

Cosmology from Pan-STARRS Wide-Field Optical/NIR Surveys

Nick Kaiser

Pan-STARRS, Institute for Astronomy, U. Hawaii Modern Cosmology, Early Universe, CMB and LSS Benasque, August 6th, 2010

KIDS: Kilo-Degree Survey

- 1500 deg²
- 400 nights on VST 2.5m telescope
- OmegaCam: 1 deg² CCD camera
- PI: K. Kuijken (Leiden)
- Filter set: ugri+
- 2009-2014?

VISTA Telescope

- 4m infrared-dedicated scope
- 0.6 deg² sparse camera
- Filter set: zyJHK
- Commissioning now
- VIKING: IR component of KIDS

DES: Dark Energy Survey darkenergysurvey.org

- 4-m CTIO telescope
- 3 deg² camera
- 5000 deg² survey
- Filter set: griz
- 2011-2014?
- Lead Institution: Fermilab

HyperSuprimeCam

- upgrade Subaru 8-m telescope with 1.8 deg² camera
- commissioning late 2011
- survey(s) undergoing definition now

WIDE FIELD CORRECTOR

General Lens Data

Focal length	18416[mm]
image scale	0.0893[mm/arcsec]
image size	ϕ 498[mm]

0.17 arcsec/pix (15 um pix)

LSST Large Synoptic Survey Telescope, Isst.org

- 8.4-m telescope
- 10 deg² camera
- ~20000 deg² survey
- Filter set: ugrizy
- 2015-2024

Joint Dark Energy Mission

- many competing concepts
- mission still being defined
- merged with European mission?

SNAP focal plane

Pan-STARRS PS4 Observatory

Pan-STARRS1 (Haleakala, Maui)

Invention of "charge-coupled device" (CCD) Imager

Boyle + Smith at Bell Labs First 8 bit CCD

Trends in Astronomy Technology

• Future dominated by detector improvements

Total area of 3m+ telescopes in the world in m^2 , total number of CCD pixels in Megapix, as a function of time. Growth over 25 years is a factor of 30 in glass, 3000 in pixels.

300 Mpix 'megacam' at CFHT

1.4 Billion pixel GPC1 at PS1

GPC1

PS1 Commissioning Image – M31 inside GPC FOV

0.5° diameter of Moon only small fraction of GPC FoV

FoV of standard world class research telescope

Orientation

- Solar System (Sun, Mercury, Venus, Earth, Mars, Jupiter...)
 - Our Sun is one star of a 100 billion in the Milky Way Galaxy
- Our Solar System is located In the Orion arm of the Milky Way Galaxy
- The Milky Way Galaxy is in the suburbs of the Virgo Supercluster of Galaxies
- The Virgo Supercluster is one of about a million superclusters that extend as far as we can see...
- So, how did we get here?

Pan-STARRS overview

•Pan-STARRS observatory specifications

-Four 1.8m R-C + corrector

-7 square degree FOV - 1.4Gpixel cameras

-Sited in Hawaii

 $-A \Omega = 50$

-R ~ 24 in 30 s integration (meets NAS decadal review "LSST" spec)

--> 7000 square deg/night

-All sky + deep field surveys in g,r,l,z,y and w filters

- Time domain astronomy
 - Transient objects
 - Moving objects
 - Variable objects
- Static sky science
 - Enabled by stacking repeated scans to form a collection of ultra-deep static sky images

PS-1 Optical Design - RC + 3-element wide-field corrector

Mirror Support Systems

L1 Potted in Its Cell at UW

L2 Fit Test at UW

Wavefront-Error Diagnostics

- Many techniques:
 - Shack-Hartmann screens; Hartmann mask; Knife-edge test; Beam-shearing interferometry; Ghost image analysis; Direct metrology; Direct (in-focus) imaging; <u>Outof focus images</u> (a.k.a "curvatures sensing" or "donut analysis").
- Advantages of donut analysis

Donut Modeling => Telescope Configuration

Data

Model

SDSS and Pan-STARRS Bandpasses

Filters closely matched to SDSS - no U-band, but added Y-band at 1 micron with exceptional quantum efficiency

Filter Potted in Frame at UW

Calibration System Installation at PS1

- System operational with white light source and temporary laser source
 Roing used for dome flats
 - Being used for dome flats
- New laser expected to be installed in June

Screen on Frame

White Light Source Illuminating Screen

spectroscopic sky probe

- 3 fiber fed spectrographs
- measure sky emission and stellar continuum
- 16" telescope
- ~30 sec exposures
- targets: F and earlier type stars 9th magnitude
- all-sky bright star spectra catalog
- Measure low-res sky spectra (sky & stars)
- Generate high-res model
 (MODTRAN)
- Synthesize "fringe frame"
- Not currently implemented

THE ARCHITECTURE OF THE ATMOSPHERE

Spectroscopic sky probe can provide accurate calibration of absorption of atmposphere and subtraction of air-glow

Orthogonal Transfer Array

- A new paradigm in large imagers.
- Partition a conventional large-area CCD imager into an array of independently addressable CCDs (cells).
- Massively parallel design allows rapid read-out -> rapid sky coverage

OTA Quantum Efficiency

- OTAs demonstrate expected QE (-65°C)
 - 70um thick devices have exceptional QE at 1um

IPP: Real-Time Image Analysis

Haleakala Observatories, Maui, HI

PS1 Surveys

Table 2: The PS1 Mission Concept Surveys and time distribution.

PS1 Surveys	Filters	Percent time
3π Steradian Survey	g,r,i,z,y	56
Calibration Fields	g,r,i,z,y	2
Medium Deep Survey	g,r,i,z,y	25
Solar System "Sweet Spot" Survey	r	5
Stellar Transit Survey -"PanPlanets"	i	4
Microlensing in M31 "Pandromeda" Survey	g,r,i,z,y	2
Principal Investigator Discretionary Time		6

GPC1 Cell Status (post-refurb)

- Cell colors
 - Black = useless
 - Red = probably useless
 - Yellow = probably useful
 - Green = OK
- Cyan circle = 3°
 - 1.7% loss
- Black circle = 3.3°
 - 3.4% loss
- Red = hexagonal sky tesselations

Read Noise Distribution (Nov 2007)

N.B. This is total noise including 1W/m² RFI. Expect to achieve about 6e- with CCID58, 4ewith CCID64

Filter	m1	sky	sky	3pi exp	3pisky	MD exp	MD sky
	(mag)	(mag/")	(e/pix/s)	(sec)	(e/pix)	(sec)	(e/pix)
g	24.90	21.90	1.1	60	63	240	253
r	25.15	20.86	3.5	38	132	240	831
l I	25.00	20.15	5.8	30	174	240	1391
Z	24.63	19.26	9.4	30	281	240	2246
У	23.03	17.98	7.0	30	209	240	1673

4336 = 07-08-24

Detectors and Controller: QE

g

43

Comparison of SDSS photometry with PSPhot

- •R. Lupton (SDSS) has used PSPhot to perform photometry in the galactic plane.
- Color-magnitude diagram from M13 are shown (r vs g-r).
- left: SDSS Photo, right: PSPhot

PS1 Discovers Its First Confirmed Type Ia SN: SN2008id (from Run 2)

Note: Several more found in Run 3 (Summer 2009)

PS1 SN1a Hubble Diagram

A800

SDSS

PS1 SAS

On-Sky Performance of PS1 and WL Requirements

•IQ somewhat below spec for FWHM, but PSF anisotropy is very small + smoothly varying across the full FOV by virtue of

•Design of primary + secondary support structures.

•System for diagnosing aberrations via curvature sensing

•Adjustment of tilts + piston of CCDs from measured focal-detector surface deviations + metrology in the lab

•Low level of discontinuities in PSF shape across chip boundaries is a major advantage over other facilities

•Combination of massive numbers of short exposures will help beat down major systematics

•OTCCD removes effects of tracking/guiding errors and wind-driven telescope motions

•Latter is a big concern for designs with large secondary mirrors

•OT requires tracking of the convolution kernel for flat fielding.

•Not currently in use.

			o 499 1	g0357o			
	q=0.99	q=0.80	q=0.77	q=0.74	q=0.78	q=0.99	
6 69	Fw=0.82	Fw=0.79	Fw=0.76	Fw=0.72	Fw=0.73	Fw=0.94	e op
q=0.82	q=0.67	18.V=p	q=0.72	d=0.80	d=0.1a	08.0=p	d=0.88
F W =0.79 q=0.63	F w =0.75 q=0.60	F w= 0.70 q=0.60	F w=0 .67 q=0.59	F w =0.70 q=0.52	F w =0.70 q=0.76	F w= 0.70 q=0.79	F w =0.75 q=0.88
FW=0.78	FW=0.70	FW=0.67	FW=0.67	FW=0.67	FW=0.64	FW=0.64	FW=0.67
d=0.67	ц=0.07	ų=0.47	ц=0.64	q=0.56	q=0.61	q=0.82	q=0.71
F w= 0.75 q=0.43	FW=0.62 q=0.54	FW=0.66 q=0.49	F w= 0.82 q=0.76	F w =0.79 q=0.70	FW=0.62 q=0.69	F W =0.64 q=0.69	F W =0.66 q=0.80
F w =0.72 q=0.53	F₩=0,67 q=0,38	FW=0.66 q=0.78	F W= 0.72 q=0.65	F w =0.73 q=0.68	F₩=0.67 q=0.70	F ₩ =0.66 q=0.72	F₩=0.69 q=0.76
FW=0.75 q=0.59	FW=0.72 q=0.57	FW=0.69 q=0.45	F W= 0.69 q=0.40	F w =0.78 q=0.45	F ₩ =0.76 q=0.75	F W =0.70 q=0.45	FW=0.72 q=0.49
Fw=0.96	FW=0.86 q=0.53	FW=0.82 q=0.58	F w= 0.72 q=0.41	F w =0.72 q=0.56	F₩=0.76 q=0.64	F w= 0.87 q=0.40	FW=0.79
	Fw=1.01	Fw=0.89	Fw=0.88	Fw=0.88	Fw=0.84	F w =0.87	

 $\boldsymbol{\Sigma}$

55

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					o4991	g03570				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			q=0.99	°q=0,80	q=0.77	q=0.74	q=0.78	<pre>~ q=0.99</pre>		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ø	. Ø	۲	()		۲		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.fw=1.02	fw=0.96	_fw=0.93	fw=0.97	fw=0.95	'fw=1.13	•.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		q=0.82	·q=0.67	,q=0.81	q=0.72	q=0.80	q=0,79	q=0.90	, q=0.98	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C)	8	8	(B)	Ø	۲	3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ţw=1.03	_o fw=0.96	, fw=0.94.	fw=0.87	fw=0.90	fw=0.91	fw=0.91	• fw=1.01	• ¢(
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		q=0.63	· q=0.60	q=0.60	i q=0,59	q=0.52	rq=0.76	q=0.79	q=0.88	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		۲	Ø	٢	۲	۲		۲	Ø	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		rfw=0.98	'fw=0.93	fw=0.88	fw=0.88	fw=0.88	fw=0.85 ง	, fw=0.87	fw=0.90	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		q=0.67	q=0.67	′q=0,47	q=0.64	q=0.56	~ q=0.81	q=0.62	′°~̃q=0.71	ť
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		۲	۲	۲	۲	۲	۲	۲	٢	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	~	_fw=0.97	^q fw=0.88	, fw=0.87	_fwj=0.9 <u>7</u>	fw=0.96	fw=0.85	, fw=0.86	fw=0.84	÷ .•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		q=0.43	√q=0,54	_q=0,49	, q=0.76	q=0.70	q=0,69	q=0.69	' q=0.80	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- 🛞		\odot	۲	۲	۲	۲	\odot	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		۲ <u>%</u> =0,91	્ં ્fy=0_87	_fw=0.88	fw=0.95	fw=0.94	fw=0.90	fw=0.85	_fw=0.88	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		⊊q=0.53	q=0.38	ʻq=0.78	q=0.65	q=0.68 ′	q=0.70	q=0,72	'q=0.76	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 🚳	۲	8	۲	۲	۲	8	: :	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		਼੍ਰੇ <u>ਅ</u> =0.92	fw=0.92	_ <u>_f</u> y=0.91	f <u>w</u> =0.8 <u>8</u>	_fw=0.91	fw=0.92	fw=0.89	fw=0.92	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		q=0.59	q=0.57	. q=0.45	q=0,40	q=0,45	q=0.75	q=0,45	q=0,49	:
$f_{w}=1.07 f_{w}=0.99 f_{w}=0.97 f_{w}=0.92 f_{w}=0.91 f_{w}=0.92 f_{w}=0.99 f_{w}=0.98 f_{w}=0.53 q=0.41 q=0.56 q=0.64 q=0.40 f_{w}=1.07 f_{w}=1.03 f_{w}=1.01 f_{w}=1.00 f_{w}=0.98 f_{w}=1.01 f_{w}=$		3	. 🚳	1		۲		0	۲	
q=0.53, $q=0.58$ $q=0.41$ $q=0.56$ $q=0.64$ $q=0.40q=0.64$ $q=0.40q=0.64$ $q=0.40q=0.40q=0.64$ $q=0.40q=0.64$ $q=0.40$		$f_{W} = 1.07$	fw_=0.99	fw_=0.97	_fw=0.92	fw=0.91	fw=0.92	fw=0.99	fw=0.98	
$ \bigcirc \bigcirc$			• q=0.53	, q=0.58	q=0,41	q=0.56	⁴ q=0,64	q=0,40		
$f_{m} = 1.07$ $f_{m} = 1.03$ $f_{m} = 1.01$ $f_{m} = 1.00$ ' $f_{m} = 0.98$ $f_{m} = 1.01$				۲	۲		۲			
			fw=1.07	fw=1.03	fw=1.01	fw=1.00	′fw=0.98	fw=1.01		

12K PSF

Average FWHM From 13May to 02July 2010

q Average From Demo Month (11Feb to 12Mar) and Recent data (13May to 02July)

PS1 Sky Coverage

UH 2.2m Site: Preferred Site for PS4

UH 2.2m Site Footprint with Proposed PS4 Building

Survey parameters

Pan-STARRS in a Nutshell

- Telescopes
 - Four 1.8m R-C + corrector
 - -7 square degree FOV
 - Sited in Hawaii
 - A Ω = 50
 - R ~ 24 in 30 s integration

- Detector and controllers
 - $-1.44x10^9$ 0.26" pixels per camera
 - Image motion compensation
 - 512 channel controller
 - -few second readout
 - 6e- read-noise
- Operation mode:
 - Broad band optical imaging
 - Four telescopes view the same field to detect transient or moving objects and build up a deep image of the sky
- Data-Processing System
 - Multicolor summed images
 - Difference images for detection of moving and variable objects
 - Catalogs of static, moving, transient objects
- Survey Capability (for Dark Energy):
 - All-sky (3 pi steradian) to r~26 for WL, BAOs and cluster abundance 70
 - Medium & ultra deep surveys for SN1a

Hoekstra+Jain '08 forecast for "ambitious Stage III survey"

LSST

Growth of Astronomical Imagers

Breaking the telescope cost constraint (CMA Ultra 1m)

Figure 3. LEFT to RIGHT, image shows the mandrel being polished to optical tolerances, Unidirectional prepreg off the roll, Lay-up of prepreg over the mandrel, Finished CFRP mirror after release from the mandrel.

Figure 8. LEFT, Primary mirror, RIGHT, secondary mirror for ULTRA

Pan-STARRS in a Nutshell

- Telescopes
 - Four 1.8m R-C + corrector
 - -7 square degree FOV
 - Sited in Hawaii
 - $-A \Omega = 50$
 - R ~ 24 in 30 s integration

- Detector and controllers
 - 1.44x10⁹ 0.26" pixels per camera
 - Image motion compensation
 - 512 channel controller
 - few second readout
 - 6e⁻ read-noise
- Operation mode:
 - Broad band optical imaging
 - Four telescopes view the same field to detect transient or moving objects and build up a deep image of the sky
- Data-Processing System
 - Multicolor summed images
 - Difference images for detection of moving and variable objects
 - Catalogs of static, moving, transient objects
- Survey Capability (for Dark Energy):
 - All-sky (3 pi steradian) to r~26 for WL, BAOs and cluster abundance
 - Medium & ultra deep surveys for SN1a