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Aggregation Equation

p(x,t) : density
pt +div(pv) =0 V(x, t): velocity field
V=-VKxp xeRY t>0

uns
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For which interaction potentials do we get finite time blowup? URB
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Aggregation for particles

One particle attracted
by a fixed location x = a

X =-VK(X - a)

Multiple particles attracted
by one another

Xi==> " m; VK(X; - X))
J#i
uns
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Continuum model

p(x, t) = density of particle at time t

X,' == —ZVK(X,’ —)<j) mj
J#i

V(x) = — y VK(x —y) p(y)dy

uns
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Continuum model

p(x, t) = density of particle at time t

X,' == —ZVK(X,’ —)<j) mj
J#i

V(x) = — y VK(x —y) p(y)dy

uns
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Patlak-Keller-Segel model for chemotaxis

Model collective motion of cells which are attracted by self-emitted
chemical substance (and move with Brownian motion).

p(x, t): density of cells
c(x, t): density of chemical substance unse
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@ Cells moves toward region with high concentration of chem.

pr +div(p V) = Ap
Vv=Vc

¢ —Ac=p

uns
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@ Cells moves toward region with high concentration of chem.

pr +div(p V) = Ap
Vv=Vc

¢ —Ac=p

@ Chemical substance “moves” faster than cells

pe +div(p V) = Ap
Vv=Vc

—Ac=p (= c=N=xp)

uns

J. A. Carrillo Blowup in multidimensional aggregation equations



@ Cells moves toward region with high concentration of chem.
pr +div(p V) = Ap
v=Vc

¢ —Ac=p

@ Chemical substance “moves” faster than cells
pe +div(p V) = Ap
v=Vc

—Ac=p (= c=N=xp)

@ So we get:

pt +div(p V) = Ap

V=VNsxp b
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Interaction energy

=5 [ Ko ss o
=5 [ Kix= D sax o)y

‘k(n)

uns
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Interaction energy

=5 [ Ko ss o
=5 [ Kix= D sax o)y

‘k(/z)

0 < Ex(p) < Lk(diam) Ex(p) =0 = p=4, YNB

IN
I\Jh—-
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=5 [ Ko=) o) o) iy

%EK(p) _ —/p\vF d

uns
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=5 [ Ko=) o) o) iy

%EK(p) _ —/p\vF d

center of mass = /5(’ p(x, t) dx

d

p X p(x,t)dx =0

uns

J. A. Carrillo Blowup in multidimensional aggregation equations



pe +div(pv) =0
Vv=—-VK=xp

Question: What is the (sharp)
condition on the potential in
order to have finite time
blowup?

uns
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Osgood condition

X =-VK(X — a) o
SO
Question: how long does it takes for a particle to /%f— €
reach the bottom of a fixed potential? 7 0

F=—K(r)
r(0) =L K(x) = k(|x])

Logr because to move by a distance dr,
Answer: | T = / 7 it takes the particle a time -9~
o K(r) K (r)

uns
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Main result

Sharp condition on the interaction potential in order to get blowup

o If

i

dr

k'(r)

= «I»OO’

then we have global existence in

C([0, 00), L'n LP) N Cl([oa 0), Wil’p) for p > %

L' N L*°(Bertozzi, C., Laurent; Nonlinearity (2009))
I LP(Bertozzi, Laurent, Rosado; in preparation)

o If

(C., Di Francesco, Figalli, Slepcev, Laurent; preprint UAB)

/OL

dr
K'(r)

< 400,

then p(t) — 0x, in finite time.

uns
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Monotonicity conditions

The Osgood condition is sharp in the class of potential satisfying

e 30 > 0 such that k”(r) is monotone in (0, d)

@ 36 > 0 such that rk”(r) is monotone in (0, )

uns
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C([0, 00), LP) N C}([0, 00), WLP)  for p > -2 2777

Why do we work with densities in LP(RY) for p > ﬁ ?

Pt
v

+div(pv) =0
=—-VK=xp

VK € WHI(RY) for g < d

x

pELP and VK e Wha

= |VKsxp et

uns
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C([0, 00), LP) N C}([0, 00), WLP)  for p > -2 2777

Why do we work with densities in LP(RY) for p > ﬁ ?

VK € WHI(RY) for g < d

x

pELP and VK e Wha

pt +div(pv) =0
Vv=—-VK=xp = |[VKxp €C

= Local existence

uns

J. A. Carrillo Blowup in multidimensional aggregation equations



L dr _ i
0 By =t = global existence

e We want an apriori bound of ||p(t)]|;, for all time.

uns
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L dr _ i
0 By =t = global existence

e We want an apriori bound of ||p(t)]|;, for all time.
@ The only thing we can use is that solutions of

F=—k(r)

can not go to 0 in finite time.

uns
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L dr _ i
0 By =t = global existence

e We want an apriori bound of ||p(t)]|;, for all time.

@ The only thing we can use is that solutions of
F=—k(r)

can not go to 0 in finite time.

@ How to do it?

1 . . .
Show that oL, can not go to 0 in finite time.

uns
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A v
lp(e)II95° lp(e)I190¢

y=—c K(y)

uns
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A v
lp(e)II95° lp(e)I190¢

y=—c K(y)

By Gronwall inequality:

S
(o =7

uns
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A v
lp(e)II95° lp(e)I190¢

y=-c K(y)
By Gronwall inequality:
— = >y(t) But y(t) can not go to 0 in
lp(£)]|94° finite time.

uns
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Main result

Sharp condition on the interaction potential in order to get blowup

o If

o If

i

dr
K'(r)

= «I»OO’

then we have global existence in

C([0,00), LP) N CH([0,00), W—1P)  for p > 5%;.

(Bertozzi, C., Laurent; Nonlinearity (2009))

i

dr

k'(r)

< 400,

then p(t) — 0x, in finite time.

(C., Di Francesco, Figalli, Slepcev, Laurent;
preprint UAB)

uns
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Gradient flow of
Ex(p) = ;// K(x —y) p(x) p(y) dxdy

with respect to the Wasserstein distance

uns
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What is the Wasserstein distance?

The Wasserstein distance is a distance on the space of probability
measure.

N
Example: What is the A x

Woasserstein distance between
p1 and po?
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Two piles of sand!

Energy needed to transport m kg of sand from x = a to x = b:

energy = m|a — b|?

P

d2,(p1, p2) = total energy to to transport p; to po

uns
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Two piles of sand!

Energy needed to transport m kg of sand from x = a to x = b:

energy = m|a — b|?

P

d2,(p1, p2) = total energy to to transport p; to po

2 (01, p2) = / x = T dpr(x) unB
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Definition of the distance?

Transporting measures:

Given T : R — RY mesurable, we say that v = T#yp, if
v[K] := pu[T~}(K)] for all mesurable sets K C RY, equivalently

uns
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Definition of the distance?

Transporting measures:

Given T : R — RY mesurable, we say that v = T#yp, if
v[K] := pu[T~}(K)] for all mesurable sets K C RY, equivalently

/ gody—/ (po T)du
RY RY

for all ¢ € C,(RY).

uns
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Definition of the distance?

Transporting measures:

Given T : R — RY mesurable, we say that v = T#yp, if
v[K] := pu[T~}(K)] for all mesurable sets K C RY, equivalently

/ gody—/ (po T)du
RY Rd

for all ¢ € C,(RY).

Monge-Kantorovich-Rubinstein-Wasserstein... Distance:

d2, (i, v)

B
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Definition of the distance?

Transporting measures:

Given T : R — RY mesurable, we say that v = T#yp, if
v[K] := pu[T~}(K)] for all mesurable sets K C RY, equivalently

/ gody—/ (po T)du
RY Rd

for all ¢ € C,(RY).

Monge-Kantorovich-Rubinstein-Wasserstein... Distance:

d2, (i, v)= inf, {// Ix — yl|? dw(x,y)}
Rd xR

B
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Definition of the distance?

Transporting measures:

Given T : R — RY mesurable, we say that v = T#yp, if
v[K] := pu[T~}(K)] for all mesurable sets K C RY, equivalently

/ gody—/ (po T)du
RY RY

for all ¢ € C,(RY).

Monge-Kantorovich-Rubinstein-Wasserstein... Distance:

d2, (i, v)= inf, {// Ix — yl|? dw(x,y)}
Rd xR

where the transference plan 7 runs over the set of joint probability
measures on R x RY with marginals f and g € P»(RY). nB
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Three examples

i - ﬂ diy(52,06) = |a— b|?

02y (s 6x,) = / X — yP dp(y)
= Var (p)

uns
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JKO scheme (Jordan-Kinderlehrer-Otto)

A discrete time approximation of the PDE is obtained by solving a
sequences of variational problem.

@ Choose a time step At.

uns
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JKO scheme (Jordan-Kinderlehrer-Otto)

A discrete time approximation of the PDE is obtained by solving a
sequences of variational problem.

@ Choose a time step At.

@ Solve

1
=arg min ——d2,(p, + E }
pr1=arg min {2At w(p; pi) + Ex(p)

uns
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JKO scheme (Jordan-Kinderlehrer-Otto)

A discrete time approximation of the PDE is obtained by solving a
sequences of variational problem.

@ Choose a time step At.
@ Solve
1

e o) + B}

k11 =arg min
Pk+1 gpe%(Rd){

o As At — 0 it converges to the solution of a weak form of

pt +div(pv) =0
Vv=—-VK=xp

(see " Gradient Flow in Metric Spaces” by Ambrosio, Gigli, Savaré URB
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Sub-differential Characterization

Let K be a locally attractive potential such that is —\-convex:
K(x) + 3|x|? is convex.

uns
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Sub-differential Characterization

Let K be a locally attractive potential such that is —\-convex:
K(x) + 3|x|? is convex.

Let OK(x) be the (possibly multivalued) subdifferential of K at the
point x, namely the set

OK(x) = {ﬁ; e R K(y) — K(x) > k- (y — x) + o(jx — y|) Vy € Rd}.

Let 9°K(x) be the element of 9K (x) with minimal norm. Our
assumptions, 9°K(x) = VK(x) for all x # 0 and °K(0) = 0.

uns
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Sub-differential Characterization

Let K be a locally attractive potential such that is —\-convex:
K(x) + 3|x|? is convex.

Let OK(x) be the (possibly multivalued) subdifferential of K at the
point x, namely the set

OK(x) = {ﬁ; e R K(y) — K(x) > k- (y — x) + o(jx — y|) Vy € Rd}.

Let 9°K(x) be the element of 9K (x) with minimal norm. Our
assumptions, 9°K(x) = VK(x) for all x # 0 and °K(0) = 0.

A vector field w € L2(dy) is said to be an element of the
subdifferential of Ek, i. e. w € JEk, if

Exlv] — Exli] = /R o ) O =) o)

for all v € To(u, v).
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Sub-differential Characterization

Characterization of Sub-differential

Given a locally attractive potential, the vector field

R(x) i= ; VK(x - y) diu(y) = (6°K + 1)(x)

is the unique element of the minimal subdifferential of Ek, i.e.
K x = °Ex[u].

uns
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Gradient Flow Solution

Concept of Solution

An absolutely continuous curve j : [0, +00) 3 t — P»(RY) is said
to be a weak measure solution with initial datum pg € P2(RY) if
and only if 3°K * 1 € L?(u(t)) a.e. 7 €(0,t) and

//RdsotXT dp(t) /¢X0 dpio(x) =

/ / Vio(x, t) - 8K (x — y) du(t)(x) dpu(£)(y),
JO JRA JRA

for all test functions ¢ € C°([0, t) x R9).

uns
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Gradient Flow Solution

Concept of Solution

An absolutely continuous curve j : [0, +00) 3 t — P»(RY) is said
to be a weak measure solution with initial datum pg € P2(RY) if
and only if 3°K * 1 € L?(u(t)) a.e. 7 €(0,t) and

//RdsotXT dp(t) /¢X0 dpio(x) =

/’/ Vio(x, t) - 8K (x — y) du(t)(x) dpu(£)(y),
JO JRA JRA

for all test functions ¢ € C°([0, t) x R9).

More refined, it is a gradient flow-type solution:

() = 0 Exl(t)] = ~0°Kxp(t), [v(t)lli2guqey = I |(8) et > 0

with ©(0) = pp and v(t) is the tangent vector to the curve u(t) unse

with minimal norm.
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Well-posedness of Gradient Flow Solutions

Energy equality is satisfied:

[ MO a0 e + Bl = Eclu(o

holds for all 0 < a < b < .

uns
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Well-posedness of Gradient Flow Solutions

Energy equality is satisfied:

[ MO0 0ute)x) -+ Bt = Exn(o)

holds for all 0 < a < b < .

dw-Expansion

Given two gradient flow solutions p!(t) and p?(t) in the sense of
the theorem above, then

dw (1 (t), 12 (1)) < e dw (pg, 115)

for all t > 0. In particular, we have a unique gradient flow

solution for any given jg € Po(RY).

B
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JKO scheme gives measure solutions.
Put particle model and continuum model in the same framework

o If the initial data is

N
po = Z m; dx,
i—1

@ Then the solution given by the JKO scheme (as At — 0) is

N
p(t) = Z m; Sx,(t) where X = — Z mj VK(X;—X;)
= J#i

uns
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Proof of blowup using the particle model

We want to prove that

L dr
/0 k(1) <400, | = ’p(t) — Oy in finite time‘

uns

J. A. Carrillo Blowup in multidimensional aggregation equations



Proof of blowup using the particle model

We want to prove that

L
/0 k?érr) <400, | = ’p(t) — Oy in finite time‘

AT
R .
4+
Find a bound
Po (independent of the nb.
of particles) for the time

it takes for all the
particles to arrive at Xp,

uns
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uns
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! X — X
J#i J#i | J‘
d (Xi —X;) - X
—R(t X[?=2X-X; = -2 Xi — X;
g (t) | Xi] E_' X — X K'(| )
J#
une
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. Xi — X;
Xi:_ZmJ'VK(Xi_XJ'):_ij ‘X’__)é‘ k/(’Xi_XJ'D

J#i J#i
d d . (X, —X) 'X,'
—R(t)> = —|Xi> =2 X;-X; = -2 IS (X — X
R = <1 S om S g KK =X
(Xi — Xj) - X; > 0 for all j Assume @ decreasing

d k'(2R(t))

ER(t)z <=2 2R > mi (X = X)X

J#i
une
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X — X
=" m VKX - X)=->_m X X" K (1% = X))
i#i i#i

d
dt

d oo ' (Xi = X;) - Xi
— | XilT =2 X Xi = =2 Ty v
—R(t)? = LIXiP=2XX ;mj XX

K'(1X; = Xj1)

(Xi — Xj) - X; > 0 for all j Assume @ decreasing

@ Rty < 2 kgfgg)) > (=) %
Dm (Xi=3) %= m; (X5 = X)X = X = Ry

JF#i

uns
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X — X
=" m VKX - X)=->_m X X" K (1% = X))
i#i i#i

d
dt

d oo ' (Xi = X;) - Xi
— | XilT =2 X Xi = =2 Ty v
—R(t)? = LIXiP=2XX ;mj XX

K'(1X; = Xj1)

(Xi — Xj) - X; > 0 for all j Assume @ decreasing

d K'(2R(t))
—R(t)2< -2 ——— 2 (X — X)) - X
P (1) < 2R(t) ij( 7)
JF
> mi (X — X;) ij (X — X;) - Xi = | Xi> = R(t)?
JF#i
d

CRUP < KEROIR(W) | SR()< —K(2R(r)| UMB
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@ Global existence: estimate of the LP-norm.

sl G
p(e)l190¢ lp(e) 193¢

@ Finite time blow-up: estimate of the size of the support.

The behavior of

d

]‘ !/
SR(®) < —5 KER(D)

y=—K(y) ‘ determine whether or not we have URB

finite time blow up
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1
= in {4 ——dj E
Pk+1 argpegl&d){zm w (P, pr) + K(:O)}

What does it happen when you put particles in the JKO scheme?

uns
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1
= i ——d? E
Pk+1 argpegl(%d){zm w (P, pr) + K(:O)}

What does it happen when you put particles in the JKO scheme?

Theorem: they remain particles if

o K(x)+ 5|x|? is convex
o At < %

2, ne
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