Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid

Takéo Takahashi

Institut Élie Cartan de Nancy and Inria Nancy – Grand Est, Team-Project CORIDA

August 27, 2009

The Euler equations in \mathbb{R}^3

$$\frac{\partial u}{\partial t} + (u \cdot \nabla)u + \nabla p = 0 \quad \text{in } (-T, T) \times \mathbb{R}^3$$

$$\text{div } u = 0 \quad \text{in } (-T, T) \times \mathbb{R}^3$$

$$u|_{t=0} = u_0 \quad \text{in } \mathbb{R}^3.$$
(2)

Hölder spaces

Assume

$$r \in (0,1).$$

 $u \in C^{0,r}(\Omega)$ if $u \in C^0(\Omega)$, u bounded in Ω and

$$|u(x) - u(y)| \le C|x - y|^r.$$

Hölder spaces

Assume

$$r \in (0,1).$$

 $u \in C^{0,r}(\Omega)$ if $u \in C^0(\Omega)$, u bounded in Ω and

$$|u(x) - u(y)| \leqslant C|x - y|^r.$$

Assume

$$\lambda \in \mathbb{N}$$
.

$$u \in C^{\lambda,r}(\Omega)$$
 if for all $\alpha \in \mathbb{N}^3$, $|\alpha| \leq \lambda$,

$$\partial_1^{\alpha_1} \partial_2^{\alpha_2} \partial_3^{\alpha_3} u \in C^{0,r}(\Omega).$$

Well-posedness

$$\lambda \in \mathbb{N}, \quad r \in (0,1).$$

Theorem

Assume

$$u_0 \in C^{\lambda+1,r}(\mathbb{R}^3), \quad \text{div } u_0 = 0,$$

Then there exist T > 0 and a unique solution

$$u \in C_w((-T,T), C^{\lambda+1,r}(\mathbb{R}^3))$$

of (1)–(3).

The flow of the fluid

The flow Φ is defined by

$$\partial_t \Phi(t, x) = u(t, \Phi(t, x)),$$

 $\Phi(0, x) = x$

for $(t, x) \in (-T, T) \times \mathbb{R}^3$.

The flow of the fluid

The flow Φ is defined by

$$\partial_t \Phi(t, x) = u(t, \Phi(t, x)),$$

 $\Phi(0, x) = x$

for $(t, x) \in (-T, T) \times \mathbb{R}^3$.

The material derivative of f is defined by

$$Df = \partial_t f + u \cdot \nabla f.$$

We have

$$\frac{d}{dt}f(\cdot,\Phi(\cdot,x)) = Df(\cdot,\Phi(\cdot,x)).$$

Analyticity of the trajectories

Theorem

Under the hypotheses of Theorem 1, the flow Φ is analytic from (-T,T) to $\mathrm{Id} + C^{\lambda+1,r}(\mathbb{R}^3)$.

More precisely, for all $k \in \mathbb{N}$,

$$||D^k u||_{C^{\lambda+1,r}} \le k! L^k (||u||_{C^{\lambda+1,r}})^{k+1}.$$

Idea of the proof (1/3)

First: (1) can be written as

$$Du + \nabla p = 0.$$

Taking the divergence:

$$-\Delta p = \operatorname{div} Du = \sum_{i,j} \partial_i \partial_j (u_i u_j).$$

Idea of the proof (1/3)

First: (1) can be written as

$$Du + \nabla p = 0.$$

Taking the divergence:

$$-\Delta p = \operatorname{div} Du = \sum_{i,j} \partial_i \partial_j (u_i u_j).$$

Thus, by setting

$$E(x) = \frac{-2\pi^2}{|x|},$$

we have

$$\nabla p = \sum_{i,j} \int_{\mathbb{R}^3} (\partial_i \partial_j \nabla E) (x - y) (u_i(x) - u_i(y)) (u_j(x) - u_j(y)).$$

Idea of the proof (2/3)

Therefore

$$D(\nabla p) = \sum_{i,j} \int_{\mathbb{R}^3} (\partial_i \partial_j \nabla E) (x - y) (\underline{Du_i(x)} - \underline{Du_i(y)}) (u_j(x) - u_j(y))$$
$$+ \sum_{i,j} \int_{\mathbb{R}^3} (\partial_i \partial_j \nabla E) (x - y) (u_i(x) - u_i(y)) (\underline{Du_j(x)} - \underline{Du_j(y)})$$

$$\sum_{i,j} \int_{\mathbb{R}^3} \langle \partial_i \partial_j \partial_k \nabla E \rangle (x-y) (u_i(x)-u_i(y)) (u_j(x)-u_j(y)) (u_k(x)-u_k(y)).$$

$$\sum_{i,j,k} \int_{\mathbb{R}^3} \left(\partial_i \partial_j \partial_k \nabla E \right) (x-y) (u_i(x) - u_i(y)) (u_j(x) - u_j(y)) (u_k(x) - u_k(y)).$$

Idea of the proof (3/3)

And by induction,

$$D^k(\nabla p) =$$

$$a^k$$

$$(x, \alpha)$$
 \sum

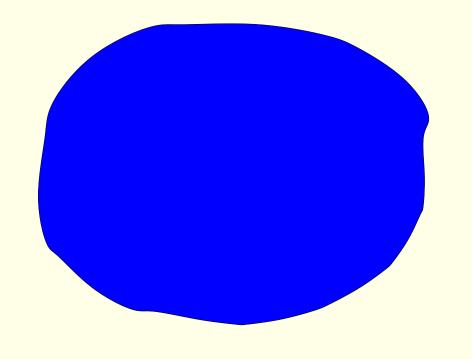
$$\sum_{s+|\alpha|=k+2} a^k(s,\alpha) \sum_{\nu_1,\dots,\nu_s \in \{1,2,3\}}$$

$$\partial_{
u_1}\dots\partial_{
u_s}$$

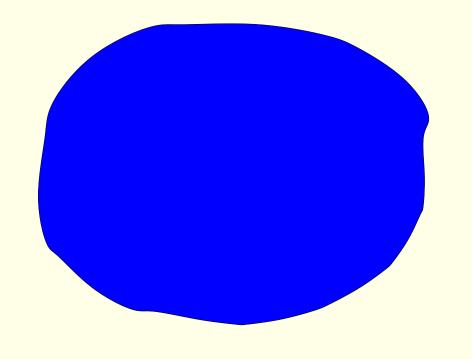
$$\sum a^k(s,\alpha) \qquad \sum \qquad \partial_{\nu_1} \dots \partial_{\nu_s} \nabla E *_s (D^{\alpha_1} u_{\nu_1}, \dots, D^{\alpha_s} u_{\nu_s}) ,$$

with

$$|a^k(s,\alpha)| \leqslant \frac{k!}{\alpha!(s+2)!}$$







The Euler equations in a bounded domain

The Euler equations in a bounded domain (without rigid body):

$$\frac{\partial u}{\partial t} + (u \cdot \nabla)u + \nabla p = 0, \quad \text{in } (-T, T) \times \Omega, \quad (4)$$

$$\text{div } u = 0 \quad \text{in } (-T, T) \times \Omega, \quad (5)$$

$$u \cdot n = 0$$
 on $(-T, T) \times \partial \Omega$. (6)

Assume

$$\lambda \in \mathbb{N}, \quad r \in (0,1)$$

and

$$u \in C_w((-T,T), C^{\lambda+1,r}(\Omega)).$$

Tool 1: Regularity Lemma (1/2)

Tangential harmonic vector fields:

$$\operatorname{div} u = 0, \quad \operatorname{curl} u = 0, \quad u \cdot n = 0.$$

We denote by H the finite dimensional space of tangential harmonic vector fields.

Tool 1: Regularity Lemma (1/2)

Tangential harmonic vector fields:

$$\operatorname{div} u = 0, \quad \operatorname{curl} u = 0, \quad u \cdot n = 0.$$

We denote by H the finite dimensional space of tangential harmonic vector fields.

Notation:

$$|\cdot| := ||\cdot||_{C^{\lambda,r}(\Omega)} \text{ and } |\cdot|_{\partial\Omega} := ||\cdot||_{C^{\lambda,r}(\partial\Omega)},$$
$$||\cdot|| := ||\cdot||_{C^{\lambda+1,r}(\Omega)} \text{ and } ||\cdot||_{\partial\Omega} := ||\cdot||_{C^{\lambda+1,r}(\partial\Omega)}.$$

Tool 1: Regularity Lemma (2/2)

Lemma

For any $u \in C^{\lambda,r}(\Omega)$ such that

$$\operatorname{div} u \in C^{\lambda,r}(\Omega), \quad \operatorname{curl} u \in C^{\lambda,r}(\Omega), \quad u \cdot n \in C^{\lambda+1,r}(\partial\Omega),$$

Tool 1: Regularity Lemma (2/2)

Lemma

For any $u \in C^{\lambda,r}(\Omega)$ such that

$$\operatorname{div} u \in C^{\lambda,r}(\Omega), \quad \operatorname{curl} u \in C^{\lambda,r}(\Omega), \quad u \cdot n \in C^{\lambda+1,r}(\partial \Omega),$$

one has $u \in C^{\lambda+1,r}(\Omega)$ and there exists a constant c_r depending only on Ω such that

$$||u|| \le c_r (|\operatorname{div} u| + |\operatorname{curl} u| + ||u \cdot n|| + |\Pi u|),$$
 (7)

where Π is the orthogonal projection $L^2(\Omega; \mathbb{R}^3) \to H$.

Tool 2: Commutation rules

$$Df = \partial_t f + u \cdot \nabla f,$$

Commutation rules:

$$D(fg) = (Df)g + f(Dg),$$

$$\nabla Df - D\nabla f = \nabla u \cdot \nabla f,$$

$$\operatorname{div} Df - D\operatorname{div} f = \operatorname{tr} \{\nabla u \cdot \nabla f\},$$

$$\operatorname{curl} Df - D\operatorname{curl} f = \operatorname{as} \{\nabla u \cdot \nabla f\},$$

$$n \cdot Df - D(n \cdot f) = -\nabla^2 \rho \{u, f\}, \quad \text{where } n = \nabla \rho.$$

Tools 1 & 2 applied to the Euler equations

First

$$\operatorname{div} Du = \operatorname{tr} \left\{ \nabla u \cdot \nabla u \right\},$$

$$\operatorname{curl} Du = -\operatorname{curl} \nabla p = 0,$$

$$n \cdot Du = -\nabla^2 \rho \{u, u\},$$

$$\Pi Du = -\Pi \nabla p = 0.$$

Tools 1 & 2 applied to the Euler equations

First

$$\operatorname{div} Du = \operatorname{tr} \left\{ \nabla u \cdot \nabla u \right\},$$

$$\operatorname{curl} Du = -\operatorname{curl} \nabla p = 0,$$

$$n \cdot Du = -\nabla^2 \rho \{u, u\},$$

$$\Pi Du = -\Pi \nabla p = 0.$$

Second

$$Du \in C_w((-T,T), C^{\lambda+1,r}(\Omega))$$

and

$$||Du|| \leq c_r (|\operatorname{div} Du| + |\operatorname{curl} Du| + ||Du \cdot n||_{\partial\Omega} + |\Pi Du|)$$

$$\leq C||u||^2.$$

Kato's result

By using a proof by induction, Kato showed that if $\partial\Omega$ is smooth, then for all $k \in \mathbb{N}$,

$$D^k u \in C_w((-T,T), C^{\lambda+1,r}(\Omega))$$

and

$$||D^k u|| \leqslant C_k ||u||^{k+1}.$$

To show the analyticity, we need to estimate C_k : we have to count the number of terms appearing when applying D at each time.

For $k \in \mathbb{N}^*$, we have in Ω

$$\operatorname{div} D^k u = \operatorname{tr} \left\{ F^k[u] \right\}$$

where

$$F^{k}[u] := \sum c_{k}(s, \alpha) \nabla D^{\alpha_{1}} u \cdot \ldots \cdot \nabla D^{\alpha_{s}} u,$$

For $k \in \mathbb{N}^*$, we have in Ω

$$\operatorname{div} D^k u = \operatorname{tr} \left\{ F^k[u] \right\}$$

where

$$F^{k}[u] := \sum c_{k}(s, \alpha) \nabla D^{\alpha_{1}} u \cdot \ldots \cdot \nabla D^{\alpha_{s}} u,$$

where the sum is over

$$2 \leqslant s \leqslant k+1 \text{ and } \alpha := (\alpha_1, \dots, \alpha_s) \in \mathbb{N}^s / |\alpha| = k+1-s.$$

For $k \in \mathbb{N}^*$, we have in Ω

$$\operatorname{div} D^k u = \operatorname{tr} \left\{ F^k[u] \right\}$$

where

$$F^k[u] := \sum c_k(s, \alpha) \nabla D^{\alpha_1} u \cdot \ldots \cdot \nabla D^{\alpha_s} u,$$

where the sum is over

$$2 \leqslant s \leqslant k+1 \text{ and } \alpha := (\alpha_1, \dots, \alpha_s) \in \mathbb{N}^s / |\alpha| = k+1-s.$$

Lemma

In the above formula, we have $c_k(s, \alpha) \in \mathbb{Z}$ and

$$|c_k(s,\alpha)| \leqslant \frac{k!}{\alpha!}$$

Assume that for all $j \leq k-1$,

$$||D^{j}u|| \leq \frac{j!L^{j}}{(j+1)^{2}}||u||^{j+1}$$

Then,

$$\left|\operatorname{div} D^k u\right| \leqslant \left|\sum c_k(s,\alpha) \nabla D^{\alpha_1} u \cdot \ldots \cdot \nabla D^{\alpha_s} u\right|$$

Assume that for all $j \leq k-1$,

$$||D^{j}u|| \leq \frac{j!L^{j}}{(j+1)^{2}}||u||^{j+1}$$

Then,

$$\left|\operatorname{div} D^k u\right| \leqslant \left|\sum c_k(s,\alpha) \nabla D^{\alpha_1} u \cdot \ldots \cdot \nabla D^{\alpha_s} u\right|$$

$$\leqslant k! L^k \|u\|^{k+1} \sum_{s=2}^{k+1} L^{1-s} \sum_{\alpha/|\alpha|=k+1-s} \prod_{i=1}^s \frac{1}{(1+\alpha_i)^2}$$

Assume that for all $j \leq k-1$,

$$||D^{j}u|| \leq \frac{j!L^{j}}{(j+1)^{2}}||u||^{j+1}$$

Then,

$$\left|\operatorname{div} D^{k} u\right| \leq \left|\sum c_{k}(s, \alpha) \nabla D^{\alpha_{1}} u \cdot \ldots \cdot \nabla D^{\alpha_{s}} u\right|$$

$$\leq k! L^{k} \|u\|^{k+1} \sum_{s=2}^{k+1} L^{1-s} \sum_{\alpha/|\alpha|=k+1-s} \prod_{i=1}^{s} \frac{1}{(1+\alpha_{i})^{2}}$$

$$\leqslant k! L^k ||u||^{k+1} \sum_{s=2}^{k+1} L^{1-s} \frac{20^s}{(k-s+2)^2}$$

Assume that for all $j \leq k-1$,

$$||D^{j}u|| \leq \frac{j!L^{j}}{(j+1)^{2}}||u||^{j+1}$$

Then,

$$\left| \operatorname{div} D^{k} u \right| \leq \left| \sum_{s=1}^{\infty} c_{k}(s, \alpha) \nabla D^{\alpha_{1}} u \cdot \ldots \cdot \nabla D^{\alpha_{s}} u \right|$$

$$\leq k! L^{k} \|u\|^{k+1} \sum_{s=2}^{k+1} L^{1-s} \sum_{\alpha/|\alpha|=k+1-s} \prod_{i=1}^{s} \frac{1}{(1+\alpha_{i})^{2}}$$

$$\leq k! L^{k} \|u\|^{k+1} \sum_{s=2}^{k+1} L^{1-s} \frac{20^{s}}{(k-s+2)^{2}}$$

$$\leq \gamma(L) \frac{k! L^{k}}{(k+1)^{2}} \|u\|^{k+1},$$

with

$$\gamma(L) \to 0$$
 as $L \to \infty$.

Proceeding similarly for

$$\operatorname{curl} D^k u, \quad n \cdot D^k u, \quad \Pi D^k u,$$

and using the Regularity Lemma, we get that for L big enough

$$||D^k u|| + |\nabla D^{k-1} p| \le \frac{k! L^k}{(k+1)^2} ||u||^{k+1}.$$



Description of a fluid-structure system

Position of the center of mass of the structure: x_B Orientation of the structure: Q

$$S(t) = Q(t)S(0) + x_B(t).$$

$$x = Q(t)y + x_B(t),$$

Velocity of the rigid body: v

$$v(t,x) = r(t) \wedge (x - x_B(t)) + \ell(t),$$

$$\ell = x'_B, \quad Q'y = r \times Qy.$$

Description of a fluid-structure system

Mass of the structure: m

Moment of inertia tensor of the structure: \mathcal{J}

Newton's Law:

$$m\ell'(t) = F_{fluid} = \int_{\partial \mathcal{S}(t)} pn \ d\Gamma,$$

 $(\mathcal{J}r)'(t) = \tau_{fluid} = \int_{\partial \mathcal{S}(t)} (x - x_B) \wedge pn \ d\Gamma.$
 $\mathcal{F}(t) = \Omega \setminus \mathcal{S}(t).$

Description of a fluid-structure system

$$\frac{\partial u}{\partial t} + (u \cdot \nabla)u + \nabla p = 0, \quad x \in \mathcal{F}(t), \ t \in (-T, T), \quad (8)$$

$$\operatorname{div} u = 0 \quad x \in \mathcal{F}(t), \ t \in (-T, T), \quad (9)$$

$$u \cdot n = 0 \quad x \in \partial \Omega, \ t \in (-T, T), \quad (10)$$

$$u \cdot n = v \cdot n \quad x \in \partial \mathcal{S}(t), \ t \in (-T, T), \quad (11)$$

$$m\ell'(t) = \int_{\partial S(t)} pn \ d\Gamma \qquad t \in (-T, T),$$
 (12)
 $(\mathcal{J}r)'(t) = \int_{\partial S(t)} (x - x_B) \wedge pn \ d\Gamma \qquad t \in (-T, T).$ (13)

Well-posedness studies on the previous system

- ▶ D'Alembert, Kelvin, Kirchhoff (~ 1870, potential case)
- Ortega, Rosier, Takahashi
- ► Rosier, Rosier
- ► Houot, Munnier (potential case)
- ▶ Houot, Tucsnak

The well-posedness result

Theorem (Houot-Tucsnak)

Assume u_0 in $C^{\lambda+1,r}(\mathcal{F}_0)$ with λ in \mathbb{N} and $r \in (0,1)$ satisfying $u_0 \cdot n = 0$, for $x \in \partial \Omega$ and $(u_0 - v_0) \cdot n = 0$ for $x \in \partial \mathcal{S}_0$, with $v_0 := \ell_0 + r_0 \wedge (x - x_0)$.

Then there exists T > 0 such that the problem (8)–(13) admits a unique solution

$$(x_B, r, u) \in C^2([-T, T]) \times C^1([-T, T]) \times L^{\infty}((-T, T), C^{\lambda + 1, r}(\mathcal{F}(t))).$$

Moreover $u \in C_w([-T,T]; C^{\lambda+1,r}(\mathcal{F}(t)))$ and $u \in C([-T,T]; C^{\lambda+1,r'}(\mathcal{F}(t)))$, for $r' \in (0,r)$.

Analyticity of the trajectories

Theorem

Let $\lambda \in \mathbb{N}$. Assume that the boundaries $\partial \Omega$ and $\partial \mathcal{S}_0$ are analytic and that the assumptions of the previous theorem are satisfied. Then the flows $\Phi^{\mathcal{F}}$ and $\Phi^{\mathcal{S}}$ are analytic from (-T,T) to $C^{\lambda+1,r}(\mathcal{F}_0)$ and $C^{\lambda+1,r}(\mathcal{S}_0)$.

Difficulties

$$\frac{\partial u}{\partial t} + (u \cdot \nabla)u + \nabla p = 0, \quad x \in \mathcal{F}(t), \ t \in (-T, T), \ (14)$$

$$\operatorname{div} u = 0 \quad x \in \mathcal{F}(t), \ t \in (-T, T), \ (15)$$

$$u \cdot n = 0 \quad x \in \partial \Omega, \ t \in (-T, T), \ (16)$$

$$u \cdot n = \mathbf{v} \cdot \mathbf{n} \quad x \in \partial \mathcal{S}(t), \ t \in (-T, T), \ (17)$$

$$m\ell'(t) = \int_{\partial S(t)} pn \ d\Gamma \qquad t \in (-T, T),$$
 (18)
 $(\mathcal{J}r)'(t) = \int_{\partial S(t)} (x - x_B) \wedge pn \ d\Gamma \qquad t \in (-T, T).$ (19)

Tool 1*: Regularity Lemma in moving domain

Lemma

Assume that $\partial \mathcal{F}(0)$ is homeomorph to the 2D sphere. $\exists c, C > 0$ such that for any $C^{\lambda+1,r}$ -diffeomorphism

$$\eta: \mathcal{F}(0) \to \mathcal{G} := \eta(\mathcal{F}(0)) \text{ satisfying}$$

$$\|\eta - Id\|_{C^{\lambda+1,r}} < c, \tag{20}$$

one has the following: if

$$\operatorname{div} u \in C^{\lambda,r}(\mathcal{G}), \quad \operatorname{curl} u \in C^{\lambda,r}(\mathcal{G}), \quad u \cdot n \in C^{\lambda+1,r}(\partial \mathcal{G}).$$

then $u \in C^{\lambda+1,r}(\mathcal{G})$ and

$$||u||_{C^{\lambda+1,r}(\mathcal{G})} \leqslant C \left(||\operatorname{div} u||_{C^{\lambda,r}(\mathcal{G})} + ||\operatorname{curl} u||_{C^{\lambda,r}(\mathcal{G})} + ||u \cdot n||_{C^{\lambda+1,r}(\partial \mathcal{G})} \right)$$

Splitting the pressure

We have

$$p = p_1((u, \ell, r), (u, \ell, r)) + p_2\left(\begin{bmatrix} \ell \\ r \end{bmatrix}'\right)$$

so that

$$\mathcal{M}(t) \begin{bmatrix} \ell \\ r \end{bmatrix}' = F((u,\ell,r),(u,\ell,r)).$$

Consequently

$$\left\| \begin{bmatrix} \ell \\ r \end{bmatrix}' \right\| \le C (\|r\| + \|\ell\| + \|u\|)^2.$$

The Fluid

$$\operatorname{div} Du = \operatorname{tr} \left\{ \nabla u \cdot \nabla u \right\} \quad \text{in } \mathcal{F}(t),$$

$$\operatorname{curl} Du = -\operatorname{curl} \nabla p = 0 \quad \text{in } \mathcal{F}(t),$$

$$n \cdot Du = -\nabla^2 \rho \{u, u\} \quad \text{on } \partial \Omega,$$

$$n \cdot Du = n \cdot Dv - \nabla^2 \rho \{u - v, u - v\}$$

$$+ n \cdot (r \wedge (u - v)) \quad \text{on } \partial \mathcal{S}(t),$$

where

$$v(t,x) = r(t) \wedge (x - x_B(t)) + \ell(t)$$

First iteration

We have

$$Dv(t) = r'(t) \wedge (x - x_B(t)) + r(t) \wedge (u(t) - \ell(t)) + \ell'(t).$$

Using the Regularity Lemma (Tool 1^*):

$$||Du|| \le C (||r|| + ||\ell|| + ||u||)^2 + C (||r'|| + ||\ell'||),$$

and from the first step,

$$||Du|| \le C (||r|| + ||\ell|| + ||u||)^2.$$

Induction

We have proved

$$||Du|| + ||\ell'|| + ||r'|| \le C (||r|| + ||\ell|| + ||u||)^2.$$

By induction and counting again the number of terms appearing at each iteration, we obtain for all k

$$||D^{k}u|| + ||\ell^{(k)}|| + ||r^{(k)}|| \le \frac{k!L^{k}}{(k+1)^{2}} (||r|| + ||\ell|| + ||u||)^{k+1}.$$
 (21)

Perspectives

▶ Is it possible to generalize the result for $\mathcal{F}(t)$ N-torus?

▶ What happen for non classical solutions?

▶ Pressure?

$$||D^k u|| + |\nabla D^{k-1} p| \le \frac{k! L^k}{(k+1)^2} ||u||^{k+1}.$$

and $D^k u \sim \nabla D^{k-1} p \dots$

Thanks

- ▶ Olivier Glass (Paris–Dauphine University)
- ▶ Franck Sueur (Paris VI University)