
An evolution method for image restorationRobert A
ar and Jos�e Luis Calder�onUniversity of Puerto Ri
o, Mayag�uezAbstra
tA pre-pro
essing step in image restoration 
onsists of smoothingthe image in order to redu
e the noise. Regarding the grey-s
ale im-age as a mapping from a plane region to the unit interval (where theintensity of ea
h pixel is a number ranging from zero to one), the evo-lution approa
h is to take the raw image as initial data, then solve,for small time, a 
ertain partial di�erential equation. We analyse theproperties of the Darboux operator to this e�e
t; it is a hyperboli
operator, hen
e preserves dis
ontinuities and edges, yet has interme-diate smoothing properties whi
h it shares with the traditional lineardi�usion methods (\low-pass �lters" in the Engineering literature).1 Introdu
tionImage pro
essing, the treatment of a
quired images, has now be
ome an ex-tensive �eld of study. In the mathemati
al model, we assume that an imageis a fun
tion over a 
ertain domain, the frame, taking values in a 
ertainrange. In the 
ase of grey-s
ale intensity image, the range is the interval[0; 1℄. For sto
hasti
 models, repla
e single fun
tion by sto
hasti
 pro
ess (or\random �eld"). Good introdu
tions to the �eld of mathemati
al image pro-
essing are [AK02℄, [CS05℄. One of the tasks involved is image restoration,whi
h typi
ally 
onsists of trying to diminish noise or blur imposed on theimage. These two phenomena are usually distin
t; blur is a systemati
 andrepeatable pro
ess, imposed by the opti
al instrument, and typi
ally mod-elled by 
onvolution by a 
ertain kernel. Noise is the e�e
t of random naturalphenomena.One of the re
ent development in image denoising has been the use ofPDE (partial di�erential equations) methods; we regard the a
quired image1



as the initial value for some initial-value problem asso
iated with a partialdi�erential equation, and we generate from it a time sequen
e of images,where time plays the role of an arti�
ial parameter. For instan
e, solving theheat equation where the \dirty image" plays the role of initial data, is verye�e
tive at redu
ing the 
u
tuations due to random noise, but sin
e the heatoperator (
onvolution by the heat kernel) has isotropi
 e�e
t, this not onlyredu
es noise, but also blurs and erases the edges whi
h make for the sharp-ness of the image. A �x around this is to use anisotropi
 di�usion; see [CS05℄,[AK02℄, [tHR94℄. For an ex
ellent survey of the s
ope and appli
ability ofPDE methods, see also [LAM93℄.A desirable feature then, of a PDE method, is to have some smoothingproperty. Before we 
ontinue, let us mention expli
itly the models of noisewhi
h we use in our numeri
al experiments:1. Gaussian noise is a �eld of pointwise random 
u
tuations, with Gaus-sian probability density fun
tion, ea
h having zero mean, 
ommon vari-an
e and satisfying 
ertain te
hni
al assumptions of isotropy of thespatial 
orrelation of 
u
tuations. In this model, the noise is additive:u(x) = �u(x) + n(x)where �u is the ideal image and n is the noise.2. Spe
kle noise uses the same model, but in a multipli
ative way:u(x) = �u(x)(1 + n(x))3. Salt-and-pepper noise models the appearan
e of random grains on thetelevision s
reens of time past, and 
onsists of randomly 
oloring somedots on the image in bla
k or white, a

ording to a 
ertain density:u(x) = (1� s(x))�u(x) + s(x)
(x)where both s(x) and 
(x) are random variables taking the value 0 or 1.This work was inspired by the arti
le [Ki
96℄, whi
h lists 
ertain results, butdoes not show the numeri
al experiments.
2



2 The Euler-Poisson-Darboux equationThe partial di�erential equationutt + �t ut ��u = 0 (1)arises in solving the wave equation in higher dimensions (with � = n� 1 if nis the dimension of spa
e) and is referred to, in the literature, variously as theEuler-Poisson-Darboux equation ([DH53℄, [Wei55℄, [Joh55℄) or the Darbouxequation ([CH62℄). We will name it thereafter the Darboux equation (keepingto the observation as
ribed, maybe to Lagrange, that obje
ts in mathemati
sare often named after the �rst person who redis
overs them after Euler. Inthis 
ase, it would be the se
ond). We will allow � to have values other thann � 1, but in the s
ope of this work, our numeri
al experiments use mostly� = n� 1 = 2.2.1 Equation over RnOver the entire spa
e, the asso
iated initial-value problem to (1) 
onsists ofspe
ifying the value f(x) of u at time zero, and the 
ompatibility 
onditionut = 0 at time zero (note that (1) is singular at the initial time). It is well-known (see [CH62℄) that, for � = n � 1, the solution to the initial-valueproblem 
onsists of taking for u(t; x) the spheri
al mean of f over the sphereof 
entre x and radius t. In [DH53℄, Diaz and Weinberger generalise thisresult to other values of � in two steps:- For integer � > n�1, they show, using the des
ent method of Hadamard,that the solution is still obtained by spheri
al means, or, more des
rip-tively, 
ylindri
al means over �� (n� 1) dimensional 
ylinders.- By a 
ontinuation argument, they extend this formula to the whole
omplex plane, ex
luding negative odd value of �.Two remarks:1) Uniqueness hold for � with nonegative real part, but not otherwise.2) By repla
ing t by �t, we see that the equation is reversible.3



2.2 Equation over a re
tangular domainOne surmises that, in the 
ase of the initial-value problem over a boundeddomain with periodi
 boundary 
onditions, one should derive similar resultsusing elementary means. This turns out to be indeed the 
ase. By imposingperiodi
 boundary 
onditions over, say, the square [0; 2�℄ � [0; 2�℄, we lookfor solutions of the formu(t; x) = Xp2Z2 
p(t)eip�x; �
p = 
�pwhere the 
ondition on the 
oeÆ
ients expresses that u is real-valued. Trans-ferred to the 
oeÆ
ients of the Fourier expansion, the Darboux equationbe
omes t
00(t) + �
0(t) + jpj2t
(t) = 0where we suppressed the dependen
e of 
(t) on the mode p. The Fr�beniusmethod then 
onsists, for ea
h p belonging to the integer latti
e, of lookingfor 
 of the form 
(t) = 1Xn=0 antr+n; a0 6= 0:Taking into a

ount the initial-value 
onditions, and 
onsidering the resultingre
urren
e relations, we obtain that:- For � > 0, there is an unique solution (the 
ase � = 0 may be omitted,sin
e it 
orresponds to the wave equation).- For real, noninteger � < 0, there are in general two linearly independentsolutions. If � is a negative integer, then there are in�nitely manysolutions if � is even, and, in general, no solutions if � is odd.- A result mentioned in [Ki
96℄ is that, if f(x) 2 Hs(R2), then, forea
h positive time, u(t; x) 2 Hs+1=2(R2). In the 
ontext of the periodi
boundary-value problem, one obtains this result by observing that (1) ifof Bessel type, and by using the 
hara
terisation ofHsp(R2) (spa
e of pe-riodi
 Hs fun
tions) via the Fourier transform: if v(x) = Pp2Z2 
peip�x,then v 2 Hs(R2), Xp2Z2(jpj2)s=2
p 2 l2and the fa
t that J0(tj�j) de
ays at in�nity like j�j�1=2.4



It is this intermediate smoothing property whi
h lends this method its in-terest. Of 
ourse, we must keep in mind that the s
ale of spa
es Hs, whi
hallows easy analysis of smoothing, is not the natural one where to 
onsiderimages, along with their edges and dis
ontinuity types. In this s
ale, theadequate spa
e where to 
hose f would be H0. On the other hand, studyingthe smoothing properties of the Darboux operator in the spa
e BV is beyondthe s
ope of the present work.3 Numeri
al resultsFor a more 
omplete a

ount of the numeri
al experiments, we refer to[Cal09℄. In this summary, we merely highlight some of the 
on
lusions, andstate some additional remarks.The results we show use two images, one syntheti
, 
ontaining high-levelinformation, the other, 
ropped from a photograph.
Image 1
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Image 2
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rete s
hemeWe used an expli
it �nite-di�eren
e method, 
hoosing uniform spa
e andtime steps �x = �y and �t. The �rst time derivative is approximated by a5



single-step formula unt = un � un�1�twhi
h is of order of a

ura
y O(�t), and the se
ond time derivative byuntt = un � 2un�1 + un�2�t2 ;and the Lapla
ian of u, by the standard four-point dis
rete Lapla
ian. Solv-ing the periodi
 boundary-value problem makes it easy to deal with theboundary. An analysis of stability indi
ates that the s
heme is stable if� < 0:5, � being the ratio �t=�x. One drawba
k of this simple s
heme isthat it does not stri
tly preserve the range of the image: the weights involvedin 
omputing un from un�1 and un�2 are aÆne, but not 
onvex, as some arenegative. Sin
e we only use the method for small time, the e�e
t is notsigni�
ant.Of 
on
ern is the e�e
t of the 
hoi
e of time step over the value of u ata 
ertain time. Or, put another way, while the ideal image is over the unitsquare, the a
tual instan
e of the image is as a matrix of pixels, the size ofwhi
h is determined by the resolution. The value of u(t) at time t shoulddepend essentially on t, but not on the number of time-steps required torea
h t. The following tables list, as a �rst 
olumn, the amount of noise (attime zero) in the L1 norm, then, the dis
repan
y between u and ~u at a 
hosen�xed time, with u 
orresponding to � = 0:4 and ~u 
orresponding to � = 0:1.The di�eren
e in u due to di�erent values of � is seen, at least, not to ex
eedthe size of the noise. In the remaining experiments, we 
hose � = 0:2.Table 1: Image 1noise ju� ~uj1 ju� ~uj1spe
kle 0.09 0.02gaussian 0.05 0.01salt & pepper 0.03 0.02no noise 0.01 0.14
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Table 2: Image 2noise ju� ~uj1 ju� ~uj1spe
kle 0.08 0.01gaussian 0.08 0.01salt & pepper 0.02 0.01no noise 0.007 0.073.2 Quantifying denoisingA measure used in signal pro
essing, for signal denoising or 
ompression,is the \signal-to-noise ratio", and the 
losely related \peak signal-to-noiseratio". The aforementioned are usually de�ned using the squared-error, butit is possible to de�ne a related measure relying on the L1 error. We 
hoosethe following: SNR = �100 log(ju� �uj1);where u is the restored image, and �u the 
lean image. Of 
ourse, in pra
ti
ethis quantity is unknown (for la
k of knowing �u), but it is still of interest to
he
k whether the empiri
al measure in question agrees with subje
tive per-
eption in the 
ase of images. For 
ertain iterations of the Darboux pro
ess,we list the 
orresponding SNR. In order better to 
ompare, we used noisedensity and varian
e respe
tively of 0.08 and 0.02 for spe
kle and Gaussiannoise. For image 1, we obtain:Table 3: Image 1, spe
kle noiseiteration 2 3 4 5 6 7SNR 211.32 212.28 212.97 213.18 212.77 211.65Table 4: Image 1, gaussian noiseiteration 2 3 4 5 6 7SNR 259.80 260.37 260.20 259.06 256.79 253.37We then show side-by-side the images 
orresponding to highest SNR, andbest per
eived �t ( �gures 3, 4, 5, 6).7



speckle, PSNR = 213.18
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speckle, PSNR = 212.77
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200 Figure 4:For image 2, we used spe
kle noise only. In the 
ase of this image withlower high-level information 
ontent, it is our impression that, while the SNRseems roughly to 
orrelate with per
eption, the agreement is by no meansexa
t (�gures 7, 8, 9, 10).Table 5: Image 2, spe
kle noiseiteration 4 8 9 10 11 12 13SNR 242.56 283.54 290.13 292.12 289.96 285.05 279.013.3 Comparison with �ltersA traditional denoising method in engineering involves the use of �lters.Filtering an image 
onsists in applying to it a lo
al averaging-like operator,de�ned by a �xed mask of a 
ertain size. The smaller the size, the more lo
althe operator. If the e�e
t of the �lter is true averaging, then this amountto 
onvolution by a 
ertain kernel. It is a linear operation, and generalisesin a 
ertain sense solving the heat equation. The e�e
t of su
h a �lter isto diminish the noise (by de
reasing random os
illations) but also to blurseparation between image regions, akin to what isotropi
 di�usion does. A8



gaussian, PSNR = 260.37
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gaussian, PSNR = 256.79
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200 Figure 6:�x around this is to use a \median �lter", whi
h is nonlinear, and usesorder statisti
s instead of 
onvolution. It has the advantage of preservingboundaries between solid segments (i.e., regions of nonzero measure), butnot thin 
urves. As a 
ontrast to the e�e
t of evolving by the Darbouxpro
ess, we show the e�e
t of using �lters to both images. For both �lters,we 
hose masks of size 3 � 3, having the smallest support; the 
hoi
e oflarger masks would further aggravate blurring. It must be mentioned thatanother di�eren
e between a PDE based method su
h as this, and �ltermethods, is that while the �lter is applied to get a single restored image, andis an irreversible pro
edure, the evolution method generates a sequen
e ofsmoothed images along the time s
ale. See �gures 11, 12, 13, 14, 15, 16, 17and 18.3.4 Other 
hoi
es of parameterAs mentioned earlier, negative values of the parameter � yield multiple so-lutions of the Darboux equation. This is not ne
essarily the 
ase for thedis
retisation, but it is of interest to 
ompare the e�e
t. We show a sampleresult for � = �0:2, starting from a 
lean image: �gures 19, 20.As 
an be inferred from the analysis in [DH53℄, the higher the value of �,the more smoothing the e�e
t of the solution operator. Extensive tests for9



speckle, PSNR = 290
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speckle, PSNR = 292
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180 Figure 8: 10 iterationsdi�erent values of � are beyond the s
ope of this work, but we show belowsome sample results, also starting from a 
lean image. See �gures 21, 22, 23,24. The reversibility property is of potential use. Be
ause of the singularity ofthe Darboux equation at time zero, we 
annot expe
t the dis
retised methodto revert all the way ba
k to the initial time. We show the result of runninga 
ertain number of iterations forward, then ba
ktra
king: �gures 25, 26However, by in
reasing the value of �, we obtain a striking e�e
t, ofpotential use in edge enhan
ement: see �gure 27.A
knowledgement We thank Prof. K. R�ozga for pointing out the resultabout de
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speckle, PSNR = 290
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speckle, PSNR = 285
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speckle noise, average filtre
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speckle noise, median filtre
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180 Figure 12:[Wei55℄ A. Weinstein. The generalized radiation problem and the Euler-Poisson-Darboux equation. Summa Brasiliensis, 3, 1955.
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gaussian noise, average filtre
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gaussian noise, median filtre
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speckle noise, average filtre
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speckle noise, median filtre
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gaussian noise, average filtre
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gaussian noise, median filtre
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after 10 iterations, α = −0.2
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after 30 iterations, α = −0.2

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180 Figure 20:14



after 10 iterations, α = 4
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after 30 iterations, α = 4
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after 10 iterations, α = 4
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after 30 iterations, α = 4
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30 iterations forward and 20 back, α = 4
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30 iterations forward and 20 back, α = 4
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15 iterations forward and 10 back, alpha = 4
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