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Precision cosmology requires dealing with (i) expensive state of the art simulations, (ii) 
large number of dimensions, (iii) regression (input-output relationships), (iv) estimation and 
control of errors, (v) regularizing and solving ill-posed inverse problems (given data, 
estimate model parameters)

In solving regression and inverse problems  (both of which may be considered as problems 
in Bayesian inference) one has to make choices about characteristic functions by either (i) 
restricting attention to a single type (linear) or class of functions (polynomials), or (ii) 
assign prior probabilities to classes of functions, with some considered more likely (due to 
smoothness, say)

Gaussian Processes (GPs) provide a surprisingly computationally effective method with 
which to apply the latter approach; now becoming increasingly popular (in latest edition of 
Numerical Recipes)

We have applied the GP in several places: (i) the  COSMIC CALIBRATION framework (talk 
by Katrin), (ii) photo-z estimation, (iii) w(z) reconstruction from Sn data, ---
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Bayesian Approach: Basics

Prior distribution over random 
functions: global mean zero (although 
individual choices clearly are not 
mean-zero), variance assumed to be 
independent of x, 2-SD band in gray

Posterior distribution conditioned on 
exact information at two x points, 
consider only those functions from 
the prior distribution that pass 
through these points 

Acceptable functions

Mean value function 
(not mean zero!)

Rasmussen & Williams 2006

Reduction in 
posterior 
uncertainty

GPs are nonparametric, so there is no need to worry if the functions can fit the 
data (e.g., linear functions against nonlinear data), even with many 
observations still have plenty of candidate functions 

With GP models, the choice of prior distribution over random functions is 
essentially a statement of the properties of the initial covariance function, 
these properties can be specified in terms of a set of hyperparameters, using 
data to determine these defines the learning problem for the GP approach

Avoid overfitting by using 
priors on hyperparameters 
and by controlling the 
learning process (later)
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GP Modeling: Basics I

GPs are straightforward generalizations of Gaussian distributions over vectors 
to function spaces, and are specified by a mean function and a covariance 
function

f = (f1, . . . , fn)T ∼ N (µ,Σ)

They have several convenient properties, of which the two most significant are

  Marginalization yields a Gaussian distribution

p(ya) =
�

p(ya,yb)dyb

p(ya,yb) = N
��

a
b

�
,

�
A B
BT C

��
=⇒ p(ya) = N (a,A)

cov(f(x), f(x�)) = k(x,x�)

f(x) ∼ GP(µ(x), k(x,x�))
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GP Modeling: Basics II
  Conditioning yields a new Gaussian distribution

p(ya|yb) =
p(ya,yb)

p(yb)

p(ya,yb) = N
��

a
b

�
,

�
A B
BT C

��

=⇒ p(ya|yb) = N (a + BC−1(yb − b),A−BC−1BT )

The result also holds for conditioning with Gaussian errors. This property is 
important because it means that conditioning can be carried out 
“analytically”, without a brute force rejection algorithm being employed. 

Note, however, that a matrix inversion is required for this step. This is one 
aspect of the “curse of dimensionality” in regression/inverse problems. Ideas 
on how to deal with this issue are at the cutting edge of current research.
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GP Modeling: Basics III
Simple illustration of the conditioning formula in 2 dimensions for a mean-
zero Gaussian process:

p(yb|ya,Σ) =
p(ya, yb|Σ)

p(ya|Σ)
∝ exp−1

2

�
(ya yb)

�
a b
b c

� �
ya

yb

��
consts. absorbed in normalization, 
since      is known   ya

= exp−1
2

�
ay2

a + 2byayb + cy2
b

�
∝ exp−1

2
�
2byayb + cy2

b

�

∝ exp−1
2

��
y2

b + 2
b

c
yayb +

b2

c2
y2

a

�
c

�

= exp−1
2

��
yb −

�
− b

cya

��2

c−1

�

y₁

y₂
Diagonal 

Covariance
with a=c

Non-trivial Covariance

Even though the joint distribution
of y1 and y2 is mean-zero, the conditioned 
distribution of y2 is not mean-zero, if the 
covariance matrix is not diagonal
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The Covariance Function I
The (symmetric, positive semi-definite) covariance function is the key ingredient 
in GP modeling. Depending on the application, various choices of the 
covariance function are possible, both in terms of the form and the underlying 
parameters

The squared exponential form is very common:

here    defines a characteristic length scale; the realizations are infinitely 
differentiable (possibly unrealistic?)

kSE(r) = exp
�
− r2

2l2

�

l

l1 = l2 = 1 l1 = l2 = 0.32 l1 = 0.32, l2 = 1
Rasmussen 2006
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The Covariance Function II

The Gamma-exponential form 

corresponds to an Ornstein-Uhlenbeck process in one dimension for unit 
exponent, where it yields continuous but non-(MS) differentiable functions, 
except in the squared-exponential limit (Matern cov. fn. is smoother)

kGE(r) = exp (−(r/l)γ) , 0 < γ ≤ 2

Rasmussen & Williams 2006
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Model Selection I

Model selection refers to the choice of covariance function and determining 
the hyperparameters (e.g., characteristic length scales) of the covariance 
functions. In a typical situation, one has access only to noisy versions of the 
GP function draws (“observations”)                           . If the noise is IID 
(independent, identically distributed) with variance       , then the prior on the 
observations is

with the marginal likelihood

and since both the integrands are Gaussian, the (log) marginal likelihood can 
be written down immediately, this is very convenient as we shall see 

y = f(x) + �
σ2

n

cov(yi, yj) = k(yi, yj) + δijσ
2
n

p(y|X) =
�

p(y|f , X)p(f |X)df

SE with l = 0.1 SE with l = 0.3 SE with l = 3

σn = 0.1 σn = 0.00005 σn = 0.89

Rasmussen & Williams 2006
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Model Selection II

The log marginal likelihood is (                           )

The values of the hyperparameters are set by maximizing the marginal 
likelihood (e.g., using gradient-based optimizers)

log p(y|X, θ) = −1
2
yT K−1

y y − 1
2

log |Ky|− n

2
log 2π

hyperparameters

training inputsnoisy targets

# of training 
inputs

Ky = Kf + σ2
nI

data fit term complexity penalty

k(x, x�) = ν2 exp
�
− (x− x�)2

2l2

�
+ σ2

nδxx�

Rasmussen 2006

Note: though a 
smaller value of 
the correlation 
length appears 
to provide an 
almost perfect 
fit, the marginal 
likelihood 
rejects it
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Wrap-Up/Issues

Many additional issues show up in actual practice:

GPs can be applied directly to data or to weights of basis functions used to 
represent the data (e.g., to a Principal Components basis, more later)

Robustness of results -- would prefer if answers were not too touchy as a 
function of choice of covariance function (usually the case)

How good is the naive GP error theory in actual practice? How can one 
validate the procedure (more on hold-out tests and sub-sampling)? Important 
in cosmology applications with stringent error control requirements

Use of weighted sampling and iterative procedures allowed within the GP 
approach, can be extended to covariances (Schneider et al 2008)

Using fast surrogate models is a good way to build confidence in the GP 
approach and to optimize it

Approximate methods to reduce the       scaling due to the matrix inverse 
computation (e.g., compact support covariance functions) 

Prediction outside the fitted range of a GP is a bad idea

N3
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Application I: w(z) Reconstruction 
How to approach the dark 
energy characterization problem?

(i) Show convincingly it’s not a 
cosmological constant

(ii) Given (i), try parameterized 
models or physically well-
motivated ideas (ha!), worries 
about possible biases due to 
incompatibility with the data

(iii) Hypothesis testing to 
attempt to rule out classes of DE 
models (sort of the next step 
after (i))

(iv) Reconstruct w(z) directly 
from data, very hard because of 
the double integral smoothing 
operator that must be inverted 
(smoothing data and then 
differentiating is a bad idea)

Simple case: Distance modulus for a 
spatially flat FRW cosmology

Example reconstruction 
problem for ‘JDEM’ + 
300 low-z supernovae

Holsclaw et al 2010
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GP for w(z)  I

Assume a GP for the DE EOS parameter

Need to integrate over this in the expression for the distance modulus, where

The integral of a GP is another GP, and assuming a gamma-exponential form of 
the covariance

A joint GP for the two variables can be constructed:

w(u) ∼ GP(−1, K(u, u�))

y(s) =
� s

o

w(u)
1 + u

du

y(s) ∼ GP
�
− ln(1 + s), κ2

� s

0

� s�

0

ρ|u−u�|αdudu�

(1 + u)(1 + u�)

�

�
y(s)
w(u)

�
∼ GP

��
− ln(1 + s)

−1

�
,

�
Σ11 Σ12

Σ21 Σ22

��
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GP for w(z)  II
where

The mean for         given          is  

so the expensive double integral        does not have to be computed. Now that 
the GP model has been constructed one follows the procedure outlined earlier, 
‘fits’ to the data, and extracts          (the details of the procedure are actually 
rather complicated and are given in a forthcoming paper, Holsclaw et al. 2010)

Depending on the assumptions made about the data, we find that smooth 
infinitely differentiable functions fit the current observations well, but that for 
simulated data we have to take a much smaller value for the power exponent in 
the covariance function

y(s) w(u)

Σ11

w(z)
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GP Reconstruction on ‘Future’ Data

Using ‘JDEM’ 
simulated
data mocking up 
smooth, but devious 
DE EOS histories, we 
can check if the GP 
model can correctly 
reconstruct them 

Results are 
encouraging
as can be seen here 
with an ‘extreme’ 
quintessence model

Smoother DE EOS 
histories are 
recovered well

GP model readjusts 
mean starting from -1 
to -0.7

95%

68%

Predicted mean

Exponential covariance function Holsclaw et al 2010
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GP Reconstruction on Current Data

Using results from the ‘Constitution’ 
dataset Hicken et al (2009) and 
WMAP7 priors, the GP-based 
reconstruction finds no evidence of a 
deviation from the cosmological 
constant

The GP methodology allows the 
integration of multiple datasets and 
sources of information within an 
overall Bayesian framework, work 
on adding CMB and BAO data is 
almost complete

The GP, as used here, has many 
useful features: (i) the data is not 
massaged in any way, (ii) robustness 
of results to variations of GP 
hyperparameters can be easily 
tested, (iii) degeneracies are 
automatically found during the 
fitting process 

68%

95%

95%

68%

Predicted mean

Squared exponential covariance function

Exponential covariance function

Holsclaw et al 2010
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Application II: Cosmic Calibration 

Cosmic calibration, an 
interlocking five-step process:

   Determine optimal simulation 
campaign

   Run simulations at specified 
parameter values

   Estimate response surface 
(emulation)

   Combine with observations via 
MCMC to determine parameters 
-- the calibration process 

   Make new predictions with the 
calibrated emulator 

Heitmann et al 2006, Habib et al 2007
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• Decide if a certain calibration problem is feasible, think through 
number of simulations, error restrictions, number of variables, etc. 
(e.g., much easier to do a very large number of CMB runs versus, say, 
cluster physics runs)

• Statisticians generate sampling scheme (days?)

• Theorists and statisticians test simple surrogate model to check that 
the overall strategy will work (e.g., use Halofit to generate P(k), build 
GP-based emulator, and do error tests)

• Iterate sampling strategy until satisfied that errors are controlled to 
the levels required

• Theorists run sufficiently accurate simulations and generate outputs 
(months/year(s)), statisticians twiddle thumbs (or play around with 
subset of output for quality control tests)

• Statisticians generate emulator (day), emulator reduces each forward 
model evaluation time from hours/days to fraction of a second

• Run MCMC with emulator against data to obtain posterior fits (hours)

• If required make predictions for other observables (trivial)

The Process (e.g., Coyote Universe project)
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     Sampling Designs

Practical 128 point, 5-level, 
strength-2-based design 

[level=#variable slices, strength=
(lower) dimension to be sampled, 

#columns=#variables, #rows=#trials]

Sandor & Andras 2003 

RANDOM ORTHOGONAL ARRAY

LATIN HYPERCUBE OA-LH (Tang 1993)

Strive for “equidistribution” property
over the sampling space, best 
approach when ignorant of functional 
variation, well-suited to GPMs.

Step I
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Basis Representation of Simulated Spectra
P(k) example

SIMULATIONS MEAN FIRST 5 PCs

Mean-adjusted Principal Component Representation

COSMOLOGICAL/MODELING 
PARAMETERS

PC BASIS 
FUNCTIONS

GP WEIGHTS
STANDARDIZED 

PARAMETER 
DOMAIN

Step II

Heitmann et al 2006
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Gaussian Process Modeling
Step III

HOLDOUT TEST
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Test of the Emulator -II
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128 RUN DESIGN 32 RUN DESIGN

ERRORS vs. 64 RUN REFERENCE DESIGN

90%

50%

90%

50%

k

90%
90%

50%50%

128 RUNS, ORDER OF MAGNITUDE IMPROVEMENT
WITH CONSTRAINED PRIORS (WMAP-3SIGMA)

worst-case outliers

P(k)

C_l

+/-5% +/-0.5%

More on Convergence: Post Hold-Out

Habib et al 2007
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Results: CMB + P(k)
(simulated data plus 128/128 runs, 6 parameters)

Estimate parameters: explore 
posterior distribution via 
MCMC taking emulation errors 
into account.

Framework simultaneously 
handles C_l and P(k) emulation; 
other inputs can be easily 
added. Here P(k) simulated 
data was “SDSS main sample”.

Very good results from a small 
number of base simulations.

Target points correspond to the 
values at which the simulated 
data were generated.

Step IV
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Application III: GPs and Photo-Zs

As a final example, we mention using GPs 
for photo-z estimation. This is a complex 
and difficult problem and we have 
approached it by modifying the standard 
GP technology in several ways:

(i) used covariance functions with 
compact support, so that sparse matrix 
algorithms can be employed

(ii) the correlation range in each 
dimension is varied and a constraint is 
imposed on these ranges to enforce a 
minimum level of sparsity in the 
covariance matrix

(iii) a (regression) model is proposed for 
the GP mean, rather than assuming it to 
be a scalar, the resulting decrease in the 
correlation length offsets some of the 
loss of performance in using a compactly 
supported covariance

Preliminary results from a subsample of a 
simulated DES dataset

Kaufman et al 2010
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• www.GaussianProcess.org

• C.E. Rasmussen & C.K.I. 
Williams, Gaussian Processes 
for Machine Learning, MIT 
Press, 2006, available at 
www.GaussianProcess.org/gpml

• D.J.C. MacKay, Information 
Theory, Inference, and 
Learning Algorithms, 
Cambridge University Press, 
2003 

• D. Higdon et al in the Oxford 
Handbook of Applied Bayesian 
Analysis, edited by A. O’Hagan 
& M. West, Oxford University 
Press, 2010

• M. Kennedy & A. O’Hagan, 
Bayesian Calibration of 
Computer Models (with 
discussion), J. Roy. Stat. Soc. 
68, 425 (2001)

GP Resources

Proof that progress occurs in interpolation 
methods (Bleau, Thevenaz, & Unser 2004)
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