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.
Few words about local diffusion problems

ug — Au =0 inR% x (0,00),
u(0)

= Uug.

For any ug € L' (R) the solution u € C([0,00), L'(R%)) is given by:

where " |2

H(t,z) = (4mt)¥? exp(— o

)
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Few words about local diffusion problems

ug — Au =0 inR% x (0,00),
u(0)

= uy.

For any ug € L' (R) the solution u € C([0,00), L'(R%)) is given by:

where " |2

H(t,z) = (4mt)¥? exp(— 475)

Smoothing effect
u € C%((0,00), RY)
Decay of solutions, 1 < p < g < oc:

d
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Refined asymptotics

Zuazua& Duoandikoetxea, CRAS '92
For all p € LP(RY, 1 + |z|*)

u(t, ) ~ Y (_304 (/uo(x)madx) DYH(t,") in LI(RY)

o<k

for some p, q, k
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.
A linear nonlocal problem

@ E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal
diffusion equations, J. Math. Pures Appl., 86, 271-291, (2006).

wp(x,t) =J*xu—u(z,t) = [paJ( Yu(y,t) dy — u(x,t),
= Jpa J(& = y)(u(y,t) — u(z,t))dy
u(x,0) = wup(x),

where J : RV — R be a nonnegative, radial function with [pn J(r)dr =1
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Some applications

P. Fife. Some nonclassical trends in parabolic and parabolic-like
evolutions. Trends in nonlinear analysis, 153-191, Springer, Berlin, 2003.

e u(x,t) - the density of a single population at the point x at time ¢
e J(z — y) - the probability distribution of jumping from y to x
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evolutions. Trends in nonlinear analysis, 153-191, Springer, Berlin, 2003.

e u(x,t) - the density of a single population at the point x at time ¢
e J(z — y) - the probability distribution of jumping from y to x
Then
o (J*u) = Jpa J(y — x)u(y,t) dy is the rate at which individuals are

arriving to T from all other places
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.
Some applications

P. Fife. Some nonclassical trends in parabolic and parabolic-like
evolutions. Trends in nonlinear analysis, 153-191, Springer, Berlin, 2003.

e u(x,t) - the density of a single population at the point x at time ¢
e J(z — y) - the probability distribution of jumping from y to x
Then

o (J*u) = Jpa J(y — @)u(y,t)dy is the rate at which individuals are
arriving to T from all other places and —u(z,t) fRd u(z,t) dy
is the rate at which they are leaving x to travel to all other S|tes
Thus in the absence of external or internal sources, the density u satisfies
the nonlocal equation (4).
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.
Heat equation and nonlocal diffusion
o Similarities

e bounded stationary solutions are constant
e a maximum principle holds for both of them
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.
Heat equation and nonlocal diffusion

@ Similarities
e bounded stationary solutions are constant
e a maximum principle holds for both of them

e Difference
e there is no regularizing effect in general
The fundamental solution can be decomposed as

w(z,t) = e tdo(z) + v(z, t), (1)
with v(z,t) smooth

S(t)p = ety 4+ v * p = smooth as initial data 4+ smooth part

= no smoothing effect
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-
Asymptotic Behaviour

o If J(&) =1— AJ¢|* + 0(J€]*),& ~ 0,1 < o < 2, the asymptotic
behavior is the same as the one for solutions of the evolution given by the
a/2 fractional power of the laplacian:

lim % max lu(z,t) — v(z,t)| =0,
t——+o0 x

where v is the solution of v(x,t) = —A(—A)*/2u(x,t) with initial
condition v(x,0) = ug(x).
e The asymptotic profile is given by

lim max td/au(ytl/o‘,t) — (/ UO)GA(?J)‘ =0,
t—+oo y R4

where G 4(y) satisfies G 4(¢) = e~ A"
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.
Other results on the linear problem

[4 I.L. Ignat and J.D. Rossi, Refined asymptotic expansions for nonlocal
diffusion equations, Journal of Evolution Equations 2008.

[@ I.L. Ignat and J.D. Rossi, Asymptotic behaviour for a nonlocal
diffusion equation on a lattice, ZAMP 2008.
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.
The classical convection-diffusion equation

Fora € R% and ¢ > 1

ug — Au = a - V(Jul7u)in (0,00) x RY
u(0) = ug

e Asymptotic Behaviour by using

d 4(p—1)
- Pl. — 2\ ) P/2Y|2
it Jea |u|Pdz » /Rd |V (JulP’*)|*dz.

@ M. Schonbek, Uniform decay rates for parabolic conservation laws,
Nonlinear Anal., 10(9), 943-956, (1986).

[4 M. Escobedo and E. Zuazua, Large time behavior for
convection-diffusion equations in RN, J. Funct. Anal., 100(1), &
119-161, (1991).
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Methods to obtain asymptotics

e M. Schonbek — Fourier Splitting Method

e M. Escobedo and E. Zuazua — Energy method

For d > 3 using the Sobolev inequality [|v]|24/(4—2) < C(d)[|Vvl|2 with
v = |u|P/? and the contraction of the L!-norm of the solutions we get

d _ _
a1z + e < g

L
”u()Hlp/ (p—1)

.. etc...
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N —
Nonlocal Convection-Diffusion

o] L.l Ignat and J.D. Rossi, A nonlocal convection-diffusion equation, J.
Funct. Anal., 251, 399-437, (2007).

ug(t, ) = (J xu —u) (t,x) + (G * (f(u)) — f(u)) (t,z), t>0, xR
u(0,z) = up(z), r € R%
@ J and G are nonnegatives and verify [, J(z)dz = [p. G(z)dr = 1.
o J radially symmetric

@ (G not symmetric, then the individuals have greater probability of
jumping in one direction than in others, provoking a convective effect

o f(u)=|u|9'u with ¢ > 1
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.
Well-posedness

Theorem

For any ug € L'(RY) N L>(R?) there exists a unique global solution
u € C([0,00); L' (R?)) N L=([0, 00); RY).

If w and v are solutions of (11) corresponding to initial data
ug, vp € LY(RY) N L>®(R?) respectively, then the following contraction
property

[u(t) = v(@®)ll L2 wey < lluo = voll L1 (ray

holds for any t > 0. In addition,

[w(®)]| Lo (ray < o]l oo (ra)-

v
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|
Why not 1y € L'(R%)?

For the local problem [|[v(t)||loo < C|lvo|[1t=%? for any vg € L' N L,
so for any ug € L' we can choose Ug,e € L' N L with Ug,e — Ug IN
L' and we can pass to the limit.

@ In the nonlocal model, we cannot prove such type of inequality
independently of the L°-norm of the initial data.

In the one-dimensional case with f(u) = |u[?"lu, 1 < g < 2 we have

1
t2lu(t)ll Lo
sup sup —————— =
weLl(R) te0,1]  lIvollpi(m)

@ The L' — L™ regularizing effect is not available for the linear
equation wy = J xw — w
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Long time behaviour of the solutions

Theorem

Let f = |u|%‘u with ¢ > 1 and ug € L*(R?) N L>(R?). Then, for every
p € [1,00) the solution u of equation (11) verifies

dr_1
lu()l| Lo ey < Cluollr @y l1uoll oo meay) 872877, 2)

v

Proof 1. Adapted Fourier Splitting method - JFA 2007

Liviu Ignat (IMAR ) A nonlocal equation Benasque, August 2009 14 / 34



-
Why not an energy method 7

If we want to use energy estimates to get decay rates (for example in
L2(]Rd)), we arrive easily to

lw(t,z)|? de = - / / (z —y)(w(t,z) —w(t,y))? dedy
R4 R4 JRRA

However, we can not go further since an inequality of the form

( - |U(:c)|1’dx>f’ < C/Rd /Rd J(x — y)(u(z) — uly))? dz dy

is not available for p > 2.

/ / J(& — y) () — u(y))? do dy = / (1 - J(©)laE)P
Rd JRE R4
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.
A 1/2-energy method :)

Rossi J. & I.L., JMPA 2009

= z—y)(w(x)—w 2dedy = 2de.
<avw>= [ [ Je-y@-uw)dd = [ a-Fe)a©Pd

Lemma
Let bed >3, e € (0,1) and a(e) € (0,1) given by

. (1—e)d
=T —a—)

Then there exists a constant C = C(¢,0) such that

lulfem < Clulfinga < Au,u>® + < Auu>.  (3)
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As a consequence
HUH?}(R) S fe(< Au,u >)

and
fe_l(HuH%?(R)) << Au,u > .
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As a consequence
[ullZom S fe(< Au,u>)

and
fe_l(HuH%?(R)) << Au,u > .

Using that
d
Slu@IP+ < Au,u>< 0

we find that ¥ (t) = ||u(t)
inequality

HL2 (RY) satisfies the following differential

Ve + wl/a(E)X{wg} + ¥Xp>1y <0
and we get the right L!T¢(R?) — L?(R?) decay.
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.
A short proof

For any function u € L?(R?) we define its projections on the low,
respectively high frequencies:

V= (Lgosmy® s © = (Lguzmy®)
Orthogonality gives us
HUHQL2(R4) = ||”H%2(Rd) + HWH%%Rd)-
Fourier multipliers
V]l Loy < C(p, d)||ull Loy (4)
forany 1 < p < o0.
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The assumptions on J give us

R £2
< Au,u > :/ (1 — J(€))a2(£)de > / = a?(§)dE + 6 @ (€)d¢
Rd El<r 2

€1>R
>e(6) (Hwn;(Rd) + lleiz(Rd))

>e(3) (0] gy + 10l gy )-
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The low frequency projection, v, satisfies:

2 1—afe) 2 2 5
”U”]ﬂ(Rd = ||7’||L1+e (R4) v HL?* (R4) ||“||L1+e Rd)“ ||L2* (R) (5)

(1=ald) Au,u @&

< uleg)

Thus

lulBe gty = oWzt + 0l 22gey

S H 1 06(6))

HL1+€ &) < Au,u > + < Au,u >

Using the differential inequality

d
iHu(t)HQLQ(Rd)—i— < Au,u><0

we now can get the L'*¢ — L? decay property.
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-
Variants of the energy method

@ For the linear part we can remove the convolution property of the
function J

we(t, ) = /R J(z,y)(ult,y) — ult, 2))dy

under suitable properties of J: symmetric, etc...

@ An energy method for the nonlocal p-Laplacian:
< Aty u >= [0 I(w,y)[u(z) — u(y)Pdady.
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-
A theorem without Fourier analysis

Let p € [1,00) and J(-,-) : R? x R? be a symmetric function satisfying
HJ1) There exist positive constant 0 < C,Cy < oo such that

) < / J(z,y)dy < Cs. (6)
Rd

HJ2) There exist positive constants c;, c2 and a function a € Cl(Rd,Rd)
satisfying

sup |Va(z)| < oo (7)
zER4
such that the set
B, ={yeR?: |y —a(z)| < c2} (8)

verifies

B, Cc{yeR%: J(z,y) > c1}.
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For any function u € LP(R%) there exist two functions v and w such that
u=v+w and

Vol g + 0l < COD) [ [ T alu(o) )P dody.
Moreover, if u € L9(R%) with ¢ € [1, 00] then the function v satisfies

vl Laray < C(J, p)|wll La(may
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.
Proof of the case p = 2.

Choose 1) is a smooth function supported in B, (0) with mass one and

va) = [ lae) - p)uls)dy,

Observe that

w(@) = (@) = o(@) = [ dlale) = )(u(r) — u(z))dy

and
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Using Holder inequality we obtain the desired result:
w(z)? = (/ d(a(z) — y)luly) — u(z)|dy)?
ly—a(z)|<ca
< Wl | u(y) - u(e) Pdy.
ly—a(z)|<c2

a

nd
[ w@P < 9l [, [ [uly) — u(a)|Pdyda
Re R4 J|y—a(z)|<c2
S Wl [, [ @ u)luw) - ue)Pdyda,
R4 JRY

Similar results hold for v provided Va € L>®(RY).
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A corollary

Let J(-,-) : R x R satisfying HJ and d > 3. There exist two positive
constants C1 = C1(J) and Cy = Co(J) such that for any
u € L'(RY) N L2(R%) the following holds:

a2y < Crllul 3 o™ (Asu, u)*® + CoAou,u), — (9)

where «(2) satisfies:
1 a2 1-—a2)

Z = . 1

2 2% + 1 (10)

Liviu Ignat (IMAR ) A nonlocal equation Benasque, August 2009 26 / 34



-
A corollary

Let J(-,-) : R x R satisfying HJ and d > 3. There exist two positive
constants C1 = C1(J) and Cy = Co(J) such that for any
u € L'(RY) N L2(R%) the following holds:

Hu”%ﬂ(Rd) <Cq ||u||i(11(7R3)(2)) <A2u, u>a(2) + Cs <A2u’ u>’ (9)

where «(2) satisfies:
1 a2 1-—a2)
== . 1
2 2% + 1 (10)

Using now that

d
— u2—|—<A2u,u ><0
dt Rd

we obtan the decay of u in the L?-norm.
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-
Another question: optimality of the decay?

There are cases where the decay is exponential.

—rd
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-
Another question: optimality of the decay?

There are cases where the decay is exponential.

Lemma

Let a : R — R be a diffeomorfism. Assume that
1
Jey)>5 on ly—a@)] <1,

where the function a satisfies

sup laz| <1 or inflaz| >1
R R

then there exists a positive constant C such that

(Agu,u) > Cllul|Z2 gy

v

W
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Let us consider ¥ : R — R a smooth positive function, supported in
(=1,1). Then

2l Az ) 2 [ 0l = ala))(ula) — u(w)Pdedy

> 1-0) [ 00— a(o)) (12(0) - £y

~(1-0) [ @@ [ vy [ v - aw)dy)do

- (¥ *[(aal) ()
— T/ﬂ@vp(y)dy/RUQ(x)(O— leb(y)d?j )dl’.

§ %
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-
Some about eigenvalues

For any interval I, = (—r,7) we consider

e e lr @ y)(a(z) — aly)) dedy
M) _uelL%EIT) — fIT u?(x)dx
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-
Some about eigenvalues

For any interval I, = (—r,7) we consider

e e lr @ y)(a(z) — aly)) dedy
M) _uelL%EIT) — fIT u?(x)dx

Q: When
lim A;(Z,) > 07

r—00
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-
Some about eigenvalues

For any interval I, = (—r,7) we consider

e e lr @ y)(a(z) — aly)) dedy
M) _uelL%EIT) — fIT u?(x)dx

Q: When
lim A;(Z,) > 07

r—00

In the case J(x,y) = J(z — y), Rossi and Garcia-Melian proved that

1
(1) ~ T e
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-
Some about eigenvalues

In the particular case

J(2,y) = Py — a(x)) + (z — aly)),
1) compactly supported, we conjecture that

lim )\1(17») >0

T—00

iff the set {z : az(x) =1} is ...
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The following two problems are related

S f fR fR z))(u(r) — U(y))zdl”dy
f]R (z)?

and

by choosing ©. — dg.
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For the problem

Je(u(z) — u(a())?

12f fR u(x)2
we know
1. inf = 0 if a(I) = I for some bounded interval.
2. inf =0 if a(zo) = o with az(zg) =1
3. inf > 0 if a(z) = mz +n with m # 1
4. inf=0ifa(z)=z+1
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For the problem

we know

1. inf = 0 if a(1)

2. inf =0 if a(zo) = o with az(zg) =1

3. inf > 0 if a(z) = mz +n with m # 1

4. inf=0ifa(z)=z+1

The infimum could be related with the orbit (A. Galatean)

= ] for some bounded interval.

{a™(z) :n € Z}
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.
Some Open Problems

e Convection-diffusion. Until now we treat the case ¢ > 1+ 1/d, case
when the diffusion play the important role. What it happens when
q < 14 1/d? Is there something similar to the local case, where the
convection part gives the asymptotic behaviour (Escobedo, Vazquez,
Zuazua, ARMA 1993)

@ The optimality of the decay in the non-symmetric case. The case
a(x) = 2z enters in the two lemmas, but a(x) = 22 sgn(x) does not
entry in any of them.

@ Discrete models. Work in progress with A. Galatean (Bucharest)

@ Analysis of the long time behaviour of A\;(Bpg) when a(x) is close to z
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End of the talk

Julio Rossi's web page http://mate.dm.uba.ar/"jrossi/
My web page http://sites.google.com/site/liviuignat/

Supported by Romanian reintegration grant PN-II-Rp-3-2007 of CNCSIS,
Romania.
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