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The Euler equations in R?

E%—(u-V)u—i—Vp

divu

U|t:0



Holder spaces

Assume
re (0,1).

u € CO(Q) if u € C°(Q), u bounded in © and

lu(z) —u(y)| < Clz —y["



Holder spaces

Assume
re (0,1).

u € CO(Q) if u € C°(Q), u bounded in © and
u(z) —u(y)] < Clo -yl

Assume
AeN.

u € CM(Q) if for all « € N3, |a| < A,

90185203 u € CO(9).



Well-posedness

AEN, re(01).

Theorem
Assume
ug € C)‘-H’T(Rg), divug = 0,

Then there exist T > 0 and a unique solution
u € Cu((=T,T), CA1"(R?))

of (1)~(3).



The flow of the fluid

The flow ® is defined by

0®(t,z) = u(t, ®(t, x)),
®(0,2) =z

for (t,z) € (-T,T) x R3.



The flow of the fluid

The flow ® is defined by

0®(t,z) = u(t, ®(t, x)),
¢(0,z) ==z

for (t,x) € (=T, T) x R3.
The material derivative of f is defined by

Df =8f +u-Vf.

We have p
%f(a (I)(-,I)) = Df(v (I)('v 1‘))



Analyticity of the trajectories

Theorem
Under the hypotheses of Theorem 1, the flow ® is analytic from
(=T,T) to Id +CM1r(R3).

More precisely, for all k € N,

| D*ul| gatrr < RILF (J|ul|grer)* L



Idea of the proof (1/3)
First: (1) can be written as
Du+Vp=0.
Taking the divergence:

—Ap =divDu = Z 0;0;(uiu;j).
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First: (1) can be written as
Du+Vp=0.
Taking the divergence:

—Ap =divDu = Z 0;0;(uiu;j).

1]

Thus, by setting

we have

V=Y [ OOVE) @~ y)(us(e) — i) 5(0) — 050



Idea of the proof (2/3)

Therefore
D(Vp) = Z / (0:0;VE) (z—y)(Dui(x) — Dui(y))(uj(z)—u;(y))
+ Z / (8:0,VE) (z — y)(ui(z) — wi(y))(Duj(z) — Du;(y))

) / (8:0;00V E) (z—y) (us(2)—us (1)) (w5 (2) 215 (4)) (s () — i ().

2,3,k



Idea of the proof (3/3)

And by induction,

D*(Vp) =
> dea ¥ o
s+|a|=k+2 vi,...,vs€{1,2,3}
with

ja*(s, )| <

L0y, VExg(DYuy,

k!

al(s +2)!

. 'aDasuVs)v















The Euler equations in a bounded domain

The Euler equations in a bounded domain (without rigid body):

% VuiTp = 0, B(TTx0, @
diVU = 0 iIl (_Tu T) X Q7 (5)
u-n = 0 on (—=T,T) x 0. (6)
Assume

AeN, re(0,1)

and
u € Cu((—=T,T), CMLT(Q)).



Tool 1: Regularity Lemma (1/2)

Tangential harmonic vector fields:
divu =0, curlu=0, w-n=0.

We denote by H the finite dimensional space of tangential
harmonic vector fields.



Tool 1: Regularity Lemma (1/2)

Tangential harmonic vector fields:
divu =0, curlu=0, u-n=0.

We denote by H the finite dimensional space of tangential
harmonic vector fields.

Notation:

=1 llear@ and | - log = || - llcar a0y
|- [ =1 ller+rr () and || - lloa = || - ller+1.r a0



Tool 1: Regularity Lemma (2/2)

Lemma
For any u € CM(Q) such that

divu € CM(Q), curlu € CM(Q), u-ne CMI(HQ),



Tool 1: Regularity Lemma (2/2)

Lemma
For any u € CM(Q) such that

divu € CM(Q), curlu € CM(Q), wu-ne CAML(HQ),

one has u € C*T17(Q) and there exists a constant ¢, depending
only on Q such that

lull < e (divul + [ curluf + |lu-n]| + [Tul), (7)

where 11 is the orthogonal projection L?(£;R3) — H.



Tool 2: Commutation rules

Df=0f+u-Vf,

Commutation rules:

D(fg) = (Df)g + f(Dy),
VDf - DVf = Vu- V],
divDf — Ddiv f = tr {Vu -V},
curl Df — Dcurl f = as{Vu-Vf},
n-Df —D(n-f)=—-V?p{u, f}, wheren = Vp.



Tools 1 & 2 applied to the Euler equations

First

div Du = tr {Vu - Vu},
curl Du= —curl Vp = 0,
n-Du = —V?p{u,u},
IIDu = —-IIVp = 0.



Tools 1 & 2 applied to the Euler equations

First

div Du = tr {Vu - Vu},

curl Du = —curl Vp = 0,

n-Du = —V?p{u,u},
IIDu = —-IIVp = 0.
Second
Du € Cyu((—=T,T),CMEr(Q)

and

|Dul| < ¢ (|div Du| + | curl Du| + || Du - n||gq + [T1Du|)
< Clluf®.



Kato’s result

By using a proof by induction, Kato showed that if 02 is
smooth, then for all £ € N,

D*u e CW((-T,T),CM(Q))

and
|1 D%ul| < Crlluf*.

To show the analyticity, we need to estimate Cj: we have to
count the number of terms appearing when applying D at each
time.



Idea of the proof for the Euler equations (1/3)
For k € N*, we have in )

div Dy = tr {Fk[u]}

where

FFu) = ch(s,a) VD - ...-VD%u,
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Idea of the proof for the Euler equations (1/3)
For k € N*, we have in )
div Dy = tr {Fk [u]}
where
FFu) = Z ck(s,a) VD - ... - VD%,

where the sum is over

2<s<k+1land a:=(ay,...,as) N/ |a|=k+1—s.

Lemma
In the above formula, we have ci(s, ) € Z and
k!

’Ck(S, CY)’ < J



Idea of the proof for the Euler equations (2/3)
Assume that for all j <k —1,
gL
(G +1)?

1D7ul| < [

[[ul
Then,

div Dku‘ < ‘Z cx(s,0) VD% u - ...- VD%




Idea of the proof for the Euler equations (2/3)
Assume that for all j <k —1,

. LI )
| DIl € == [l
G+1
Then,
‘dikau‘ < ‘ch(s,a)VDo‘lu.....VDasu
k1

s
< k!Lk”qu—H Z Ll—s Z H(l—:aZ)Q

5=2 a/ la|=k+1—s i=1



Idea of the proof for the Euler equations (2/3)
Assume that for all j <k —1,

. gL )
[1D7ul| € ==z llull’*™
(G+1)
Then,
‘dikau‘ < ‘ch(s,a) VD% ... VD%

k+1 s 1

< |Lk k+1 Ll—s s

RILE > avar

5=2 af la|l=k+1—s i=1
k+1 905

< k'Lk k+1 Llfs

™ > (k—s+2)2

s=2



Idea of the proof for the Euler equations (2/3)
Assume that for all j <k —1,

. gL )
[1D7u| < ==z lul’**
(J+1)
Then,
‘dikau‘ < ‘ch(s,a)VDalu.....VDasu
k+1 s 1
< |Lk k+1 Ll—s
M 2 2 Moo
5=2 af la|l=k+1—s i=1
k+1 208
< k'Lk k+1 Llfsi
Il Z:; (k—s+2)2
klLF
< I)— k+1’
W) G Il
with

(L) -0 as L — oo.



Idea of the proof for the Euler equations (3/3)

Proceeding similarly for
curl Du, n-DFu, TID"u,
and using the Regularity Lemma, we get that for L big enough

k!Lk |k+1.

| D¥u| + |[VD*p| < WHU\






Description of a fluid-structure system

Position of the center of mass of the structure: zp

Orientation of the structure: )
S(t) = Q(t)S(0) + x5 ().
z = Q(t)y + (1),
Velocity of the rigid body: v

v(t,z) =r(t) A (xz—xp(t)) + £(t),
(=ap, Qy=rxQy.



Description of a fluid-structure system

Mass of the structure: m

Moment of inertia tensor of the structure: J

Newton’s Law:
ml'(t) = Ffuid :/ pn dl,
aS(t)

(JT)/(t) = Tfluid = / (x —xzp) Apn dl.
S (t)

Ft) =\ S().



Description of a fluid-structure system

s +(u-V)u+Vp = 0, reF#), te(-T,7), (8)
divu = 0 xe F), te(-T,7T), (9)

0 xed, te (-T,T), (10)

ven x € 0S(t), t e (=T,T)11)

u-n =

u-n =

ml(t) = /as(t) pn dl te (-T,7), (12)

(Jr)(t) = /as(t)(x —xp) Apn dl te (=T,7). (13)



Well-posedness studies on the previous system

D’Alembert, Kelvin, Kirchhoff (~ 1870, potential case)
Ortega, Rosier, Takahashi
Rosier, Rosier

Houot, Munnier (potential case)

vV vVv.v. v Yy

Houot, Tucsnak



The well-posedness result

Theorem (Houot—Tucsnak)

Assume ug in CMUT(Fo) with A in N and r € (0, 1) satisfying
ug-n =0, forx € 9Q and (ug — vo) -n =0 for x € 0S8y, with
v := Lo+ 1o A (T — ).

Then there exists T > 0 such that the problem (8)-(13) admits
a unique solution

(xp,ru) € C}([-T,T)) x CH([-T,T)) x L®((=T,T), C’L"(F(t))).

Moreover u € Cy([~T,T]; CA17(F (1)) and
u e C([-T,T); CAMY' (F(t))), for ' € (0,7).



Analyticity of the trajectories

Theorem

Let A € N. Assume that the boundaries 92 and 0Sy are analytic

and that the assumptions of the previous theorem are satisfied.
Then the flows ® and ®° are analytic from (=T, T) to
C/\Jrl,r(j:'o) and C)\+1,r(50).



Difficulties

o T VutVp = 0, zeF() te(-T.T), (14)

dive = 0 x € F(t), te (-T,T), (15)

u-n = 0 xed, te (-T,T), (16)

u-n = v-n x€dISt), te(-T,T),(17)

ml'(t) = / pndl  te(=T,T), (18)
a8 (1)

(Jr)(t) = /(38(t)(1: —xp) Apn dl te (=T,7). (19)



Tool 1*: Regularity Lemma in moving domain

Lemma

Assume that OF (0) is homeomorph to the 2D sphere. 3¢,C > 0
such that for any CALT-diffeomorphism

n:F(0) — G :=n(F(0)) satisfying

ln — Id||crs1r < c, (20)
one has the following: if
divu € CM(G), curlu € CM(G), wu-ne CML(HG).

then u € C*17(G) and

||U”C>\+l,r(g) < C (H div UHCAJ-(Q) + H CurluHcm-(g) + Hu : TLHC}H»],'V'(@Q))



Splitting the pressure

We have )
l
p = pa((w,6,7), (u,6,1)) + 2 (H )
so that
.—E /
M(t) r] = F((u,l,7), (u,l,1)).
Consequently

<O (Il + el + llull)® -




The Fluid

div Du = tr{Vu - Vu} in F(t),
curl Du = —curl Vp =0 in F(¢),
n-Du=—V?p{u,u} on 0Q,
n-Du=n-Dv—Vp{u—v,u—uv}
+n-(rA(u—v)) ondS(t),

where
v(t,x) =r(t) A (z—xp(t)) + £(t)



First iteration

We have
Du(t) = r'(t) A (z — zp(t) + r(t) A (u(t) — £(t) + £(2).
Using the Regularity Lemma (Tool 1*):
1Dull < C (7l + 1161+ lul)® + € (1711 + 1€1)
and from the first step,

1Dull < C (IIrll + lell + [lul)?



Induction

We have proved
IDull + 1€ + [Ill < C (el + el + llull)?-

By induction and counting again the number of terms
appearing at each iteration, we obtain for all k

, k!LF
| D*u)| + (1€ + [|r®)]| < 5 (]l =+ €]l + [lull)

&+1)

k+1



Perspectives

» Is it possible to generalize the result for F(¢) N-torus?
» What happen for non classical solutions?

» Pressure?

k!Lk |k+1.

| D¥ul| + |[VD*1p| < WHW

and DFu ~ VDF1p. ..
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