-

Some shape optimization problems
with a polygonal solution

Antoine HENROT (joint work with Evans HARRELL Georgia-Tech)

Ant oi ne. Henr ot @ ecn. u- nancy. fr

Institut Elie Cartan Nancy - FRANCE
Nancy-Université - CNRS - INRIA

Institut

CARTAN

Nancy

-

Benasque August 26, 2009 — p. 1/1



| ntroduction

-

We work in a particular class of plane convex sets:

=

A = {K convex set in R?, s(K) = O, P(K) = 2r}.

where s(K') denotes the Steiner point of K and P(K) Its
perimeter.

# What is the "shape" of A?
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| ntroduction

e work in a particular class of plane convex sets:

=

A = {K convex set in R?, s(K) = O, P(K) = 2r}.

where s(K') denotes the Steiner point of K and P(K) Its
perimeter.

o

“

9
K
9

What is the "shape" of A?
A is compact
A is "convex" (for the Minkowski sum)

What is the boundary of A ? Does it contain only

polygons?

-

Benasque August 26, 2009 — p. 2/1



Thefarthest convex set

fLet Cy be a given convex set in A. T
Find the "farthest convex set" of Cy In A, I.e. one which

satisfies
d(K,Cy) = max{d(C, Cy), C € A}.

where d stands for a given distance among convex sets,
e.g. the Hausdorff distance or the L? distance.
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Thefarthest convex set

fLet Cy be a given convex set in A. T

Find the "farthest convex set" of Cy In A, I.e. one which
satisfies

d(K, Cy) = max{d(C,Cy), C € A}.

where d stands for a given distance among convex sets,
e.g. the Hausdorff distance or the L? distance.

Theorem [EXistence] For any suitable distance, there exists
at least one farthest convex set in the class A.
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The support function(1)

fLet K be a plane convex set.
The support function hx of K is defined by:

hic(0) == max{z-¢¥ 2 € K}.
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The support function(1)

fLet K be a plane convex set.
The support function hx of K is defined by:

hic(0) = max{z-e? :z € K}.

The perimeter P(K) of the convex set is given by:

P(K) = /O " ke (0) do.

The Steiner point s(K) of the convex set is defined by:

2T
S(K) = l/0 hic(0)ei? do

o -
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The support function(2)
-

The support function gives an easy characterization of
convex sets:

=

K is aconvex set <= h; + hy is a positive measure
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The support function(2)
-

The support function gives an easy characterization of
convex sets:

=

K is a convex set <= I} + hx is a positive measure

The polygons are also well characterized

Kisapolygon <= hf +hg =Y a;,
j=1

where a1, a9, ...,a, and 61,0, ...,6, denote the lengths of
the sides and the angles of the corresponding outer
normals.

o -
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-

Examples

the equilateral triangle T

hr(0)

<

(27

— 0—m/3 0<60<27/3
32\/5008( 7/3) <0< 2m/
32% cos(f — ) 27 /3 <60 < 47/3
-

—— cos(0 —om/3) 4m/3 <0< 2.

35 ( /3) 4m/3 <0<

-
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Examples

-

the equilateral triangle T T

(27
—— cos(f — /3 0<60<21/3
15 SO 0s0s
A
hr(0) =< ——= cos(f — 21 /3 < 60 < 4m/3
v
—— cos(0 — bHm/3) 4n/3 <60 < 2.
|55 cos(0—5T/3) An/3<0<
The line segments are particular convex sets.
If £, designate the segment [—i%e'®, iZe'?], its support
function is given by

zmwy:gmmw—@ﬂ
which satisfies h,” + ho = (00 + Onia).
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Support function and distances

-

The Hausdorff distance can be defined using the support
functions:

=

d (K, L) = |[[hg — hilloc.

We can also define a L? distance (Mc Clure and Vitale) by

2T
dy(K, L) := (/ hy — hLypcw)
0

We will use here only the L? distance.

1/p

o -
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A geometric inequality

-

Theorem Let K be any plane convex set with its Steiner
point at the origin. Then

=

P(K
max hr < % < minhy + max hy,

where both inequalities are sharp and saturated by any line
segment.

o -
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A geometric inequality
-

Theorem Let K be any plane convex set with its Steiner T
point at the origin. Then

P(K
max hr < % < minhy + max hp,

where both inequalities are sharp and saturated by any line
segment.

The first inequality is due to P. Mc Mullen. It implies that the
diameter of A is less than 7 /2.
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| dea of the proof

=

fWe Introduce F'(K) := min hg + max hx and a line L which
go through O and a point where hg IS minimum.
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=

fWe Introduce F'(K) := min hg + max hx and a line L which
go through O and a point where hg IS minimum.

® K — maxhpg IS convex for the Minkowski sum.

» reduction to symmetric sets: K — (K + or(K))
preserves P, s, min and decreases max.

#® Let S be the segment orthogonal to L and for any
convex K introduce K; :=tK + (1 —t)S. We prove that
F(K)< F(S)= F(K;) < F(5) VvVt > 0.

o -

Benasque August 26, 2009 — p. 9/1



| dea of the proof
B

fWe Introduce F'(K) := min hg + max hx and a line L which
go through O and a point where hg IS minimum.

® K — maxhpg IS convex for the Minkowski sum.

» reduction to symmetric sets: K — (K + or(K))
preserves P, s, min and decreases max.

#® Let S be the segment orthogonal to L and for any
convex K introduce K; :=tK + (1 —t)S. We prove that
F(K)< F(S)= F(K;) < F(5) VvVt > 0.

# |t suffices to prove that S is a local minimum.

o -
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Thefarthest convex set (Hausdor ff)
-

Theorem [farthest convex set for Hausdorff distance]
If C'Is a given convex set in the class A, then the convex set
K for which

=

dH(O, Ko) = max{dH(C’, K) K € .A}

IS a segment.

-
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For the L? distance
B

We come back to the L? distance

=

2 2
Q(K) = / (hK—hC’)2 df = / h%(—QhKh(j—Fh%d@
0 0



For the L? distance
B o

We come back to the L? distance
2T 2T
Q(K) :/ (hK—hC)2 d@Z/ h%(—QhKh(j—Fh%d@
0 0
More generally, we consider functionals .J like
2T 5
J(K) := / ahjc +bhly” +chg +dhly do
0

where « and b are nonnegative bounded functions of 4, one
of them being positive almost everywhere. The functions
¢, d are assumed to be bounded.

o -
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A general result

-

Theorem Let J be a functional defined by
2T 0
J(K) := / ahfc +bhly” +chg +dhy do
0

where a, b, ¢, d satisfy the above conditions. Then every
local maximizer of the functional J within the class A is
either a segment or a triangle.

o -
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A general result

-

Theorem Let J be a functional defined by T

27
J(K) ::/O a3y +bhh” + chy + d Wy db

where a, b, ¢, d satisfy the above conditions. Then every
local maximizer of the functional J within the class A is
either a segment or a triangle.

Corollary The farthest convex set for the L? distance is
either a segment or a triangle.

o -
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Theoptimality condition (1)
-

Let Ky be a (local) maximizer of some functional J defined
on the class A, hy be its support function and S, the
support of the measure hy + hy.

=

o -
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Theoptimality condition (1)

. .

Let Ky be a (local) maximizer of some functional J defined
on the class A, hy be its support function and S, the
support of the measure hy + hy.

First order condition:
3¢ € HY(T), & < 0, and pu1, uo, 13 € R such that

f() = 0 on Sho,

and Vv € HY(T),

27
(J'(ho),v) = (& + &",v) + / v(p1 + pe cost + pssin6)do .
0

o -
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Theoptimality condition (2)
-

Second order condition: Moreover, if v € H(T) is such that
d)\ € R which satisfies

(" 4+ v > Mho" + ho)

{ v 2> )\h()
(o4 &",0) + [T v(un + p2 cos 0 + 3 sin 0)d = 0.

then
<J”(ho),v,v> <0.

o -

Benasque August 26, 2009 — p. 14/1



Sketch of the proof of the main theorem
-

We follow ideas by T. Lachand-Robert, M.Peletier and J. T
Lamboley, A. Novruzi.

We want to prove that the support Sy of i + hy does not
contain more than 3 points.

o -
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Sketch of the proof of the main theorem

o .

We follow ideas by T. Lachand-Robert, M.Peletier and J.
Lamboley, A. Novruzi.

We want to prove that the support Sy of i + hy does not
contain more than 3 points.

Assume, for a contradiction, that Sy contains at least four
points A1 < 6y < 63 < 04. We solve the four differential
equations

U§/+Ui:59i 6 c ((91—8,(94—|—€)
Uz’(el — 5) = UZ'(94 -+ 8) = 0,

o -
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Sketch of the proof (2)
-

We choose four numbers A\;, i = 1,...,4 such that the three T
following conditions hold, where we denote by v the function

defined by v = S°°_ Ay

2
V(01 — ) =0 (04 +¢) =0, / vdfd =0.
0

o -
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Sketch of the proof (2)
-

We choose four numbers A\;, i = 1,...,4 such that the three T
following conditions hold, where we denote by v the function

defined by v = S°°_ Ay

2T
(0 — €)= /(04 + £) = 0, / pdf = 0.
0

Then v I1s admissible for the second order condition and we
check that

(J"(ho),v,v) >0

which is a contradiction.

o -
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The farthest convex set (L* distance)
B

Theorem If C Is a given convex set in the class A, then the
convex set K for which

=

dz(O, Ko) = maX{dQ(C, K) K € ./4}

IS a segment.

o -
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Conclusion and Generalization

-

The following results is mainly due to J. Lambolley and A.
Novruzi. Let

=

J(K) = /0 " G do

a general functional that we want to maximize.

Note: J.L. and A.N. worked with the inverse of the polar coordinate
Instead of the support function.

o -
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Conclusion and Generalization

-

The following results is mainly due to J. Lambolley and A.
Novruzi. Let

=

J(K) = /0 " G do

a general functional that we want to maximize.

Note: J.L. and A.N. worked with the inverse of the polar coordinate
Instead of the support function.

We have the general result:

G is convex in ¥ = every (local) maximizer is a polygon.

o -
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