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What is Non-Gaussianity ?

I Gaussian CMB Fluctuations
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Happily most theories of inflation predict that the primordial
cosmological perturbations should be Gaussian to a very high
precision. Therefore after the data have beeen properly cleaned of all
foreground and instrumental contamination, what is left should be
perfectly Gaussian up to statistical noise.

I Non-Gaussian CMB fluctuations = Everything else



Problems in searching for non-Gaussianity

I Too many potential patterns of non-Gaussianity can be
tested. Theoretical plausibility must be used in some way
to limit the set of questions posed. 370 distinct questions
neeed for 3σ result, 1.7 million for 5σ,....)

I Techniques used to process data (eg map making,
foreground removal) are optimized for analyzing the
Gaussian signal and consequently are susceptible to
introduce spurious non-Gaussian signals.



Local type bispectral non-Gaussianity

Calculation of bispectrum predicted from single-field inflation
(Maldacena, 2003 ; Acquaviva et al. 2003) has sparked an
intense interested in non-Gaussianity from inflation.
The “local” ansatz

Φ(x) = ΦG(x) + fNL

[
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,

is an reasonable (although not very good) approximation for
single-field inflation and a better approximation for many
multi-field models able to give bigger prediction for fNL, although
with new physics completely different shapes of bispectral
anisotropy are possible as well.



fNL from WMAP

I −10 < f local
NL < 74(95% confidence) (Komatsu et al., WMAP

7-year official analysis)

I 27 < f local
NL < 147(95% confidence) (Yadav & Wandelt,

independent analysis of WMAP 3-year maps)

I Many other independent analyses with broadly consistent
but not identical conclusions



Defining the CMB bispectrum (without 3j symbols)
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Triangle Inequality
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We define a family of maximally filtered maps
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and the “reduced bispectrum” is defined as

b`1`2`3 =

Z
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Intuitively the question is : does the product of two maps allow us the make any
predictions regarding a third map ?



Bispectral estimators

We define the inner product on the space of possible bispectra
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Here
Var ∝ (c`1 + n`1)(c`2 + n`2)(c`3 + n`3)

Here n` is the noise from the experiment that dominates at
large ` and serves as a cut-off.
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Challenge is to weight the triplets so as to minimize the noise.



Qualitative nature of signal (I)

∆`(k) ≡ (CMB transfer function)

[as computed by CMBFAST & CAMB for example]. Recall that the power spectrum is
given by
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and similarly the CMB bispectrum is given by
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We may simplify (rather grossly) by assuming the Sachs-Wolfe formula
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approximately valid for low-`.



Qualitative nature of signal (II)

We obtain b`1`2`3 ∼
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Komatsu, Spergel, Wandelt (2005) Estimator

An efficient implementation of the inverse variance weighted
linear bispectral estimator :

S = 4π
∫

r2dr
∫

dΩ̂ A(r , Ω̂)B2(r , Ω̂)

where A(r , Ω̂) is the CMB transfer function and B(r , Ω̂) is the
Wiener filter estimator for the primordial gauge-invariant
potential Φ.

Improvements for cut-sky and non-uniform instrument noise
due to Creminelli, Smith & Zaldarriaga.



Evaluation of the performance of non-ideal estimators
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There is an abundant literature emphasizing “optimal
estimators”, but it is a dangerous business to rely on a single
number without asking more questions and trying to explain the
result away.



Performance of binned bispectral estimator

Number bins Overlap (cos2 θ)
4 0.608
8 0.846
16 0.925
32 0.974
64 0.993

TAB.: Quality of estimator as a function of number of bins for
`max = 2000.



Dealing with bispectral contaminants
bobs = fNLbth + bcont + bnoise where the three subscripts `1, `2, `3 are implied.
We characterize the contaminant so that
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Plotting the predicted bispectrum
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Approximations to the bispectrum :

Bapprox ,I ∝ `1−2`2
−2 + `2

−2`3
−2 + `2

−2`1
−2

Bapprox ,II ∝ c`1c`3 + c`2c`1 + c`3c`2
Quantities to plot (for fNL = 1) :

BI = B/Bapprox ,I , BII = B/Bapprox ,II



FIG.: We plot the reduced CMB TTT bispectrum rendered
dimensionless in a scale-free way according to the function B`1`2`3 on
12 sections of constant (`1 + `2 + `3)/3 corresponding to 200, 300,
400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300. The color
scale (explained in the text) ranges from −14.0 to +14.0 and values
outside of this range are clipped.



FIG.: Same as in Fig. 1 except that we instead plot B̄`1`2`3 , normalized
with the actual CMB temperature power spectrum rather than the
scale free one. Here the color scale (same as above) ranges from
−3.0 to +3.0.



FIG.: A sequence of isosurfaces for the function B`1`2`3 is shown for
B = -10, -4, -2. [Additional and higher resolution isosurfaces may be
found at the website indicated in the text.]



FIG.: Continuation of previous figure, with isosurfaces at B = 2, 4,
and 10.



Where does the information lie ?
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Decrease in χ2 as `min is raised
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Information as a function of triangle shape



Seeing the acoustic oscillations in the 3-point function
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Detectibility of the various features

Feature Center (∆`)left (∆`)right (S/N)2

1st peak 210 100 170 0.43
1st trough 400 130 130 0.69
2nd peak 530 100 120 0.19
2nd trough 660 100 120 0.27
3rd peak 810 130 160 0.70
3rd trough 1010 140 120 1.08
4th peak 1140 110 120 0.34
4th trough 1300 130 120 0.53
Drop A 910 580 1770 11.3
Drop B 1550 1200 760 21.9

assuming fNL = 50



Future prospects :

From Yadav & Wandelt, 2010
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Conclusions

I Searching for non-zero f local
NL (and also other patterns of

primordial bispectral non-Gaussianity) offers an exciting
test of inflation and new revealing clues concerning the
nature of the primordial perturbations.

I If a statistically significant signal is in fact found, we will
want to divide the data and test the shape. The acoustic
oscillations suggest one way to do this.

I fNL searches in the CMB are largely limited by cosmic
variance. We can do better than Planck with full-sky
surveys at higher resolution and including by probing
polarization at the highest `, but the damping tail and
predominance of non-primordial components at very large
` (esp., SZ and point sources) set a limit to how much
improvement can be anticipated.


