 10 iterations, a = 4 after 30 iterations, a = 4
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15 iterations forward and 10 back, alpha = 4

Figure 27:
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