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Motivation
Understand galaxy biasing, i.e. how galaxies

are distributed relative to the matter
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Outline
Local bias vs. density peaks

Clustering of density peaks in a Gaussian random field

Bias and the baryon acoustic oscillation (BAO)
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Characterizing galaxy clustering
The full hierarchy of (connected) N-point correlations 
describes the spatial distribution of galaxies (Peebles 1973,...)

In the large scale limit, the 2-point correlation takes the 
simple form (Kaiser 1984, but cf. Dragan Huterer’s talk)

ξg(x1, · · · ,xN )

ξg(r) = b2Iξ(r)

Topological measures provide complementary information 
(won’t be discussed here though)
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Local bias model
Essentially all models of halo biasing are based on the 
local bias model (Kaiser 1984; Szalay 1988; Fry & Gaztanaga 1993)

The bias parameters are derived using the peak-background 
split argument (Bardeen et al. 1986; Cole & Kaiser 1989; Sheth & Tormen 1999)

bN (M) =

�
− 1

σ0

�N

n̄−1 ∂
N [n̄(ν)]

∂νN
, ν ≡ δc(z0)/σ0(M)

Halo velocities are unbiased

δhR(M,x) =
�

N

bN (M)

N !
[δR(x)]

N

vhR(M,x) = vR(x)
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Some issues

Eulerian or Lagrangian biasing ?

Which value of the smoothing radius R shall we use ?

How does discreteness affects clustering ? 
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Another approach: the peak model

DM haloes are local density maxima of the evolved mass 
distribution -> include the peak constraint

Since it is difficult to work out the properties of density 
peaks in a highly non-Gaussian field, consider instead the 
clustering of local maxima of the initial Gaussian density 
field

Well-behaved point process which can account for the 
discrete nature of DM haloes

(Peacock & Heavens 1985; Hoffman & Shaham 1985; Bardeen, Bond, Kaiser, Szalay 1986; 
Coles 1989; Lumsden, Heavens & Peacock 1989,...)
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Peak correlation functions
Use the peak constraint to write the peak number density 
as (Kac 1943; Rice 1951; BBKS)

npk(ν
�,M,x) =

�

xpk

δ(3)(x− xpk) =
33/2

R3
1

|detζ(x)| δ(3)[η(x)] θ(λ3) θ(ν
� − ν)

ν(x) ≡ δM (x)/σ0, ηi(x) ≡ ∂iδM (x)/σ1, ζij(x) ≡ ∂i∂jδM (x)/σ2

R1 ≡
√
3
σ1

σ2

ζ ≡ −OΛO�, Λ = diag(λ1,λ2,λ3), λ1 ≥ λ2 ≥ λ3

Calculate the ensemble averages (BBKS; Regos & Szalay 1995; Matsubara 
1999; Matsubara 2003; Desjacques 2008; Desjacques & Sheth 2010)

�npk(ν
�,x1) · · ·npk(ν

�,xN )�

σ2
n(M, z0) ≡

1

2π2

� ∞

0
dk k2(n+1)Pδ(k, z0)[WM (k)]2
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Number density
The number density of peaks of height ν is (BBKS)

G(α)
n (γ1,ω) ≡

� ∞

0
duunf(u,α)

e−(u−ω)2/2(1−γ2
1)

�
2π(1− γ2

1)

n̄pk(ν,M) ≡ �npk(ν,M,x)� = 1
(2π)2R3

1
e−ν2/2 G(0)

0 (γ1, γ1ν)

γ1 ≡ σ2
1

σ0σ2
, 0 < γ1 < 1
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Peaks vs. Excursion set Theory
�

2

π
ν e−ν2/2

A

�
2

π

√
aν e−aν2/2

�
1 + (aν2)q

�

�
2

π

�
(1− aκ)

√
aν e−aν2/2 + a3/2κ

ν

2
Γ

�
0,

aν2

2

��

G(0)
0 (γ1, γ1ν) e

−ν2/2

Spherical collapse Press & Schechter
Bond et. al. 

Ellipsoidal collapse Sheth & Tormen

Non-Markovian 
(+stochastic barrier) Maggiore & Riotto

Peaks
(ignoring cloud-in-

cloud)
BBKS

(cf. Michele Maggiore’s talk)
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Peak biasing
At the first order (i.e. large scale), the 2-point correlation 
of peaks can be thought of as arising from the biasing 
relation (Desjacques 2008)

δnpk(ν,M,x) = (b̂IδM )(x) ≡ bνδM (x)− bζ∂
2δM (x)

In Fourier space,
δnpk(ν,M,k) = b̂I(k)δM (k), b̂I(k) ≡

�
bν + bζk

2
�

bν(ν,M) =
1

σ0

�
ν − γ1ū

1− γ2
1

�
, bζ(ν,M) =

1

σ2

�
ū− γ1ν

1− γ2
1

�

Compare with local fNL primordial NG (Dalal et al. 2008):

b̂NG(k) =

�
bν + fNL

bφ
k2

�
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2-point peak correlation
Up to second order, this is

− 3

σ2
1

(ξ(1/2)1 b̂IIξ
(1/2)
1 )(r)− 5

σ2
2

(ξ(1)2 b̂IIξ
(1)
2 )(r)

�
1 +

2

5
∂α ln G(α)

0 (γ1, γ1ν)
���
α=1

�
ξpk(ν,M, r) = (b̂2Iξ

(0)
0 )(r) +

1

2
(ξ(0)0 b̂2IIξ

(0)
0 )(r)

+
5

2σ4
2

�
(ξ(0)0 )2 +

10

7
(ξ(2)2 )2 +

18

7
(ξ(2)4 )2

��
1 +

2

5
∂α lnG(α)

0 (γ1, γ1ν)

����
α=1

�2

+
3

2σ4
1

�
(ξ(1)0 )2 + 2(ξ(1)2 )2

�
+

3

σ2
1σ

2
2

�
3(ξ(3/2)3 )2 + 2(ξ(3/2)1 )2

�

where

In Fourier space, the 2nd order bias is
b̂II(q1, q2) = bνν + bνζ(q

2
1 + q22) + bζζq

2
1q

2
2

Work in Progress with Martin Crocce, 
Roman Scoccimarro, Ravi Sheth

ξ(n)� (r) ≡ 1

2π2

� ∞

0
dk k2(n+1)Pδ(k, z0)j�(kr)[WM (k)]2
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Peak-background split
bν and bνν are exactly the same as the first- and second- 
order biases returned by a peak-background split

bνν(ν,M) =
1

σ2
0

n̄−1
pk

∂2n̄pk(ν,M)

∂ν2
≡ bII(ν,M)

bν(ν,M) = − 1

σ0

∂ ln n̄pk(ν,M)

∂ν
≡ bI(ν,M)

So, the peak correlation can also be written

ξpk(ν, r) = b2Iξ
(0)
0 (r) +

1

2
b2II

�
ξ(0)0 (r)

�2
+ other terms
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Gaussian filtering

First order bias parameters
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Large scale correlation in CDM models
ξpk(ν, r) = b2νξδM (r)− 2bνbζ∂

2ξδM (r) + b2ζ∂
4ξδM (r), ξδM ≡ ξ(0)0

(comoving)

BAO
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Local bias : b2νξδ

Peaks : b2νξδM − 2bνbζ∂
2ξδM + b2ζ∂

4ξδM

(Desjacques 2008)
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WDM transfer function

Tophat filtering
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Gravitational evolution
In a first approximation, the initial density peaks move along 
straight lines (Zel’dovich 1970)

xpk(z) = qpk −D(z)∇Φ(qpk)

The peak correlation function can be formally written (Bharadwaj 
1996) 

n̄2
pk [1 + ξpk(ν,M, r, z)] =

�
d3v1d

3v2 P2(v1,v2; r, z|pk)

=

�
d3r�

�
d3v1d

3v2 δ
(3)[r� − r+∆v12] P2(v1,v2; r

�, zi|pk)
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Gravitational evolution (II)
The peak power spectrum as a function of redshift is 

G2(k, z) ≡
�

D(z)

D(z0)

�2

exp

�
−1

3
k2σ2

vpk(z)

�
PδM (k, z0) ≡ Pδ(k, z0)[WM (k)]2

Note the similarity with Renormalized Perturbation 
Theory (RPT, Crocce & Scoccimarro 2006)

Pδ(k, z) = G2
δ(k, z)Pδ(k, z0) + PMC(k, z)

G2
δ(k, z) ≡

�
D(z)

D(z0)

�2

exp

�
−1

3
k2σ2

v(z)

�

Ppk(ν,M, k, z) = G2(k, z)

�
b̂vel(k) +

D(z0)

D(z)
b̂I(k, z0)

�2
PδM (k, z0) + PMC(ν,M, k, z)
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Velocity bias

Local bias:

Assumption: DM haloes locally move with the dark matter
flows. This implies

θh(k) = θ(k), (θ ≡ ∇ · v)

σ2
h = σ2

v

Peaks: σ2
pk = σ2

v

�
1− γ2

0

�
, 0 < γ0 < 1

θpk(k) =

�
1− σ2

0

σ2
1

k2
�
θ(k) ≡ b̂vel(k)θ(k)

This velocity bias is statistical (as opposed to physical)

(BBKS)

(Desjacques & Sheth)
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Redshift distortions
For a local bias model with unbiased velocities (Kaiser 1987)

P s
h(k, µ) =

�
bI + fµ2

�2
Pδ(k, µ)

In the peak model, the Kaiser expression becomes (Desjacques 
& Sheth 2010)

P s
pk(k, µ) =

�
b̂I(k) + f b̂vel(k)µ

2
�2

Pδ(k, µ)

Standard manipulations applied to the peak model would 
lead to k-dependent estimates of the growth rate f
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Lagrangian vs. Eulerian bias
The Eulerian and Lagrangian first order bias parameters 
are related according to

bEν (z) ≡ 1 +
D(z0)

D(z)
bν(z0), bEζ (z) ≡

D(z0)

D(z)
bζ(z0)−

σ2
0

σ2
1

b̂EI (k, z) ≡ b̂vel(k) +
D(z0)

D(z)
b̂I(k, z0)

or
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(Mo & White 1996)
(Sheth & Tormen 1999)
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BAO feature: peaks
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BAO feature: local bias
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Scale-dependence across BAO
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(>2σ peaks)

MICE project, 450 (Gpc/h)3 simulation
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In summary
The peak model is an extension of the local bias model 

The spatial bias parameters are k-dependent; This 
generates a few percent residual scale-dependence 
across the BAO feature

The peak velocities are statistically biased; The Kaiser 
formula acquires a velocity bias factor   

Large numerical simulations should be able to test the 
predictions of this model

Are massive haloes related to local maxima of the 
initial density field ? cf. Cris Porciani’s talk ...
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